Diagnosis of Depressive Disorder Model on Facial Expression Based on Fast R-CNN
<p>DSM-5 [<a href="#B44-diagnostics-12-00317" class="html-bibr">44</a>] and PHQ-9 [<a href="#B43-diagnostics-12-00317" class="html-bibr">43</a>].</p> "> Figure 2
<p>Examples of applications that provide self-diagnosis services for depression through PHQ-9: (<b>a</b>) National Mental Health Center [<a href="#B47-diagnostics-12-00317" class="html-bibr">47</a>], (<b>b</b>) Inquiry Health LLC [<a href="#B48-diagnostics-12-00317" class="html-bibr">48</a>].</p> "> Figure 3
<p>Wong–Baker’s facial pain measurement tool [<a href="#B49-diagnostics-12-00317" class="html-bibr">49</a>].</p> "> Figure 4
<p>Example of a facial expression that shows the user to select an expression close to his or her emotions [<a href="#B50-diagnostics-12-00317" class="html-bibr">50</a>].</p> "> Figure 5
<p>Conceptual diagram of service of the proposed system.</p> "> Figure 6
<p>Facial emotion recognition device and method for identifying emotions [<a href="#B33-diagnostics-12-00317" class="html-bibr">33</a>].</p> "> Figure 7
<p>Block diagram for detecting the position of eyes and lips proposed in the study of Lee Jeong-hwan (2018) [<a href="#B51-diagnostics-12-00317" class="html-bibr">51</a>].</p> "> Figure 8
<p>Suggestions to assist in diagnosing depression using a chatbot.</p> ">
Abstract
:1. Introduction
1.1. Detecting Individual Smartphone Users and Supporting Mental Health through Chatbots
1.2. AI-Based Depressive Disorder Diagnosis
2. Materials and Methods
2.1. Deep Learning Algorithm Selection
2.2. Collecting and Learning Image Data
2.3. Connect KakaoTalk with the Server
3. Depressive Disorder Model on Facial Expression
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.-C.; Jeste, D.V. Artificial intelligence for mental health and mental illnesses: An overview. Curr Psychiatry Rep. 2019, 21, 116. [Google Scholar] [CrossRef] [PubMed]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- LOOXID. Available online: https://looxidlabs.com (accessed on 29 November 2021).
- Gromatsky, M.; Sullivan, S.R.; Spears, A.P.; Mitchell, E.; Walsh, S.; Kimbrel, N.A.; Goodman, M. Ecological momentary assessment (EMA) of mental health outcomes in veterans and servicemembers: A scoping review. Psychiatry Res. 2020, 292, 113359. [Google Scholar] [CrossRef] [PubMed]
- Robinaugh, D.J.; Brown, M.L.; Losiewicz, O.M.; Jones, P.J.; Marques, L.; Baker, A.W. Towards a precision psychiatry approach to anxiety disorders with ecological momentary assessment: The example of panic disorder. Gen. Psychiatry 2020, 33, e100161. [Google Scholar] [CrossRef] [Green Version]
- Triantafillou, S.; Saeb, S.; Lattie, E.G.; Mohr, D.C.; Kording, K.P. Relationship between sleep quality and mood: Ecological momentary assessment study. JMIR Ment. Health 2019, 6, e12613. [Google Scholar] [CrossRef]
- Verslus, A.; Verkuil, B.; Spinhoven, P.; Ploeg, M.M.; Brosschot, J.F. Changing Mental Health and Positive Psychological Well-Being Using Ecological Momentary InterventionsA Systematic Review and Meta-analysis. J. Med. Internet Res. 2016, 18, e152. [Google Scholar] [CrossRef] [Green Version]
- Schueller, S.; Aguilera, A.; Mohr, D. Ecological momentary interventions for depression and anxiety. Depress. Anxiety 2017, 34, 540–545. [Google Scholar] [CrossRef]
- Hanssen, E.; Balvert, S.; Oorschot, M.; Borkelmans, K.; Van Os, J.; Delespaul, P.; Fett, A. An ecological momentary intervention incorporating personalised feedback to improve symptoms and social functioning in schizophrenia spectrum disorders. Psychiatry Res. 2020, 284, 112695. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 29 November 2021).
- Masud, M.T.; Mamun, M.A.; Thapa, K.; Lee, D.; Griffiths, M.D.; Yang, S. Unobtrusive monitoring of behavior and movement patterns to detect clinical depression severity level via smartphone. J. Biomed. Inform. Biomed. Inform. 2020, 103, 103371. [Google Scholar] [CrossRef]
- Ware, S.; Yue, C.; Morillo, R.; Lu, J.; Shang, C.; Bi, J.; Kamath, J.; Russell, A.; Bamis, A.; Wang, B. Predicting depressive symptoms using smartphone data. Smart Health 2020, 15, 100093. [Google Scholar] [CrossRef]
- Saeb, S.; Lattie, E.G.; Schueller, S.M.; Kording, K.P.; Mohr, D.C. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 2016, 4, e2537. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.; Kim, H.; Choi, Y. Mental Health, Nursing. Shingwang Publishing Co., Ltd.: Seoul, Korea, 2018; pp. 254–267. [Google Scholar]
- Barnett, I.; Torous, J.; Staples, P.; Sandoval, L.; Keshavan, M.; Onnela, J.-P. Relapse prediction in schizophrenia through digital phenotyping: A pilot study. Neuropsychopharmacology 2018, 43, 1660–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buck, B.; Scherer, E.; Brian, R.; Wang, R.; Wang, W.; Campbell, A.; Choudhury, T.; Hauser, M.; Kane, J.M.; Ben-Zeev, D. Relationships between smartphone social behavior and relapse in schizophrenia: A preliminary report. Schizophr. Res. 2019, 208, 167–172. [Google Scholar] [CrossRef]
- Aledavood, A.; Torous, J.; Hoyos, A.M.T.; Naslund, J.A.; Onnela, J.; Keshavan, M. Smartphone-Based Tracking of Sleep in Depression, Anxiety, and Psychotic Disorders. Curr. Psychiatry Rep. 2019, 21, 49. [Google Scholar] [CrossRef] [Green Version]
- Moret-Tatay, C.; Iborra-Marmolejo, I.; Jorques-Infante, M.J.; Esteve-Rodrigo, J.V.; Schwanke, C.H.A.; Irigaray, T.Q. Can Virtual Assistants perform Cognitive Assessment in older Adults? A Review. Medicina 2021, 57, 1310. [Google Scholar] [CrossRef] [PubMed]
- Jadczyk, T.; Wojakowski, W.; Tendera, M.; Henry T., D.; Egnaczyk, G.; Shreenivas, S. Artificial Intelligence Can Improve patient management at the Time of a pandemic: The Role of Voice Technology. J. Med. Int. Res. 2021, 23, e22959. [Google Scholar] [CrossRef]
- D’Alfonso, S.; Carpenter, N.; Alvarez-Jimenez, M. Making the MOST out of smartphone opportunities for mental health. In Proceedings of the 30th Australian Conference on Computer- Human Interaction, Melbourne, Australia, 4–7 December2018. [Google Scholar]
- Mohr, D.C.; Zhang, M.; Schueller, S.M. Personal sensing: Understanding mental health using ubiquitous sensors and machine learning. Annu. Rev. Clin. Psychol. 2017, 13, 23–47. [Google Scholar] [CrossRef] [Green Version]
- Onnela, J.-P.; Rauch, S.L. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology 2016, 41, 1691–1696. [Google Scholar] [CrossRef] [Green Version]
- Difrancesco, S.; Lamers, F.; Riese, H.; Merikangas, K.R.; Beekman, A.T.F.; van Hemert, A.M.; Schoevers, R.A.; Penninx, B.W.J.H. Sleep, circadian rhythm, and physical activity patterns in depressive and anxiety disorders: A 2-week ambulatory assessment study. Depress. Anxiety 2019, 36, 975–986. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.; Grierson, A.; Gehue, L.; Kallestad, H.; MacMillan, I.; Hickie, I. Can consumer grade activity devices replace research grade actiwatches in youth mental health settings? Sleep Biol. Rhythm. 2019, 17, 223–232. [Google Scholar] [CrossRef] [Green Version]
- De la Torre Díez, I.; Alonso, S.G.; Hamrioui, S.; Cruz, E.M.; Nozaleda, L.M.; Franco, M.A. IoT-based services and applications for mental health in the literature. J. Med. Syst. 2019, 43, 11. [Google Scholar] [CrossRef] [PubMed]
- D’Alfonso, S. AI in mental health. Curr. Opin. Psychol. 2020, 36, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P.; Sorenson, E.R.; Friesen, W.V. Pan-Cultural Elements in Facial Displays of Emotion. Science 1969, 164, 86–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Personal. Soc. Psychol. 1971, 17, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Heaven, D. Why faces don’t always tell the truth about feelings. Nature 2020, 578, 502–504. [Google Scholar] [CrossRef] [Green Version]
- Crawford, K.; Dobbe, R.; Dryer, T.; Fried, G.; Green, B.; Kaziunas, E.; Kak, A.; Mathur, V.; McElroy, E.; Sánchez, A.N.; et al. AI Now 2019 Report; AI Now Institute New York University: New York, NY, USA, 2019; pp. 16–47. [Google Scholar]
- Benitez-Quiroz, C.F.; Srinivasan, R.; Martinez, A.M. Facial color is an efficient mechanism to visually transmit emotion. Proc. Natl. Acad. Sci. USA 2018, 115, 3581–3586. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Whitney, D. Tracking the affective state of unseen persons. Proc. Natl. Acad. Sci. USA 2019, 116, 7559–7564. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-G.; Kim, J.H.; Jeong, D. Facial Emotion Recognition Device and Method for Identifying Emotions, Patentee. Korea Patent 10-2174175, 29 October 2020. Available online: http://kpat.kipris.or.kr/kpat/biblioa.do?method=biblioFrame&applno=1020180135303&index=0&start=fulltext&openPageId=View03 (accessed on 29 November 2021).
- Abd-alrazaq, A.A.; Alajlani, M.; Alalwan, A.A.; Bewick, B.M.; Gardner, P.; Househ, M. An overview of the features of chatbots in mental health: A scoping review. Int. J. Med. Inform. 2019, 132, 103978. [Google Scholar] [CrossRef]
- Vaidyam, A.N.; Wisniewski, H.; Halamka, J.D.; Kashavan, M.S.; Torous, J.B. Chatbots and conversational agents in mental health: A review of the psychiatric landscape. Can. J. Psychiatry 2019, 64, 456–464. [Google Scholar] [CrossRef]
- Woebot. Available online: https://woebot.io (accessed on 29 November 2021).
- Shim. Available online: http://www.helloshim.com (accessed on 29 November 2021).
- Wysa. Available online: https://www.wysa.io (accessed on 29 November 2021).
- X2. Available online: https://www.x2ai.com (accessed on 29 November 2021).
- Woon, S.; Lim, J.; Han, C. Clinical evaluation tool for effective depression treatment. J. Korean Psychiatry 2012, 23, 136–146. [Google Scholar]
- Zimmerman, M.; McGlinchey, J.B.; Posternak, M.A.; Friedman, M. How should remission from depression be defined? The depressed patient’s perspective. Am. J. Psychiatry 2006, 163, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Multi-Faceted Personality Test; Seoul National University Publishing and Cultural Center: Seoul, Korea, 2010; pp. 67–84. [Google Scholar]
- PHQ-9. PHQ-9 (Patient Health Questionnaire-9). Available online: https://www.mdcalc.com/phq-9-patient-health-questionnaire-9#use-cases (accessed on 29 November 2021).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. DSM-5TM, 5th ed.; American Psychiatric Association: Washing, DC, USA, 2013; pp. 124–135. [Google Scholar]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validaity of a brief Depression Secerity Measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Copyright: National Center for Mental Health, Copyright 2012 BNSoft. Inc. Available online: http://www.mhrnd.re.kr/xe/MentalHealt (accessed on 25 January 2022).
- Copyright: Inquiry Health LLC, Copyright 2021 Inquiry Health LLC. Available online: https://apps.mfcbox.com/app/1006280166/depression-test (accessed on 25 January 2022).
- Park, S.; Choi, H.; Choi, J.; Kim, G.; Hong, J. Reliability and validity of the Korean version of the Depression Screening Tool (Patient Health Questionnaire-0, PHQ-9). Anxiety Mood 2010, 6, 119–124. [Google Scholar]
- Copyright 2016 Wong-Baker Faces. Available online: https://wongbakerfaces.org/ (accessed on 25 January 2022).
- Stark, L. Facial recognition, emotion and race in animated social media. First Monday 2018, 23. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Lee, J.H. Method of detecting eye and lip areas in facial images using high-speed R-CNN. J. Korea Converg. Soc. 2018, 9, 1–8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-S.; Park, W.-H. Diagnosis of Depressive Disorder Model on Facial Expression Based on Fast R-CNN. Diagnostics 2022, 12, 317. https://doi.org/10.3390/diagnostics12020317
Lee Y-S, Park W-H. Diagnosis of Depressive Disorder Model on Facial Expression Based on Fast R-CNN. Diagnostics. 2022; 12(2):317. https://doi.org/10.3390/diagnostics12020317
Chicago/Turabian StyleLee, Young-Shin, and Won-Hyung Park. 2022. "Diagnosis of Depressive Disorder Model on Facial Expression Based on Fast R-CNN" Diagnostics 12, no. 2: 317. https://doi.org/10.3390/diagnostics12020317
APA StyleLee, Y. -S., & Park, W. -H. (2022). Diagnosis of Depressive Disorder Model on Facial Expression Based on Fast R-CNN. Diagnostics, 12(2), 317. https://doi.org/10.3390/diagnostics12020317