Abnormal Effect of Al on the Phase Stability and Deformation Mechanism of Ti-Zr-Hf-Al Medium-Entropy Alloys
<p>The phase content predicted by Thermo-calc. (<b>a</b>) Al12; (<b>b</b>) Al14; (<b>c</b>) Al16; (<b>d</b>) Al18; and (<b>e</b>) Al20. The legend in (<b>e</b>) applies to (<b>a</b>–<b>d</b>).</p> "> Figure 2
<p>The phase prediction by the Bo-Md method.</p> "> Figure 3
<p>The XRD diffractions of Ti-Zr-Hf-Al MEAs.</p> "> Figure 4
<p>The microstructure of Ti-Zr-Hf-Al MEAs. (<b>a</b>) Al12; (<b>b</b>) Al14; (<b>c</b>) Al16; (<b>d</b>) Al18; and (<b>e</b>) Al20.</p> "> Figure 5
<p>The microstructure investigated by TEM for the Al12 MEA. (<b>a</b>) The HAADF image and EDS elements mapping; (<b>b</b>) typical bright-field TEM images showing the laths with different sizes in the Al12 alloy, together with the inset image of SAED for the region marked by the red circle; (<b>c</b>) the HRTEM image of the area marked by the yellow square in (<b>c</b>); (<b>d</b>) the FFT of (<b>c</b>); the FFT (<b>e1</b>) and amplified image (<b>e2</b>) for the area e in (<b>c</b>); and the FFT (<b>f1</b>) and amplified image (<b>f2</b>) for the area f in (<b>c</b>).</p> "> Figure 6
<p>The microstructure investigated by TEM for the Al20 MEA. (<b>a</b>) The HAADF image and EDS element mapping; (<b>b1</b>) typical bright-field TEM image for the Al20 alloy; (<b>b2</b>) SAED for the region marked by the red circle in (<b>b1</b>); (<b>b3</b>) the dark-field TEM image of the ω phase shown in (<b>b2</b>), (<b>b4</b>) the HRTEM image of the α″ and the BCC matrix; (<b>c1</b>) the HRTEM image of the ω phase and (<b>c2</b>) the responding FFT; and (<b>c3</b>) the HRTEM image of the B2 phase and (<b>c4</b>) the responding FFT.</p> "> Figure 7
<p>The mechanical properties of Al<sub>x</sub> MEAs at room temperature. (<b>a</b>) Tensile curves at room temperature; (<b>b</b>) the compression curves of Al20; and the corresponding work-hardening rate curves of (<b>c</b>) Al12 and (<b>d</b>) Al20.</p> "> Figure 8
<p>The fracture morphologies of the Al<sub>x</sub> MEAs. (<b>a</b>) Al12; (<b>b</b>) Al14; (<b>c</b>) Al16; (<b>d</b>) Al18; and (<b>e</b>) Al20.</p> "> Figure 9
<p>The DSC curves of the Al12 and Al20 MEAs.</p> "> Figure 10
<p>The XRD patterns of Al20 before and after the tensile test.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phase Prediction by CALPHAD and Traditional Bo-Md Method
3.2. Phase and Microstructure Evolution for Different Al Addition
3.3. Mechanical Properties Variation Caused by Al Addition
4. Discussion
4.1. The Abnormal β-Stability Ability of Al in the Ti-Zr-Hf-Al System
4.2. The Effect of Al on the Deformation Mechanism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-entropy alloy: Challenges and prospects. Mater. Today 2016, 19, 349–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef]
- Qiu, Y.; Gibson, M.A.; Fraser, H.L.; Birbilis, N. Corrosion characteristics of high entropy alloys. Mater. Sci. Technol. 2015, 31, 1235–1243. [Google Scholar] [CrossRef]
- Tseng, K.; Yang, Y.; Juan, C.; Chin, T.; Tsai, C.; Yeh, J. A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Sci. China Technol. Sci. 2017, 61, 184–188. [Google Scholar] [CrossRef]
- Rogal, Ł.; Czerwinski, F.; Jochym, P.T.; Litynska-Dobrzynska, L. Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions. Mater. Des. 2016, 92, 8–17. [Google Scholar] [CrossRef]
- Takeuchi, A.; Amiya, K.; Wada, T.; Yubuta, K.; Zhang, W. High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams. Jom 2014, 66, 1984–1992. [Google Scholar] [CrossRef]
- He, J.Y.; Wang, H.; Huang, H.L.; Xu, X.D.; Chen, M.W.; Wu, Y.; Liu, X.J.; Nieh, T.G.; An, K.; Lu, Z.P. A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 2016, 102, 187–196. [Google Scholar] [CrossRef]
- Senkov, O.N.; Senkova, S.V.; Woodward, C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 2014, 68, 214–228. [Google Scholar] [CrossRef]
- Lilensten, L.; Couzinié, J.-P.; Bourgon, J.; Perrière, L.; Dirras, G.; Prima, F.; Guillot, I. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 2016, 5, 110–116. [Google Scholar] [CrossRef]
- Huang, H.; Wu, Y.; He, J.; Wang, H.; Liu, X.; An, K.; Wu, W.; Lu, Z. Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering. Adv. Mater. 2017, 29, 170678. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pradeep, K.G.; Deng, Y.; Raabe, D.; Tasan, C.C. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 2016, 534, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Dong, Y.; Guo, S.; Jiang, L.; Kang, H.; Wang, T.; Wen, B.; Wang, Z.; Jie, J.; Cao, Z.; et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys. Sci. Rep. 2014, 4, 6200. [Google Scholar] [CrossRef]
- He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113. [Google Scholar] [CrossRef]
- Wang, W.-R.; Wang, W.-L.; Wang, S.-C.; Tsai, Y.-C.; Lai, C.-H.; Yeh, J.-W. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 2012, 26, 44–51. [Google Scholar] [CrossRef]
- Xu, J.; Cao, C.; Gu, P.; Peng, L. Microstructures, tensile properties and serrated flow of AlxCrMnFeCoNi high entropy alloys. Trans. Nonferr. Metal Soc. China 2021, 30, 746–755. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, M.; Zhang, G.; Li, G. Microstructure and mechanical properties of L12-strengthened CoFeMnNiMo0.2Alx high-entropy alloys. Int. J. Refract. Met. H. 2024, 118, 106499. [Google Scholar] [CrossRef]
- Wu, Y.; Si, J.; Lin, D.; Wang, T.; Wang, W.Y.; Wang, Y.; Liu, Z.; Hui, X. Phase stability and mechanical properties of AlHfNbTiZr high-entropy alloys. Mater. Sci. Eng. A 2018, 724, 249–259. [Google Scholar] [CrossRef]
- Lin, C.-M.; Juan, C.-C.; Chang, C.-H.; Tsai, C.-W.; Yeh, J.-W. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J. Alloys Compd. 2015, 624, 100–107. [Google Scholar] [CrossRef]
- Whitfield, T.E.; Pickering, E.J.; Owen, L.R.; Jones, C.N.; Stone, H.J.; Jones, N.G. The effect of Al on the formation and stability of a BCC–B2 microstructure in a refractory metal high entropy superalloy system. Materialia 2020, 13, 100858. [Google Scholar] [CrossRef]
- Wang, F.; Yang, T.; Zhong, Y.; Li, L.; Yuan, T. Design crystallographic ordering in NbTa0.5TiAlx refractory high entropy alloys with strength-plasticity synergy. J. Mater. Res. Technol. 2023, 27, 8386–8402. [Google Scholar] [CrossRef]
- Jiang, X.J.; Yu, G.; Feng, Z.H.; Xia, C.Q.; Tan, C.L.; Zhang, X.Y.; Ma, M.Z.; Liu, R.P. Abnormal β-phase stability in TiZrAl alloys. J. Alloys Compd. 2017, 699, 256–261. [Google Scholar] [CrossRef]
- Morinaga, M.; Yukawa, N.; Adachi, H. Electronic Structure and Phase Stability of Titanium Alloys. Tetsu-to-Hagane 1986, 72, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Hu, Y.J.; Taylor, A.; Styles, M.J.; Marceau, R.K.W.; Ceguerra, A.V.; Gibson, M.A.; Liu, Z.K.; Fraser, H.L.; Birbilis, N. A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Mater. 2017, 123, 115–124. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.; Niu, J.; Wu, H.; Zhai, S.; Wang, Y. Effect of Al addition on structural evolution and mechanical properties of the Al HfNbTiZr high-entropy alloys. Mater. Today Commun. 2018, 16, 242–249. [Google Scholar] [CrossRef]
- Al-Zain, Y.; Kim, H.Y.; Hosoda, H.; Nam, T.H.; Miyazaki, S. Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Mater. 2010, 58, 4212–4223. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, J.Y.; Marteleur, M.; Gloriant, T.; Vermaut, P.; Laillé, D.; Castany, P.; Curfs, C.; Jacques, P.J.; Prima, F. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 2013, 61, 6406–6417. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Zheng, X.H.; Cai, W. Martensitic transformation and shape memory effect of Ti–V–Al lightweight high-temperature shape memory alloys. Scr. Mater. 2015, 99, 97–100. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, H.; Ge, S.; Zhu, Z.; Li, H.; Zhang, H.; Wang, A.; Zhang, H. Phase transformations in body-centered cubic Nbx HfZrTi high-entropy alloys. Mater. Charact. 2018, 142, 443–448. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, M.C.; Diao, H.; Yang, T.; Liu, J.; Zuo, T.; Zhang, Y.; Lu, Z.; Cheng, Y.; Zhang, Y.; et al. Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems. Jom 2013, 65, 1848–1858. [Google Scholar] [CrossRef]
Alloys | Al (at.%) | Hf (at.%) | Ti (at.%) | Zr (at.%) |
---|---|---|---|---|
Al12 | 12 | 22 | 44 | 22 |
Al14 | 14 | 21.5 | 43 | 21.5 |
Al16 | 16 | 21 | 42 | 21 |
Al18 | 18 | 20.5 | 41 | 20.5 |
Al20 | 20 | 20 | 40 | 20 |
Alloys | Al12 | Al14 | Al16 | Al18 | Al20 |
---|---|---|---|---|---|
σ0.2/MPa | 1335 | 1796 | - | - | 721 |
σb/MPa | 1528 | 1937 | 1731 | 1377 | 1346 |
E/GPa | 115 | 102 | 966 | 821 | 678 |
δ/% | 5.8 | 2.5 | 2.0 | 1.8 | 6.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, P.; Wang, L.; Liu, Y.; Hui, X. Abnormal Effect of Al on the Phase Stability and Deformation Mechanism of Ti-Zr-Hf-Al Medium-Entropy Alloys. Metals 2024, 14, 1035. https://doi.org/10.3390/met14091035
Yuan P, Wang L, Liu Y, Hui X. Abnormal Effect of Al on the Phase Stability and Deformation Mechanism of Ti-Zr-Hf-Al Medium-Entropy Alloys. Metals. 2024; 14(9):1035. https://doi.org/10.3390/met14091035
Chicago/Turabian StyleYuan, Penghao, Lu Wang, Ying Liu, and Xidong Hui. 2024. "Abnormal Effect of Al on the Phase Stability and Deformation Mechanism of Ti-Zr-Hf-Al Medium-Entropy Alloys" Metals 14, no. 9: 1035. https://doi.org/10.3390/met14091035