From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300
<p>(<b>Left</b>): The initial discovery image [<a href="#B8-galaxies-08-00017" class="html-bibr">8</a>] of SN 2010da by L.A.G. Monard [<a href="#B1-galaxies-08-00017" class="html-bibr">1</a>]. (<b>Right</b>): An RGB-rendered IR composite image of NGC 300, with insets showing the 3.6 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m image of the progenitor (∼6.5 years pre-outburst), ∼4.5 years post-outburst, and the difference subtracted image. Reproduced with permission from Lau et al. [<a href="#B9-galaxies-08-00017" class="html-bibr">9</a>] (their Figure 1).</p> "> Figure 2
<p>The mid-IR color–magnitude diagram (CMD) showing the SN 2010da progenitor (red square) and local luminous blue variables (LBVs) and LBV candidates (filled circles and triangles, respectively). Open circles and filled triangles show the CMD locations of LBV-like supernova (SN) “impostors.” Reproduced with permission from Khan et al. [<a href="#B3-galaxies-08-00017" class="html-bibr">3</a>].</p> "> Figure 3
<p>The IR spectral energy density (SED) of SN 2010da progenitor (black squares show measurements, black downward facing triangles show upper limits). The SEDs of two other optical progenitors, NGC 300 OT2008-1 and SN 2008S, are shown (in blue and brown, respectively) for comparison. The dotted red line shows the SED of the known LBV AG Car; the addition of 12 mag extinction is required for this SED to fit the observed fluxes of SN 2010da (dashed red line). Reproduced with permission from Berger and Chornock [<a href="#B19-galaxies-08-00017" class="html-bibr">19</a>].</p> "> Figure 4
<p><b>Left</b>: Adapted from Figure 1 in Binder et al. [<a href="#B23-galaxies-08-00017" class="html-bibr">23</a>], showing the <span class="html-italic">Chandra</span> image of SN 2010da. The yellow circle indicates the location of the X-ray source coincident with SN 2010da (the three fainter sources to the upper-left are unrelated). <b>Right</b>: Figure 2 from Binder et al. [<a href="#B23-galaxies-08-00017" class="html-bibr">23</a>] showing the <span class="html-italic">Hubble</span>/Advanced Camera for Surveys (ACS) image of the same region. The white cross and circle indicate the location of the X-ray source; the green cross and circle show the location of the likely massive donor star.</p> "> Figure 5
<p>Figure 1 from Carpano et al. [<a href="#B28-galaxies-08-00017" class="html-bibr">28</a>], showing the period evolution during the deep <span class="html-italic">XMM-Newton</span>/<span class="html-italic">NuSTAR</span> observations.</p> "> Figure 6
<p>The <span class="html-italic">XMM-Newton</span> and <span class="html-italic">NuSTAR</span> spectra of NGC 300 ULX-1 (top panel of Figure 3 in Carpano et al. [<a href="#B28-galaxies-08-00017" class="html-bibr">28</a>]). <span class="html-italic">XMM-Newton</span>/EPIC pn spectra are shown in black and blue, while the MOS spectra are shown in red, green, magenta and cyan. <span class="html-italic">NuSTAR</span> FPMA and FPMB spectra are shown in yellow and orange, respectively.</p> "> Figure 7
<p><b>Left</b>: <span class="html-italic">Swift</span>/XRT long term light curve from 2018 January to 2019 May. The corresponding hardness ratios (<span class="html-italic">S</span>: 0.2–1.5 keV, <span class="html-italic">H</span>: 1.5–10 keV) are shown in the bottom panel. <b>Right</b>: Evolution of the pulse period from <span class="html-italic">NICER</span> (pink) and <span class="html-italic">Swift</span> (blue) data covering the period from January 2018 to January 2019, when pulsations could be detected.</p> "> Figure 8
<p>(<b>Left</b>) <span class="html-italic">Spitzer</span>/IRAC mid-IR light curve of SN 2010da/NGC 300 ULX-1 from 2004–2019. The red and blue points correspond to photometry measured at 3.6 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m and 4.5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m, respectively. Only 3.6 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m observations were serendipitously obtained near the 2010 outburst. (<b>Right</b>) Spectral energy distribution (SED) of SN 2010da/NGC 300 ULX-1 during pre-outburst (December 2007) and post-outburst phases (late 2014/early 2015) overlaid on SED templates of 122 RSG and 11 sgB[e] stars in the Large Magellanic Cloud, cataloged by Bonanos et al. [<a href="#B55-galaxies-08-00017" class="html-bibr">55</a>]. Solid lines correspond to the median VIJHKs and <span class="html-italic">Spitzer</span>/IRAC magnitudes of the SED template stars, and the surrounding shaded regions indicate the 1<math display="inline"><semantics> <mi>σ</mi> </semantics></math> spread in the magnitudes of the distribution. The wavelength on the <span class="html-italic">x</span>-axis is shown in units of <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m. Both figures are reproduced and modified from Lau et al. [<a href="#B53-galaxies-08-00017" class="html-bibr">53</a>].</p> "> Figure 9
<p>Deep Xshooter spectroscopy of NGC 300 ULX-1 in October 2018 (black). The composite model (blue) requires a RSG atmosphere (red), excess dust emission (red short-dashed line) and a power-law blue excess (red long-dashed line) attributed to an irradiated accretion disk. Reproduced with permission from Heida et al. [<a href="#B57-galaxies-08-00017" class="html-bibr">57</a>].</p> "> Figure 10
<p>Mid-IR and X-ray light curve of SN 2010da/NGC 300 ULX-1 taken between MJD 57300 and MJD 58770 by <span class="html-italic">Spitzer</span>/IRAC and <span class="html-italic">Swift</span>/XRT, respectively. This figure is modified from Lau et al. [<a href="#B53-galaxies-08-00017" class="html-bibr">53</a>].</p> ">
Abstract
:1. Initial Discovery
Understanding the SN 2010da System Prior to Outburst
2. SN 2010da as a High Mass X-Ray Binary
3. The Ultraluminous X-Ray Source
3.1. Period Evolution
3.2. The X-Ray Spectrum
3.3. Beaming
4. Subsequent Monitoring and X-Ray Decline
5. The Circumstellar Environment and Donor Star
6. Open Questions
- What triggered the 2010 outburst? Was this event related to a common envelope phase. tidal interactions between the accretor and donor or a change in radius of the RSG donor?
- What was the mass loss history of the donor star? At what rate is dust currently reforming in the binary?
- What is the origin of the complex optical emission line profiles, and what can the optical spectra tell us about the orbital parameters of the binary or the geometry of the immediate circumstellar environment?
- Can future outbursts or ULX behavior be predicted? Are the apparent changes in X-ray flux due to Lense-Thirring precession, changes in the ultrafast outflow of the system (e.g., clumpy winds) or an intrinsic change in X-ray luminosity?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monard, L.A.G. Supernova 2010da in NGC 300. Cent. Bur. Electron. Telegr. 2010, 2289, 1. [Google Scholar]
- Dalcanton, J.J.; Williams, B.F.; Seth, A.C.; Dolphin, A.; Holtzman, J.; Rosema, K.; Skillman, E.D.; Cole, A.; Girardi, L.; Gogarten, S.M.; et al. The ACS Nearby Galaxy Survey Treasury. Astrophys. J. 2009, 183, 67–108. [Google Scholar] [CrossRef]
- Khan, R.; Stanek, K.Z.; Kochanek, C.S.; Thompson, T.A.; Prieto, J.L. Mid-IR Progenitor of SN 2010da in NGC 300; The Astronomer’s Telegram, 2010; Volume 2632, Available online: http://www.astronomerstelegram.org/?read=2632 (accessed on 18 February 2020).
- Chornock, R.; Berger, E. Spectroscopy of SN 2010da in NGC 300; The Astronomer’s Telegram, 2010; Volume 2637, Available online: http://www.astronomerstelegram.org/?read=2637 (accessed on 18 February 2020).
- Elias-Rosa, N.; Mauerhan, J.C.; van Dyk, S.D. SN 2010da is a SN “impostor”; The Astronomer’s Telegram, 2010; Volume 2636, Available online: http://www.astronomerstelegram.org/?read=2636 (accessed on 18 February 2020).
- Bond, H.E. Optical Photometry of the New Optical Transient SN 2010da in NGC 300; The Astronomer’s Telegram, 2010; Volume 2640, Available online: http://www.astronomerstelegram.org/?read=2640 (accessed on 18 February 2020).
- Prieto, J.L.; Bond, H.E.; Kochanek, C.S.; Khan, R.; Stanek, K.Z.; Thompson, T.A. Optical and Near-IR Follow-up of SN 2010da: Evidence for Warm Dust; The Astronomer’s Telegram, 2010; Volume 2660, Available online: http://www.astronomerstelegram.org/?read=2660 (accessed on 18 February 2020).
- Gal-Yam, A.; Mazzali, P.A.; Manulis, I.; Bishop, D. Supernova Discoveries 2010-2011: Statistics and Trends. Publi. Astrono. Soc. Pac. 2013, 125, 749. [Google Scholar] [CrossRef] [Green Version]
- Lau, R.M.; Kasliwal, M.M.; Bond, H.E.; Smith, N.; Fox, O.D.; Carlon, R.; Cody, A.M.; Contreras, C.; Dykhoff, D.; Gehrz, R.; et al. Rising from the Ashes: Mid-infrared Re-brightening of the Impostor SN 2010da in NGC 300. Astrophys. J. 2016, 830, 142. [Google Scholar] [CrossRef] [Green Version]
- Van Dyk, S.D.; Peng, C.Y.; King, J.Y.; Filippenko, A.V.; Treffers, R.R.; Li, W.; Richmond, M.W. SN 1997bs in M66: Another Extragalactic η Carinae Analog? Publ. Astron. Soc. Pac. 2000, 112, 1532–1541. [Google Scholar] [CrossRef]
- Immler, S.; Brown, P.; Russell, B.R. Swift XRT Detection of Supernova 2010da in X-Rays; The Astronomer’s Telegram, 2010; Volume 2639, Available online: http://www.astronomerstelegram.org/?read=2639 (accessed on 18 February 2020).
- Smith, N.; Li, W.; Silverman, J.M.; Ganeshalingam, M.; Filippenko, A.V. Luminous blue variable eruptions and related transients: Diversity of progenitors and outburst properties. Mon. Not. R. Astron. Soc. 2011, 415, 773–810. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, M.A.; Chu, Y.H. An X-Ray Survey of Wolf-Rayet Stars in the Magellanic Clouds. I. The Chandra ACIS Data Set. Astrophys. J. 2008, 177, 216–237. [Google Scholar] [CrossRef] [Green Version]
- Nazé, Y.; Rauw, G.; Hutsemékers, D. The first X-ray survey of Galactic luminous blue variables. Astron. Astrophys. 2012, 538, A47. [Google Scholar] [CrossRef] [Green Version]
- Laskar, T.; Berger, E.; Chornock, R. Significant Brightening of the Progenitor of SN2010da at 3.6 Micron 6 Months Prior to the Eruption; The Astronomer’s Telegram, 2010; Volume 2648, Available online: http://www.astronomerstelegram.org/?read=2648 (accessed on 18 February 2020).
- Massey, P.; McNeill, R.T.; Olsen, K.A.G.; Hodge, P.W.; Blaha, C.; Jacoby, G.H.; Smith, R.C.; Strong, S.B. A Survey of Local Group Galaxies Currently Forming Stars. III. A Search for Luminous Blue Variables and Other Hα Emission-Line Stars. Astron. J. 2007, 134, 2474–2503. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.; Stanek, K.Z.; Prieto, J.L.; Kochanek, C.S.; Thompson, T.A.; Beacom, J.F. Census of Self-obscured Massive Stars in Nearby Galaxies with Spitzer: Implications for Understanding the Progenitors of SN 2008S-like Transients. Astrophys. J. 2010, 715, 1094–1108. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T.A.; Prieto, J.L.; Stanek, K.Z.; Kistler, M.D.; Beacom, J.F.; Kochanek, C.S. A New Class of Luminous Transients and a First Census of their Massive Stellar Progenitors. Astrophys. J. 2009, 705, 1364–1384. [Google Scholar] [CrossRef]
- Berger, E.; Chornock, R. Deep Optical Limits for the Progenitor of SN2010da and Its Broad-Band SED; The Astronomer’s Telegram, 2010; Volume 2638, Available online: http://www.astronomerstelegram.org/?read=2638 (accessed on 18 February 2020).
- Berger, E.; Soderberg, A.M.; Chevalier, R.A.; Fransson, C.; Foley, R.J.; Leonard, D.C.; Debes, J.H.; Diamond-Stanic, A.M.; Dupree, A.K.; Ivans, I.I.; et al. An Intermediate Luminosity Transient in NGC 300: The Eruption of a Dust-Enshrouded Massive Star. Astrophys. J. 2009, 699, 1850–1865. [Google Scholar] [CrossRef]
- Bond, H.E.; Bedin, L.R.; Bonanos, A.Z.; Humphreys, R.M.; Monard, L.A.G.B.; Prieto, J.L.; Walter, F.M. The 2008 Luminous Optical Transient in the Nearby Galaxy NGC 300. Astrophys. J. 2009, 695, L154–L158. [Google Scholar] [CrossRef] [Green Version]
- Binder, B.; Williams, B.F.; Kong, A.K.H.; Gaetz, T.J.; Plucinsky, P.P.; Dalcanton, J.J.; Weisz, D.R. Chandra Detection of SN 2010da Four Months After Outburst: Evidence for a High-mass X-Ray Binary in NGC 300. Astrophys. J. 2011, 739, L51. [Google Scholar] [CrossRef] [Green Version]
- Binder, B.; Williams, B.F.; Kong, A.K.H.; Gaetz, T.J.; Plucinsky, P.P.; Skillman, E.D.; Dolphin, A. Recurring X-ray outbursts in the supernova impostor SN 2010da in NGC 300. Mon. Not. R. Astron. Soc. 2016, 457, 1636–1643. [Google Scholar] [CrossRef] [Green Version]
- Ivezic, Z.; Elitzur, M. Self-similarity and scaling behaviour of infrared emission from radiatively heated dust-I. Theory. Mon. Not. R. Astron. Soc. 1997, 287, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Kochanek, C.S. The Astrophysical Implications of Dust Formation during the Eruptions of Hot, Massive Stars. Astrophys. J. 2011, 743, 73. [Google Scholar] [CrossRef] [Green Version]
- Villar, V.A.; Berger, E.; Chornock, R.; Margutti, R.; Laskar, T.; Brown, P.J.; Blanchard, P.K.; Czekala, I.; Lunnan, R.; Reynolds, M.T. The Intermediate Luminosity Optical Transient SN 2010da: The Progenitor, Eruption, and Aftermath of a Peculiar Supergiant High-mass X-Ray Binary. Astrophys. J. 2016, 830, 11. [Google Scholar] [CrossRef] [Green Version]
- Linden, T.; Kalogera, V.; Sepinsky, J.F.; Prestwich, A.; Zezas, A.; Gallagher, J.S. The Effect of Starburst Metallicity on Bright X-ray Binary Formation Pathways. Astrophys. J. 2010, 725, 1984–1994. [Google Scholar] [CrossRef] [Green Version]
- Carpano, S.; Haberl, F.; Maitra, C.; Vasilopoulos, G. Discovery of pulsations from NGC 300 ULX1 and its fast period evolution. Mon. Not. R. Astron. Soc. 2018, 476, L45–L49. [Google Scholar] [CrossRef] [Green Version]
- Kaaret, P.; Feng, H.; Roberts, T.P. Ultraluminous X-Ray Sources. Annu. Rev. 2017, 55, 303–341. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Reprint of 1973A&A....24..337S. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 500, 33–51. [Google Scholar]
- Poutanen, J.; Lipunova, G.; Fabrika, S.; Butkevich, A.G.; Abolmasov, P. Supercritically accreting stellar mass black holes as ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2007, 377, 1187–1194. [Google Scholar] [CrossRef]
- Narayan, R.; Sa̧dowski, A.; Soria, R. Spectra of black hole accretion models of ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2017, 469, 2997–3014. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulos, G.; Petropoulou, M.; Koliopanos, F.; Ray, P.S.; Bailyn, C.D.; Haberl, F.; Gendreau, K. NGC 300 ULX1: Spin evolution, super-Eddington accretion and outflows. arXiv 2019, arXiv:1905.03740. [Google Scholar] [CrossRef]
- Christodoulou, D.M.; Laycock, S.G.T.; Kazanas, D. Not an oxymoron: Some X-ray binary pulsars with enormous spin-up rates reveal weak magnetic fields. Mon. Not. R. Astron. Soc. 2018, 478, 3506–3512. [Google Scholar] [CrossRef] [Green Version]
- Mushtukov, A.A.; Suleimanov, V.F.; Tsygankov, S.S.; Ingram, A. Optically thick envelopes around ULXs powered by accreating neutron stars. Mon. Not. R. Astron. Soc. 2017, 467, 1202–1208. [Google Scholar] [CrossRef]
- Walton, D.J.; Fürst, F.; Heida, M.; Harrison, F.A.; Barret, D.; Stern, D.; Bachetti, M.; Brightman, M.; Fabian, A.C.; Middleton, M.J. Evidence for Pulsar-like Emission Components in the Broadband ULX Sample. Astrophys. J. 2018, 856, 128. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulos, G.; Haberl, F.; Carpano, S.; Maitra, C. NGC 300 ULX1: A test case for accretion torque theory. Astron. Astrophys. 2018, 620, L12. [Google Scholar] [CrossRef]
- Ray, P.S.; Guillot, S.; Ho, W.C.G.; Kerr, M.; Enoto, T.; Gendreau, K.C.; Arzoumanian, Z.; Altamirano, D.; Bogdanov, S.; Campion, R.; et al. Anti-glitches in the Ultraluminous Accreting Pulsar NGC 300 ULX-1 Observed with NICER. Astrophys. J. 2019, 879, 130. [Google Scholar] [CrossRef] [Green Version]
- Becker, P.A.; Wolff, M.T. Thermal and Bulk Comptonization in Accretion-powered X-Ray Pulsars. Astrophys. J. 2007, 654, 435–457. [Google Scholar] [CrossRef]
- Kosec, P.; Pinto, C.; Walton, D.J.; Fabian, A.C.; Bachetti, M.; Brightman, M.; Fürst, F.; Grefenstette, B.W. Evidence for a variable Ultrafast Outflow in the newly discovered Ultraluminous Pulsar NGC 300 ULX-1. Mon. Not. R. Astron. Soc. 2018, 479, 3978–3986. [Google Scholar] [CrossRef]
- Mushtukov, A.A.; Ingram, A.; Middleton, M.; Nagirner, D.I.; van der Klis, M. Timing properties of ULX pulsars: Optically thick envelopes and outflows. Mon. Not. R. Astron. Soc. 2019, 484, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Walton, D.J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A.C.; Grefenstette, B.W.; Harrison, F.A.; Heida, M.; Kennea, J.; et al. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton. Astrophys. J. 2018, 857, L3. [Google Scholar] [CrossRef] [Green Version]
- Koliopanos, F.; Vasilopoulos, G.; Buchner, J.; Maitra, C.; Haberl, F. Investigating ULX accretion flows and cyclotron resonance in NGC 300 ULX1. Astron. Astrophys. 2019, 621, A118. [Google Scholar] [CrossRef]
- Steiner, J.F.; Narayan, R.; McClintock, J.E.; Ebisawa, K. A Simple Comptonization Model. Publ. Astron. Soc. Pac. 2009, 121, 1279. [Google Scholar] [CrossRef] [Green Version]
- Caballero, I.; Wilms, J. X-ray pulsars: A review. Mem. Soc. Astron. Ital. 2012, 83, 230. [Google Scholar]
- Binder, B.; Levesque, E.M.; Dorn-Wallenstein, T. No Strong Geometric Beaming in the Ultraluminous Neutron Star Binary NGC 300 ULX-1 (SN 2010da) from Swift and Gemini. Astrophys. J. 2018, 863, 141. [Google Scholar] [CrossRef] [Green Version]
- King, A.; Lasota, J.P. No magnetars in ULXs. Mon. Not. R. Astron. Soc. 2019, 485, 3588–3594. [Google Scholar] [CrossRef]
- King, A.R. Masses, beaming and Eddington ratios in ultraluminous X-ray sources. Mon. Not. R. Astron. Soc. 2009, 393, L41–L44. [Google Scholar] [CrossRef] [Green Version]
- Kaaret, P.; Ward, M.J.; Zezas, A. High-resolution imaging of the HeII λ4686 emission line nebula associated with the ultraluminous X-ray source in Holmberg II. Mon. Not. R. Astron. Soc. 2004, 351, L83–L88. [Google Scholar] [CrossRef] [Green Version]
- Maitra, C.; Carpano, S.; Haberl, F.; Vasilopoulos, G. NGC 300 ULX1: A new ULX pulsar in NGC 300. arXiv 2018, arXiv:1811.04807,. [Google Scholar] [CrossRef] [Green Version]
- Bardeen, J.M.; Petterson, J.A. The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes. Astrophys. J. 1975, 195, L65. [Google Scholar] [CrossRef]
- Truemper, J.; Kahabka, P.; Oegelman, H.; Pietsch, W.; Voges, W. EXOSAT Observations of the 35 Day Cycle of Hercules X-1: Evidence for Neutron Star Precession. Astrophys. J. 1986, 300, L63. [Google Scholar] [CrossRef]
- Lau, R.M.; Heida, M.; Walton, D.J.; Kasliwal, M.M.; Adams, S.M.; Cody, A.M.; De, K.; Gehrz, R.D.; Fürst, F.; Jencson, J.E.; et al. Uncovering Red and Dusty Ultraluminous X-Ray Sources with Spitzer. Astrophys. J. 2019, 878, 71. [Google Scholar] [CrossRef] [Green Version]
- Kasliwal, M.M.; Bally, J.; Masci, F.; Cody, A.M.; Bond, H.E.; Jencson, J.E.; Tinyanont, S.; Cao, Y.; Contreras, C.; Dykhoff, D.A.; et al. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer. Astrophys. J. 2017, 839, 88. [Google Scholar] [CrossRef] [Green Version]
- Bonanos, A.Z.; Massa, D.L.; Sewilo, M.; Lennon, D.J.; Panagia, N.; Smith, L.J.; Meixner, M.; Babler, B.L.; Bracker, S.; Meade, M.R.; et al. Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud. Astron. J. 2009, 138, 1003–1021. [Google Scholar] [CrossRef] [Green Version]
- Lamers, H.J.G.L.M.; Zickgraf, F.J.; de Winter, D.; Houziaux, L.; Zorec, J. An improved classification of B[e]-type stars. Astron. Astrophys. 1998, 340, 117–128. [Google Scholar]
- Heida, M.; Lau, R.M.; Davies, B.; Brightman, M.; Fürst, F.; Grefenstette, B.W.; Kennea, J.A.; Tramper, F.; Walton, D.J.; Harrison, F.A. Discovery of a Red Supergiant Donor Star in SN2010da/NGC 300 ULX-1. Astron. J. Lett. 2019, 883, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Neutron star high-mass binaries as the origin of SGR/AXP. Astronomische Nachrichten 2016, 337, 254. [Google Scholar] [CrossRef]
- Tao, L.; Feng, H.; Grisé, F.; Kaaret, P. Compact Optical Counterparts of Ultraluminous X-Ray Sources. Astrophys. J. 2011, 737, 81. [Google Scholar] [CrossRef] [Green Version]
- Levesque, E.M. Astrophysics of Red Supergiants; Iop Publishing Ltd: Bristol, UK, 2017. [Google Scholar] [CrossRef]
- El Mellah, I.; Sundqvist, J.O.; Keppens, R. Wind Roche lobe overflow in high-mass X-ray binaries. A possible mass-transfer mechanism for ultraluminous X-ray sources. Astron. Astrophys. 2019, 622, L3. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binder, B.A.; Carpano, S.; Heida, M.; Lau, R. From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300. Galaxies 2020, 8, 17. https://doi.org/10.3390/galaxies8010017
Binder BA, Carpano S, Heida M, Lau R. From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300. Galaxies. 2020; 8(1):17. https://doi.org/10.3390/galaxies8010017
Chicago/Turabian StyleBinder, Breanna A., Stefania Carpano, Marianne Heida, and Ryan Lau. 2020. "From SN 2010da to NGC 300 ULX-1: Ten Years of Observations of an Unusual High Mass X-Ray Binary in NGC 300" Galaxies 8, no. 1: 17. https://doi.org/10.3390/galaxies8010017