Investigation of Surface Hardness and Microstructural Changes in S45C Carbon Steel Cylinders Through Arc Quenching
<p>Schematic illustration of a double-ellipsoidal heat source.</p> "> Figure 2
<p>S45C steel tube sample and arc equipment: (<b>a</b>,<b>b</b>) arc quenching equipment, and (<b>c</b>) S45C steel tube after the quenching using the arc energy of the TIG gun corresponding to 25 cases designed by the Taguchi method.</p> "> Figure 3
<p>Influences of current intensity on the cylinder surface hardness of S45C steel tube after arc quenching.</p> "> Figure 4
<p>Influences of arc length on the cylinder surface hardness of S45C steel tube after arc quenching.</p> "> Figure 5
<p>Influences of shielding gas flow rate on the cylinder surface hardness of S45C steel tube after arc quenching.</p> "> Figure 6
<p>Influences of travel speed on the cylinder surface hardness of S45C steel tube after arc quenching.</p> "> Figure 7
<p>Influences of pulse time on the cylinder surface hardness of S45C steel tube after arc quenching.</p> "> Figure 8
<p>Influences of heating angle on the cylinder surface hardness of S45C steel tube after arc quenching.</p> "> Figure 9
<p>Influences of water cooling angle on the cylinder surface hardness of S45C steel tube after arc quenching.</p> "> Figure 10
<p>Main influences plot for SN ratios of the S45C steel tube hardness with cylinder surface (larger is better).</p> "> Figure 11
<p>Microstructure of hardened S45 steel tube of sample No. 6: (<b>a</b>) cross-section of the sample at 50× magnification, (<b>b</b>) boundary of the cross-section of the sample at 500× magnification, (<b>c</b>) base metal, (<b>d</b>) hardened zone, and (<b>e</b>) cross-section of the sample at 3000× magnification.</p> "> Figure 12
<p>Distribution of microhardness in the cross-section of S45C steel tubes of sample No.6.</p> ">
Abstract
:1. Introduction
2. Analytical Estimation of Thermal Characteristics of TIG
3. Experimental Methods
4. Results and Discussion
4.1. Effects of Individual Parameters
4.2. Taguchi Analysis and Microstructure
5. Conclusions
- The hardness progressively decreases from 45.6 HRC to 42.2 HRC as the current intensity rises from 125 A to 140 A. Consequently, an excessive current intensity causes the steel surface to overheat, which lowers the surface hardness. Moreover, 90° is the ideal cooling angle, since it produces the highest level of surface hardness.
- The Taguchi results show that the sequence of impact rankings on surface hardness is as follows: pulse, travel speed, intensity, gas flow rate, arc length, and heating angle. The pulse time has the greatest impact because it directly affects the heating input, followed by the travel speed. The intensity and gas flow rate have a suitable impact on surface hardness. On the contrary, arc length and heating angle have the least impact.
- The highest surface hardness achieved by the Taguchi analysis was when the current was 125 A, the travel speed was 560 mm/min, the arc length was 1.8 mm, the gas flow rate was 10 L/min, the heating angle was 90°, and the pulse was 1 s.
- The microstructure structure can be separated into three sections: base metal, heat-affected area, and hardened area. The base metal is composed of ferrite, which is bright in color, and pearlite, which is darker in color. The heat-affected zone at 1536 μm represents the case hardening depth from the arc quenching procedure. The hardened area consists of a needle-shaped martensite phase and a brightly colored residual austenite.
- The hardened area, with a hardness above 300 HV0.3, is 1200 μm thick. The heat-affected area is 400 μm thick and ranges from 1200 μm to 1600 μm in depth. The hardness value of this area drops rapidly as it transitions from the hardened to the base area. The base metal has the lowest hardness (over 183 HV0.3) at a depth of 1600 μm. Arc quenching of the S45C steel tube resulted in a case hardening depth of 1200 μm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mesquita, R.A.; Schneider, R.; Gonçalves, C.S. Heat Treating of Cold-Work Tool Steels—Low-and Un-Alloyed Water and Oil Hardening Steels. In Heat Treating of Irons and Steels; ASM International: Cleveland, OH, USA, 2014; pp. 320–328. [Google Scholar]
- Lahiri, A.K. Heat Treatment. In Applied Metallurgy and Corrosion Control: A Handbook for the Petrochemical Industry; Indian Institute of Metals Series; Springer: Singapore, 2017; pp. 117–140. [Google Scholar]
- Kishawy, H.A.; Hosseini, A. Hardened Steels. In Machining Difficult-to-Cut Materials: Basic Principles and Challenges; Springer: Cham, Switzerland, 2019; pp. 9–54. [Google Scholar]
- Ion, J.C. Laser transformation hardening. Surf. Eng. 2002, 18, 14–31. [Google Scholar] [CrossRef]
- Schneider, M.J.; Chatterjee, M.S. Introduction to Surface Hardening of Steels. In Steel Heat Treating Fundamentals and Processes; ASM International: Cleveland, OH, USA, 2013; pp. 389–398. [Google Scholar]
- Wu, J.; Zhang, C.; Zhang, S.; Ren, Y.; Cheng, H.; Tian, G. Multi-response assessment for carbon emission and hardening influence in laser surface quenching. Environ. Sci. Pollut. Res. 2023, 30, 1–17. [Google Scholar]
- Joshi, S.S.; Choudhuri, D.; Mantri, S.A.; Banerjee, R.; Dahotre, N.B.; Banerjee, S. Rationalizing surface hardening of laser glazed grey cast iron via an integrated experimental and computational approach. Mater. Des. 2018, 156, 570–585. [Google Scholar] [CrossRef]
- Safonov, A.N. Basic directions of influenceive use of laser equipment for heat treatment of alloys. Met. Sci. Heat Treat. 1997, 39, 275–279. [Google Scholar] [CrossRef]
- Muthukumaran, G.; Babu, P.D. Laser transformation hardening of various steel grades using different laser types. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–29. [Google Scholar] [CrossRef]
- Shin, W.S.; Yoo, H.J.; Kim, J.H.; Choi, J.; Chun, E.J.; Park, C.; Kim, Y.J. Influence of laser heat-treatment and laser nitriding on the microstructural evolutions and wear behaviors of AISI P21 mold steel. Metals 2020, 10, 1487. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Singh, A.K.; Singh, S.K. Influence of Surface Treatments on Erosion Behavior of Various Steel Alloys-A Literature Review. Tribol. Online 2018, 13, 254–261. [Google Scholar] [CrossRef]
- Lee, M.K.; Kim, G.H.; Kim, K.H.; Kim, W.W. Control of surface hardnesses, hardening depths, and residual stresses of low carbon 12Cr steel by flame hardening. Surf. Coat. Technol. 2004, 184, 239–246. [Google Scholar] [CrossRef]
- Thamilarasan, J.; Karunagaran, N.; Nanthakumar, P. Optimization of oxy-acetylene flame hardening parameters to analysis the surface structure of low carbon steel. Mater. Today Proc. 2021, 46, 4169–4173. [Google Scholar] [CrossRef]
- Cermak, H.; Tobie, T.; Stahl, K. Flame and Induction Hardening–An Advantageous Alternative to Case Hardening for Large Size Gears? HTM J. Heat Treat. Mater. 2022, 77, 112–126. [Google Scholar] [CrossRef]
- Chiumenti, M.; Cervera, M.; Dialami, N.; Wu, B.; Jinwei, L.; de Saracibar, C.A. Numerical modeling of the electron beam welding and its experimental validation. Finite Elem. Anal. Des. 2016, 121, 118–133. [Google Scholar] [CrossRef]
- Stević, Z.; Dimitrijević, S.P.; Stević, M.; Stolić, P.; Petrović, S.J.; Radivojević, M.; Radovanović, I. The Design of a System for the Induction Hardening of Steels Using Simulation Parameters. Appl. Sci. 2023, 13, 11432. [Google Scholar] [CrossRef]
- Sabeeh, H.F.; Abdlbaqi, I.M.; Mahdi, S.M. Design and Implementation of Induction Coil for Case Hardening of a Carbon Steel Gear. Adv. Electromagn. 2020, 9, 47–55. [Google Scholar] [CrossRef]
- Bao, L.; Wang, B.; You, X.; Li, H.; Gu, Y.; Liu, W. Numerical and experimental research on localized induction heating process for hot stamping steel sheets. Int. J. Heat Mass Transf. 2020, 151, 119422. [Google Scholar] [CrossRef]
- Mühl, F.; Jarms, J.; Kaiser, D.; Dietrich, S.; Schulze, V. Tailored bainitic-martensitic microstructures by means of inductive surface hardening for AISI4140. Mater. Des. 2020, 195, 108964. [Google Scholar] [CrossRef]
- Mikheev, A.E.; Ivasev, S.S.; Girn, A.V.; Terekhin, N.A.; Statsura, V.V. Surface hardening of steel components with a constricted electric arc. Weld. Int. 2003, 17, 570–572. [Google Scholar] [CrossRef]
- Safonov, E.N.; Zhuravlev, V.I. Surface hardening of iron-carbon alloys by arc quenching. Weld. Int. 1998, 12, 326–328. [Google Scholar] [CrossRef]
- Wagh, S.V.; Bhatt, D.V.; Menghani, J.V.; Bhavikatti, S.S. Effects of laser hardening process parameters on hardness depth of Ck45 steel using Taguchi’s optimization technique. IOP Conf. Ser. Mater. Sci. Eng. 2020, 810, 012027. [Google Scholar] [CrossRef]
- Marichamy, S.; Dhinakaran, V.; Stalin, B.; Ravichandran, M.; Balasubramanian, M.; Chairman, C.A. Taguchi Optimization and Flame Hardening Experimental Investigation on Eglin Steel. IOP Conf. Ser. Mater. Sci. Eng. 2020, 988, 012099. [Google Scholar] [CrossRef]
- Jean, M.D.; Tzeng, Y.F. Use of Taguchi methods and multiple regression analysis for optimal process development of high energy electron beam case hardening of cast iron. Surf. Eng. 2003, 19, 150–156. [Google Scholar] [CrossRef]
- Parvinzadeh, M.; Karganroudi, S.S.; Omidi, N.; Barka, N.; Khalifa, M. A novel investigation into the edge influence reduction of 4340 steel disc through induction hardening process using magnetic flux concentrators. Int. J. Adv. Manuf. Technol. 2021, 115, 2959–2971. [Google Scholar] [CrossRef]
- Goyal, V.K.; Ghosh, P.; Saini, J.S. Analytical studies on thermal behaviour and geometry of weld pool in pulsed current gas metal arc welding. J. Mater. Process. Technol. 2009, 209, 1318–1336. [Google Scholar] [CrossRef]
- Kumar, R.; Ghosh, P.K.; Kumar, S. Thermal and metallurgical characteristics of surface modification of AISI 8620 steel produced by TIG arcing process. J. Mater. Process. Technol. 2017, 240, 420–431. [Google Scholar] [CrossRef]
- Uyen, T.M.T.; Minh, P.S.; Nguyen, V.T.; Do, T.T.; Nguyen, V.T.; Le, M.T.; Nguyen, V.T.T. Trajectory Strategy Effects on the Material Characteristics in the WAAM Technique. Micromachines 2023, 14, 827. [Google Scholar] [CrossRef]
- Zhang, G.; Xiong, J.; Gao, H.; Wu, L. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1938–1945. [Google Scholar] [CrossRef]
- Jeyaprakash, N.; Haile, A.; Arunprasath, M. The parameters and equipments used in TIG welding: A review. Int. J. Eng. Sci. 2015, 4, 11–20. [Google Scholar]
- Singh, A.K.; Dey, V.; Rai, R.N. Techniques to improveweld penetration in TIG welding (A review). Mater. Today Proc. 2017, 4, 1252–1259. [Google Scholar] [CrossRef]
- Kumar, P.; Sinha, A.N.; Hirwani, C.K.; Murugan, M.; Saravanan, A.; Singh, A.K. Effect of welding current in TIG welding 304L steel on temperature distribution, microstructure and mechanical properties. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 369. [Google Scholar] [CrossRef]
- Azevedo, S.C.; de Resende, A.A. Effect of angle, distance between electrodes and TIG current on the weld bead geometry in TIG-MIG/MAG welding process. Int. J. Adv. Manuf. Technol. 2021, 114, 1505–1515. [Google Scholar] [CrossRef]
Weight% | C | Si | Mn | P | S | Ni | Cr | Fe |
---|---|---|---|---|---|---|---|---|
S45C | 0.42–0.50 | 0.17–0.37 | 0.5–0.8 | 0.035 max | 0.035 max | 0.25 max | 0.25 max | Remaining |
No. | Intensity (A) | Travel Speed (mm/min) | Heat Input (J/mm) | Arc Length (mm) | Gas Flow Rate (L/min) | Heating Angle (°) | Cooling Angle (°) | Pulse (s) | HRC |
---|---|---|---|---|---|---|---|---|---|
1 | 130 | 480 | 975.0 | 1.5 | 12 | 10 | 90 | 0.8 | 45.9 |
2 | 125 | 480 | 937.5 | 1.5 | 12 | 10 | 90 | 0.8 | 46.2 |
3 | 120 | 480 | 900.0 | 1.5 | 12 | 10 | 90 | 0.8 | 45.6 |
4 | 135 | 480 | 1012.5 | 1.5 | 12 | 10 | 90 | 0.8 | 44.3 |
5 | 140 | 480 | 1050.0 | 1.5 | 12 | 10 | 90 | 0.8 | 42.2 |
6 | 125 | 480 | 937.5 | 1.5 | 10 | 10 | 90 | 0.8 | 45.6 |
7 | 125 | 480 | 937.5 | 1.5 | 8 | 10 | 90 | 0.8 | 44.6 |
8 | 125 | 480 | 937.5 | 1.5 | 14 | 10 | 90 | 0.8 | 42.2 |
9 | 125 | 480 | 937.5 | 1.5 | 16 | 10 | 90 | 0.8 | 43.6 |
10 | 125 | 480 | 937.5 | 1.5 | 12 | 10 | 60 | 0.8 | 41.3 |
11 | 130 | 480 | 975.0 | 1.5 | 12 | 10 | 70 | 0.8 | 44.4 |
12 | 125 | 480 | 937.5 | 1.5 | 12 | 10 | 150 | 0.8 | 42.3 |
13 | 130 | 480 | 975.0 | 1.5 | 12 | 10 | 120 | 0.8 | 42.8 |
14 | 125 | 500 | 900.0 | 1.5 | 12 | 10 | 90 | 0.8 | 45.3 |
15 | 125 | 520 | 865.4 | 1.5 | 12 | 10 | 90 | 0.8 | 44.2 |
16 | 125 | 460 | 978.3 | 1.5 | 12 | 10 | 90 | 0.8 | 44.1 |
17 | 125 | 440 | 1022.7 | 1.5 | 12 | 10 | 90 | 0.8 | 43.3 |
18 | 125 | 480 | 937.5 | 1 | 12 | 10 | 90 | 0.8 | 42.4 |
19 | 125 | 480 | 937.5 | 1.2 | 12 | 10 | 90 | 0.8 | 40.1 |
20 | 125 | 480 | 937.5 | 1.8 | 12 | 10 | 90 | 0.8 | 41.1 |
21 | 125 | 480 | 937.5 | 2 | 12 | 10 | 90 | 0.8 | 42.1 |
22 | 125 | 480 | 937.5 | 1.5 | 12 | 10 | 90 | 0.6 | 44.7 |
23 | 125 | 480 | 937.5 | 1.5 | 12 | 10 | 90 | 0.7 | 41.7 |
24 | 125 | 480 | 937.5 | 1.5 | 12 | 10 | 90 | 0.9 | 41.1 |
25 | 125 | 480 | 937.5 | 1.5 | 12 | 10 | 90 | 1 | 42.5 |
26 | 125 | 480 | 937.5 | 1.5 | 12 | 10 | 90 | 0 | 36.4 |
27 | 125 | 480 | 937.5 | 1.5 | 12 | 15 | 90 | 0.8 | 44.5 |
28 | 125 | 480 | 937.5 | 1.5 | 12 | 20 | 90 | 0.8 | 38.2 |
29 | 125 | 480 | 937.5 | 1.5 | 12 | 5 | 90 | 0.8 | 39.1 |
30 | 125 | 480 | 937.5 | 1.5 | 12 | 0 | 90 | 0.8 | 36.3 |
No. | Intensity (A) | Travel Speed (mm/min) | Heat Input (J/mm) | Arc Length (mm) | Gas Flow Rate (L/min) | Heating Angle (°) | Pulse (s) | HRC |
---|---|---|---|---|---|---|---|---|
1 | 120 | 440 | 981.8 | 1 | 8 | 60 | 0.6 | 43.4 |
2 | 120 | 460 | 939.1 | 1.2 | 10 | 70 | 0.7 | 45.4 |
3 | 120 | 480 | 900.0 | 1.5 | 12 | 90 | 0.8 | 45.8 |
4 | 120 | 500 | 864.0 | 1.8 | 14 | 120 | 0.9 | 46.8 |
5 | 120 | 520 | 830.8 | 2 | 16 | 150 | 1.0 | 44.7 |
6 | 125 | 460 | 978.3 | 1 | 12 | 120 | 1.0 | 47.7 |
7 | 125 | 480 | 937.5 | 1.2 | 14 | 150 | 0.6 | 45.8 |
8 | 125 | 500 | 900.0 | 1.5 | 16 | 60 | 0.7 | 45.1 |
9 | 125 | 520 | 865.4 | 1.8 | 8 | 70 | 0.8 | 47.3 |
10 | 125 | 440 | 1022.7 | 2 | 10 | 90 | 0.9 | 46.4 |
11 | 130 | 480 | 975.0 | 1 | 16 | 70 | 0.9 | 42.4 |
12 | 130 | 500 | 936.0 | 1.2 | 8 | 90 | 1.0 | 47.5 |
13 | 130 | 520 | 900.0 | 1.5 | 10 | 120 | 0.6 | 43.8 |
14 | 130 | 440 | 1063.6 | 1.8 | 12 | 150 | 0.7 | 44.0 |
15 | 130 | 460 | 1017.4 | 2 | 14 | 60 | 0.8 | 46.6 |
16 | 135 | 500 | 972.0 | 1 | 10 | 150 | 0.8 | 47.4 |
17 | 135 | 520 | 934.6 | 1.2 | 12 | 60 | 0.9 | 42.4 |
18 | 135 | 440 | 1104.5 | 1.5 | 14 | 70 | 1.0 | 45.9 |
19 | 135 | 460 | 1056.5 | 1.8 | 16 | 90 | 0.6 | 46.2 |
20 | 135 | 480 | 1012.5 | 2 | 8 | 120 | 0.7 | 44.9 |
21 | 140 | 520 | 969.2 | 1 | 14 | 90 | 0.7 | 44.0 |
22 | 140 | 440 | 1145.5 | 1.2 | 16 | 120 | 0.8 | 45.3 |
23 | 140 | 460 | 1095.7 | 1.5 | 8 | 150 | 0.9 | 46.5 |
24 | 140 | 480 | 1050.0 | 1.8 | 10 | 60 | 1.0 | 48.1 |
25 | 140 | 500 | 1008.0 | 2 | 12 | 70 | 0.6 | 45.1 |
Level | Intensity | Arc Length | Travel Speed | Gas Flow Rate | Heating Angle | Pulse |
---|---|---|---|---|---|---|
1 | 45.21 | 45.00 | 45.01 | 45.93 | 45.13 | 44.87 |
2 | 46.45 | 45.27 | 46.48 | 46.24 | 45.21 | 44.68 |
3 | 44.89 | 45.42 | 45.40 | 45.00 | 45.99 | 46.48 |
4 | 45.36 | 46.50 | 46.38 | 45.83 | 45.70 | 44.91 |
5 | 45.81 | 45.52 | 44.46 | 44.72 | 45.68 | 46.78 |
Delta | 1.57 | 1.50 | 2.02 | 1.51 | 0.86 | 2.10 |
Rank | 3 | 5 | 2 | 4 | 6 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son Minh, P.; Nguyen, V.-T.; Nguyen, T.T.; Ho, N. Investigation of Surface Hardness and Microstructural Changes in S45C Carbon Steel Cylinders Through Arc Quenching. Metals 2024, 14, 1438. https://doi.org/10.3390/met14121438
Son Minh P, Nguyen V-T, Nguyen TT, Ho N. Investigation of Surface Hardness and Microstructural Changes in S45C Carbon Steel Cylinders Through Arc Quenching. Metals. 2024; 14(12):1438. https://doi.org/10.3390/met14121438
Chicago/Turabian StyleSon Minh, Pham, Van-Thuc Nguyen, Thanh Tan Nguyen, and Nguyen Ho. 2024. "Investigation of Surface Hardness and Microstructural Changes in S45C Carbon Steel Cylinders Through Arc Quenching" Metals 14, no. 12: 1438. https://doi.org/10.3390/met14121438
APA StyleSon Minh, P., Nguyen, V. -T., Nguyen, T. T., & Ho, N. (2024). Investigation of Surface Hardness and Microstructural Changes in S45C Carbon Steel Cylinders Through Arc Quenching. Metals, 14(12), 1438. https://doi.org/10.3390/met14121438