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Abstract: Background/Objectives: This paper is significant in highlighting the importance
of early and precise diagnosis of Parkinson’s Disease (PD) that affects both motor and non-
motor functions to achieve better disease control and patient outcomes. This study seeks
to assess the effectiveness of machine learning algorithms optimized to classify PD based
on vocal characteristics to serve as a non-invasive and easily accessible diagnostic tool.
Methods: This study used a publicly available dataset of vocal samples from 188 people
with PD and 64 controls. Acoustic features like baseline characteristics, time-frequency
components, Mel Frequency Cepstral Coefficients (MFCCs), and wavelet transform-based
metrics were extracted and analyzed. The Chi-Square test was used for feature selection to
determine the most important attributes that enhanced the accuracy of the classification.
Six different machine learning classifiers, namely SVM, k-NN, DT, NN, Ensemble and
Stacking models, were developed and optimized via Bayesian Optimization (BO), Grid
Search (GS) and Random Search (RS). Accuracy, precision, recall, F1-score and AUC-ROC
were used for evaluation. Results: It has been found that Stacking models, especially those
fine-tuned via Grid Search, yielded the best performance with 92.07% accuracy and an
F1-score of 0.95. In addition to that, the choice of relevant vocal features, in conjunction with
the Chi-Square feature selection method, greatly enhanced the computational efficiency and
classification performance. Conclusions: This study highlights the potential of combining
advanced feature selection techniques with hyperparameter optimization strategies to
enhance machine learning-based PD diagnosis using vocal characteristics. Ensemble
models proved particularly effective in handling complex datasets, demonstrating robust
diagnostic performance. Future research may focus on deep learning approaches and
temporal feature integration to further improve diagnostic accuracy and scalability for
clinical applications.

Keywords: brain disease; Parkinson; optimization; machine learning; classification; diagnostic

1. Introduction
Parkinson’s Disease (PD) is a long-term neurodegenerative disorder resulting from

the degeneration of dopamine-producing neurons in the central nervous system, impact-
ing nearly 10 million individuals worldwide. PD prevalence is estimated at 1% among
individuals over 60 and increases to 4% in those over 85, with men being 1.5 times more
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likely to develop the disease than women. PD seriously affects motor functions, cognitive
abilities, and quality of life. Approximately 60,000 new cases are reported worldwide
each year, and the incidence of the disease has been increasing markedly in recent years.
In 2019, PD caused 329,000 deaths and 5.8 million disability-adjusted life years lost [1].
Symptoms usually appear slowly; motor symptoms include bradykinesia, tremors, and
postural instability, while non-motor symptoms include depression, anosmia, and demen-
tia [2–4]. Conventional diagnostic techniques are often applied in later disease stages,
underscoring the need for non-invasive approaches that enable early detection and timely
intervention [5].

PD symptoms include voice disorders, loss of balance, and tremor [6,7]. Studies
indicate that over 90% of PD patients exhibit vocal abnormalities, including dysphonia,
dysarthria, monotony, and hypophonia [8–10]. Therefore, voice disorders are usually
one of the first symptoms noticed in individuals with PD [11]. As a non-invasive and
straightforward technique, voice analysis presents a viable tool for monitoring disease
progression [12,13]. Various voice tests, such as continuous phonations and speech texts,
have been developed for this purpose [14].

Machine learning and artificial intelligence applications span various fields such as
energy [15,16] and health [17,18]. Specifically, machine learning techniques have demon-
strated significant potential in detecting and classifying PD. Max A. Little et al. [19] in-
troduced the Pitch Period Entropy (PPE) metric, an effective approach for identifying
dysphonia in noisy and uncontrolled environments, achieving an accuracy of 91.4% on
195 audio recordings from 31 individuals. Resul Das [20] evaluated the performance of
various classifiers and reported that Neural Networks (NNs) yielded the highest accu-
racy, with a rate of 92.9%. Another study employing genetic algorithms and k-nearest
neighbor (k-NN) demonstrated that feature selection enhanced classification accuracy to
over 85% [21]. Similarly, B.E. Sakar et al. [22] achieved an accuracy of 85% on audio data
collected from 40 individuals using Support Vector Machines (SVMs) and k-NN algorithms.
Studies involving classifiers such as random trees, SVMs, and logistic regression reported
accuracy rates reaching up to 100% [23]. Furthermore, in a comparative analysis of SVMs
and NNs, SVMs demonstrated superior performance with an accuracy of 93.33% [24].
Collectively, these findings underscore the importance of effective feature selection and
the application of appropriate machine learning algorithms in achieving high classification
accuracy for the early diagnosis of PD.

The goal of this study is to contribute to the literature by combining Chi-Square-based
feature selection with a comparison of three hyperparameter optimization techniques, GS,
RS and BO, to establish which of these is the most appropriate for classifying PD. This
paper provides a systematic approach of enhancing the accuracy and time of applying
machine learning for PD diagnosis through comparison of the optimization techniques and
feature selection techniques. The contribution of this study to the literature can be outlined
as follows:

• It provides a comprehensive analysis of feature selection, machine learning classifiers,
and hyperparameter optimization techniques (GS, RS, and BO), demonstrating their
impact on the accuracy and efficiency of PD diagnosis using vocal characteristics.

• It shows that Ensemble Learning methods outperform individual classifiers in PD diag-
nosis, and among them, the proposed Stacking-based framework achieves the highest
predictive performance, making it the most effective machine learning approach in
this study.

• It improves model interpretability by using SHapley Additive exPlanations (SHAP)
analysis to identify the most influential vocal features in PD classification, providing a
clearer understanding of their diagnostic significance.
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This paper is structured into five main sections. Section 1 offers the general back-
ground of PD, clarifies the current diagnostic methods, and explains how the present
work helps to advance the knowledge in the area. Section 2 details the dataset, the feature
selection process, the machine learning models, and the hyperparameter optimization
methods. Section 3 presents the experimental results and evaluates the effect of the differ-
ent optimization strategies on the classification accuracy. Section 4 discusses the findings
in comparison with other studies, focusing on the advantages and disadvantages of the
proposed approach. Finally, Section 5 here summarizes the main findings and recommends
possible directions for future investigations.

2. Materials and Methods
This section describes the dataset and methods used for PD classification. It provides

an overview of the data preprocessing steps, including feature selection and preparation for
machine learning algorithms. The relevant methods are detailed in the following sections
under specific headings.

2.1. Dataset

The dataset utilized in this study consists of publicly available data compiled by
Sakar et al. [22,25]. It encompasses voice recordings from 188 patients diagnosed with PD
and 64 healthy controls, including 107 males and 81 females, with an age range of 33 to
87 years (mean age: 65.1 ± 10.9 years). Additionally, the dataset includes recordings from a
control group comprising 64 healthy individuals (23 males and 41 females) aged between
41 and 82 years (mean age: 61.1 ± 8.9 years). The bar chart in Figure 1 illustrates the gender
distribution within the PD and control groups. The PD group has a notably higher number
of participants compared to the control group, reflecting the higher prevalence of PD in the
studied population.
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The data collection process involved the use of a microphone with a sampling rate
of 44.1 kHz, and each participant was instructed to sustain the phonation of the vowel
/a/ three times following a physician’s examination. In total, the data contain 7568 speech
recordings with 754 feature columns. Of these 754 columns, 1 corresponds to a unique
identifier for each recording, 1 denotes the binary class label, and the remaining 753 columns
represent diverse acoustic and signal-processing-based attributes. Information about the
features is given below [25].
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Baseline Features include various Jitter variants, which are employed to assess the
instabilities in the oscillatory patterns of the vocal folds. This feature set quantifies cycle-
to-cycle variations in the fundamental frequency and comprises five distinct parameters.
Similarly, Shimmer variants are designed to assess instabilities in the oscillatory amplitude
of the vocal folds, quantifying cycle-to-cycle variations in amplitude, and comprise six
features. Fundamental frequency parameters assess the frequency of vocal fold vibrations
and encompass five distinct features: mean, median, standard deviation, minimum, and
maximum values. Harmonicity parameters focus on the increased noise components
resulting from incomplete vocal fold closure associated with speech pathologies. Key
metrics include the Harmonics to Noise Ratio and the Noise to Harmonics Ratio, both
of which quantify the relationship between signal information and noise. Recurrence
Period Density Entropy (RPDE) offers insights into the stability of vocal fold oscillations
and quantifies deviations from the fundamental frequency (F0) (1 feature). Detrended
Fluctuation Analysis (DFA) evaluates the stochastic self-similarity of turbulent noise and
is represented by a single feature. Pitch Period Entropy (PPE) quantifies impaired control
over the fundamental frequency (F0) using a logarithmic scale and is also represented by a
single feature. Lastly, intensity parameters, which reflect the power of speech signals in
decibels (dB), include three features: mean, minimum, and maximum intensity values.

Time Frequency Features include formant frequencies, which are amplified by the
vocal tract. The first four formants are used as features (four features). Additionally,
bandwidth measures the frequency range between formant frequencies, with the first four
bandwidths also considered as features (four features).

Mel Frequency Cepstral Coefficients (MFCCs) measure the impact of PD on the vocal
tract, separate from the influence of the vocal folds. We utilize a total of 84 MFCC features.

Wavelet Transform-Based Features use wavelet transform (WT) to quantify deviations
in the fundamental frequency. This feature set includes 182 distinct features.

Vocal Fold Features begin with the Glottis Quotient (GQ), which measures the opening
and closing durations of the glottis, providing insight into periodicity (3 features). The
Glottal to Noise Excitation (GNE) quantifies the level of turbulent noise generated by
incomplete vocal fold closure during speech (6 features). The Vocal Fold Excitation Ratio
(VFER) assesses the proportion of pathological noise produced by vocal fold vibrations,
utilizing concepts of nonlinear energy and entropy (7 features). Lastly, Empirical Mode
Decomposition (EMD) breaks down speech signals into elementary components using
adaptive basis functions, with energy or entropy values derived from these components
used to quantify noise (6 features).

2.2. Chi-Square Test

The Chi-Square (χ2) test is a statistical method used to assess the relationship between
categorical independent variables and a categorical or continuous dependent variable. It is
particularly valuable in classification tasks, especially for feature selection. This method
determines the independence hypothesis of every feature with respect to the target variable,
i.e., which features are most significant. The test works by comparing the observed and
expected frequencies and how much difference in these affects the target variable. At its
core, the Chi-Square test comes with two hypotheses: the null hypothesis (H0), which
states that independence and hence the feature is unrelated to the target variable, and the
alternative hypothesis (Ha), which states that there is dependency between the two [26].

The Chi-Square test statistic is calculated using the following formula:

χ2 = ∑
(O − E)2

E
(1)
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Here, O represents the observed values, and E denotes the expected values. For each
category, the squared difference between the observed and expected values is divided by the
expected value, and these results are summed to compute the test statistic. The resulting χ2

value is then compared against a critical value obtained from the Chi-Square distribution,
considering the degrees of freedom and a predefined significance level (p-value). By
conducting this comparison, the Chi-Square test facilitates the identification of features that
exhibit a stronger association with the target variable, making it particularly valuable in
high-dimensional datasets. The selection of the most relevant features enhances both the
performance and efficiency of machine learning models.

2.3. Machine Learning

Support Vector Machine (SVM) is a powerful machine learning technique used for
classification and regression tasks. The primary objective of SVM is to identify the optimal
hyperplane that divides the data into distinct classes. This hyperplane maximizes the
margin, which is the distance between the boundary and the nearest data points from each
class. Generally, the SVM decision function can be written as [27]

S(X) =
l

∑
i=1

αizik(Xi, X) + b (2)

where k(Xi, X) is the kernel function, b is the bias, and αi is the coefficients to be found. It
is important to note that the SVM model frequently utilizes various kernel functions, such
as the linear kernel, polynomial kernel, radial basis function (RBF), and sigmoid kernel.

k-Nearest Neighbor (k-NN) is a straightforward and efficient technique for classifica-
tion and regression issues. A data point’s class or value is determined by the algorithm
by taking into account the labels of its k closest neighbors. While Euclidean distance

(d(x, y) =
√

∑(xi − yi)
2) is the most widely used distance measure, alternative metrics like

Manhattan or Minkowski could be more desirable. While the average of the labels is used
for regression, the majority vote of the neighbors is used for classification [28].

As a non-parametric technique, k-NN does not need any assumptions on the dis-
tribution of data and may be used in a variety of fields, including medical diagnosis,
recommendation systems, and handwriting recognition. However, the value of k and the
distance metric used determine how well the method performs. There are drawbacks as
well, such as higher computing costs for big datasets or high-dimensional data [28].

Decision Tree (DT) is one of the most effective supervised learning algorithms and is
used for both classification and regression problems. This algorithm learns the decision
processes by building up a tree-like structure of the dataset. The DT has internal nodes
that make decisions based on a single feature and branches that partition the dataset into
subgroups based on these decisions. Leaf nodes contain class labels or predicted values [29].

The main advantage of DTs is that they are easy to interpret and can model both linear
and nonlinear relationships. However, this method is sensitive to the risk of overfitting
and its performance is usually increased with editing methods such as pruning or depth
limitation. DTs are frequently preferred in various application areas such as customer
segmentation, medical diagnosis and credit risk analysis [30].

Neural Network (NN) is a powerful modeling technique inspired by the biological
nervous system and has a wide range of applications in machine learning. NNs learn
complex relationships in data using multi-layered structures of interconnected nodes
(neurons). Basically, starting from the input layer, the data are processed through hidden
layers and transmitted to the output layer. Each connection is represented by weights, and
the network’s learning process works to optimize these weights.
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NNs are usually trained using supervised learning methods and the weights are
updated using backpropagation algorithms [16]. The network has the capacity to model
nonlinear relationships and forms the basis of deep learning applications. NNs show
high performance in many complex problems such as image processing, natural language
processing, voice recognition and financial analysis. However, training the model can
require large datasets and computational resources.

Ensemble Learning is a machine learning method that integrates multiple learning
algorithms to generate better and more accurate predictions. This method aims to create a
more robust prediction model by compensating for the weaknesses of individual models.
The principle is to achieve better performance by combining models that use different algo-
rithms or the same algorithm with different parameters. Bagging, Boosting and Stacking
are the most common Ensemble methods [31].

To train each model on a different subset of data and then average the results to make
the final prediction, a technique called Bagging or Bootstrap Aggregating is employed.
Boosting is a technique where a large number of weak learners are trained sequentially and
each model attempts to improve on the errors made by the previous model. A new model
is trained by combining several models’ outputs, and this is called Stacking. Ensemble
Learning is used in a variety of application domains that demand highly accurate models,
for example, financial forecasting, medical diagnoses, and text classification [32].

Stacking Learning is an Ensemble Learning method that leverages multiple base
learners and a meta-learner to enhance predictive performance. Unlike Bagging and
Boosting, which primarily focus on reducing variance and bias, respectively, Stacking aims
to improve generalization by combining diverse model outputs in an optimal manner [33].

In the Stacking framework, multiple base models—often referred to as level-0
learners—are trained on the same dataset, each capturing different aspects of the data
distribution. The predictions from these base models are then used as input features for a
higher-level model, known as the meta-learner or level-1 model, which learns to aggregate
these outputs effectively. This meta-model is typically a more flexible algorithm, such as
a linear regression, SVM, or NN, chosen based on its ability to generalize across the base
models’ predictions [34].

In this study, the machine learning methods employed for individual classification
tasks were also used as base models in the Stacking framework. To ensure optimal per-
formance, the model that achieved the best results among the individual classifiers was
selected as the meta-learner.

2.4. Hyperparameter Optimization

Hyperparameter optimization is an important step in the development of effective
machine learning models since the choice of hyperparameters is known to affect model
performance considerably. In this study, three different strategies of hyperparameter
optimization were applied, namely BO, GS and RS. Each method offers specific benefits in
the hyperparameter space exploration and the tradeoff between the computational expense
and model accuracy.

BO is a probabilistic model-based optimization algorithm that uses a surrogate model
of the objective function to search the hyperparameter space. BO does not require the
explicit formulation of the objective function; rather, it uses techniques such as Gaussian
Processes to forecast the most promising regions of the search space based on prior eval-
uations. This adaptive and sequential approach helps to explore more informedly and
often finds optimal hyperparameters with less evaluations than exhaustive methods [35].
Specifically, in this study, BO was very helpful in managing high-dimensional search spaces
where computational resources were scarce.
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GS is a classical optimization strategy that evaluates all possible combinations of
hyperparameter values within given ranges systematically. This exhaustive search guaran-
tees that the global optimum of the search parameters is discovered within the specified
parameter space. However, the computational complexity of GS increases exponentially
with the number of hyperparameters and the granularity of the search grid, and thus it is
not suitable for models with many and complex parameters. Nonetheless, GS was used in
this study to establish a broad baseline for hyperparameter optimization.

RS, on the other hand, selects hyperparameter combinations randomly from a given
distribution. This method does not search through all possible combinations as GS does but
instead selects points randomly, which can be advantageous over GS in high dimensional
spaces [36]. By using computational resources for the broad exploration of the parameter
space, Random Search often finds good hyperparameter settings with greatly reduced
runtime. In this study, RS was used to support the results of BO and GS, especially when
the parameter space was too large to be exhausted by exhaustive techniques. The three
optimization techniques used in this study ensured a comprehensive and fair comparison
of the hyperparameter configurations and thus enhanced the performance of the machine
learning models used.

2.5. Performance Evaluation

The assessment of model performance is an essential process in determining the
appropriateness of the proposed approach for PD classification. In this study, the efficiency
of machine learning models optimized by three hyperparameter optimization techniques,
BO, GS, and RS, is evaluated using multiple quantitative metrics to ensure a thorough
analysis of the classification accuracy, robustness, and generalization capability.

To assess the classification performance, the following metrics were used: accuracy,
error rate, precision, sensitivity (recall), F1-score, and AUC-ROC. All these metrics were
defined mathematically as follows [37–39]:

• Accuracy and Error Rate

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (3)

Error Rate = 100 − Accuracy (4)

where TP and TN are the true positive and true negative counts, respectively, and FP and
FN are the false positive and false negative counts.

• Precision

Precision =
TP

TP + FP
× 100 (5)

Precision reflects the proportion of true positive predictions among all positive predic-
tions, indicating the model’s reliability in identifying relevant cases.

• Recall (Sensitivity)

Recall =
TP

TP + FN
× 100 (6)

Recall measures the model’s ability to correctly identify all true positive cases, an
essential metric in medical applications where minimizing false negatives is critical.

• F1-score

F1-score = 2 × Precision × Recall
Precision + Recall

× 100 (7)
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The F1-score balances precision and recall, particularly useful in cases of imbal-
anced datasets.

• AUC-ROC

The area under the receiver operating characteristic curve (AUC-ROC) is a threshold-
independent metric that assesses the balance between the true positive rate (TPR) and the
false positive rate (FPR). Higher AUC values signify better discrimination between classes.

The dataset is divided into training and testing subsets using a stratified approach to
maintain the class distribution in both subsets. A k-fold cross-validation technique with
k = 5 is used during model training to ensure a robust performance evaluation and reduce
the risk of overfitting. The hyperparameter optimization techniques (BO, GS, and RS) are
applied to maximize classification performance on the training data. The optimized models
are subsequently evaluated on the testing data to validate their generalization ability.

2.6. Proposed Methodology

In order to classify PD, the methodology explained below is illustrated in Figure 2.
The approach proposed here starts with the dataset, which is then followed by feature
selection and data partition into training and test sets. The methodology encompasses
model training and hyperparameter optimization strategies, together with the comparison
of multiple machine learning models, to achieve the best performance. The results are also
backed up by performance metrics and SHAP analyses to make the findings more accurate
and easy to interpret.
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The dataset used in this study has 753 features. In the proposed methodology, feature
selection is performed as the next step, whereby parameters with Chi-Square importance
values above 20 are retained. This threshold was proposed to find a balance between
the dimensionality reduction and the inclusion of features that are really important in
the classification process so that computational time is not increased unnecessarily. After
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the feature selection is complete, the data are divided into training and testing sets at a
70:30 ratio. This division ensures that there are enough data to train the machine learning
models and yet keeps a good test set to validate the models. Figure 3 shows a visualization
of the proposed stack learning method. Within the scope of the study, five different ML
methods are used as baseline classifiers. The Ensemble method, which gives the best
accuracy value, is used as a meta-classifier.
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Figure 3. Proposed Stacking Learning method.

The hyperparameters for the ML classifiers used in the study are optimized through
three different optimization methods. In this context, BO, GS and RS methods are employed
for looking for parameters that would produce the most favorable performance of each of
the ML algorithms. The hyperparameters of the ML algorithms optimized in the search
process, along with their search values, are illustrated in detail in Table 1. In this study, the
default parameter ranges defined by MATLAB 2024b’s Classification Learner application
were used to enable the optimization process to explore the most effective values without
unnecessary constraints.

Finally, the performance evaluation phase is conducted based on the selected pa-
rameters for the training and testing data. In this phase, metric values for the prediction
results, as defined by Equations (3)–(6), along with ROC curves and AUC values, are
obtained. Lastly, SHAP analysis, a feature importance method, is applied to the model
that demonstrated the best performance to provide interpretability and insights into the
model’s predictions.
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Table 1. Hyperparameter ranges for machine learning models with BO, GS, and RS.

ML Classifiers Parameter Name Parameter Range

DT
Maximum number of splits (Mns) 1–529;

Split criterion (Sc) Gini’s diversity index, Maximum deviance
reduction

SVM

Box constraint level (Bcl) 0.001–1000
Kernel scale (Ks) 0.001–1000

Kernel function (Kf) Gaussian, Linear, Quadratic, Cubic
Standardize data (Sd) Yes, No

k-NN

Number of neighbors (Nn) 1–265

Distance metric (Dm)
City block, Chebyshev, Correlation, Cosine,
Euclidean, Hamming, Jaccard, Mahalanobis,

Minkowski (cubic), Spearman
Distance weight (Dw) Equal, Inverse, Squared inverse
Standardize data (Sd) Yes, No

NN

Number of fully connected layers (Nfcl) 1–3
Activation (Act) ReLU, Tanh, Sigmoid, None

Standardize data (Sd) Yes, No
Regularization strength (Lambda) 1.8868 × 10−8 –188.6792

First layer size (Fls) 1–300
Second layer size (Sls) 1–300
Third layer size (Tls) 1–300

Ensemble

Ensemble method (Em) Bag, GentleBoost, LogiBoost, AdaBoost,
RUSBoost

Number of learners (Nl) 10–500
Learning rate (Lr) 0.001–1

Maximum number of splits (Mns) 1–529

3. Results
In this study, vocal parameters of patients and machine learning methods with pa-

rameters adjusted using three different optimization techniques were employed to predict
PD. The study, presented as a comparative analysis, utilized a computer with an Intel Core
i7-13700H processor, 32 GB RAM, an 8 GB RTX 4070 GPU, and the MATLAB program-
ming language.

Table 2 shows the ranking of the features used in the classification of PD according to
their Chi-Square scores. Within the scope of the study, attributes with Chi-Square scores
of 20 and below were not used in the analysis due to their low information contribution.
In total, 156 features with Chi-Square scores above 20 were included in the evaluation.
The threshold value of 20 was selected empirically to balance dimensionality reduction
and feature importance. The wavelet transform-based features group was the most repre-
sented, with 132 features. These features, including wavelet-based energy, entropy, TKEO,
and statistical measures (e.g., tqwt_TKEO_std_dec_12, tqwt_entropy_shannon_dec_12,
tqwt_minValue_dec_12), played a critical role in identifying PD. The Baseline Features
group comprised eight features, including Jitter (e.g., locAbsJitter, rapJitter), Shimmer (e.g.,
apq11Shimmer), and meanIntensity, which analyze the fundamental acoustic parameters
of vocal performance. The Vocal Fold Features group included 13 features, such as Glottis
Quotient (GQ_std_cycle_open) and Glottal to Noise Excitation (GNE), which measure glot-
tal function and assess pathological noise. The Time-Frequency Features group, containing
two features, focused on formant frequencies and time-frequency analyses to evaluate dis-
ease indicators. Finally, one feature from the Mel Frequency Cepstral Coefficients (MFCCs)
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group (mean_MFCC_2nd_coef) was included to analyze the effects of PD on the vocal
tract independently.

Table 2. Ranking of features based on Chi-Square scores.

Rank Feature Group Feature Name Chi-Square Scores

1 Wavelet Transform tqwt_TKEO_std_dec_12 47.5559
2 Wavelet Transform tqwt_stdValue_dec_12 46.4329
3 Wavelet Transform tqwt_TKEO_mean_dec_12 45.4982
4 Wavelet Transform tqwt_entropy_shannon_dec_12 45.3114
5 Baseline std_delta_delta_log_energy 45.2180
6 Wavelet Transform tqwt_entropy_log_dec_12 42.7002
7 Wavelet Transform tqwt_TKEO_std_dec_13 40.4690
8 Baseline std_delta_log_energy 40.1906

9 Mel Frequency Cepstral
Coefficients (MFCCs) mean_MFCC_2nd_coef 39.7268

10 Wavelet Transform tqwt_minValue_dec_12 36.0287
155 Wavelet Transform tqwt_kurtosisValue_dec_20 20.1137
156 Baseline std_7th_delta 20.0257

157–754 All Other features <20

Table 3 presents the hyperparameters obtained for different machine learning classi-
fiers using three optimization techniques, BO, GS, and RS, in the context of PD prediction.
The results highlight variability in the selected hyperparameters across methods, reflecting
their unique optimization strategies. For instance, BO identified more complex configu-
rations for DT and k-NN compared to RS, which favored simpler setups. Similarly, GS
generally produced intermediate hyperparameter values, balancing model complexity and
simplicity. Notably, NNs optimized via BO resulted in larger and deeper architectures,
while RS identified minimal configurations. These variations underscore the influence of op-
timization strategies on model design and their potential impact on predictive performance.
Among the Ensemble models, GentleBoost demonstrated the best overall performance,
achieving approximately 2.5% higher accuracy and 1.5% higher F1-score compared to
Bagging, 3% higher accuracy and 1.8% higher F1-score than LogiBoost, 1% higher accuracy
and 0.6% higher F1-score than AdaBoost, and nearly 2% higher accuracy than RUSBoost.
These results were obtained using Bayesian Optimization (BO); however, similar perfor-
mance improvements were observed with Grid Search (GS) and Random Search (RS),
indicating the consistency and robustness of the findings across different hyperparameter
optimization methods.

In Table 4, various hyperparameter search strategies (BO, GS and RS) are applied
to different classification algorithms (DT, SVM, k-NN, NN, Ensemble and Stacking) and
evaluated on both training (validation) and testing datasets. Overall, k-NN, Ensemble
and Stacking methods demonstrate consistently higher accuracy, precision, and F1-scores,
alongside relatively lower error rates. In particular, GS-based Stacking and Ensemble
models exhibit superior performance compared to the other approaches in the test phase,
with Stacking achieving the highest accuracy across all configurations. These findings
suggest that the advantageous combination of base learners in Ensemble and Stacking
methods, as well as the sensitivity of k-NN to precise parameter tuning, contributes to their
effectiveness. Stacking, by leveraging multiple base models and an optimal meta-learner,
outperforms other Ensemble methods, demonstrating its ability to refine and aggregate
predictions for improved generalization. Consequently, the reported metrics highlight
the substantial impact of selecting the appropriate hyperparameter search strategy and
classifier on model performance in both training and testing stages.
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Table 3. Optimal parameter values of ML classifiers obtained through three optimization methods.

ML Classifiers Parameter Name BO GS RS

DT
Mns 8 8 7

Sc Gini’s diversity
index

Gini’s diversity
index

Gini’s diversity
index

SVM

Bcl 970.2948 215.4435 0.016299
Ks - 10 -
Kf Quadratic Gaussian Linear
Sd Yes Yes Yes

k-NN

Nn 12 3 2
Dm Correlation Correlation Correlation
Dw Squared inverse Squared inverse Inverse
Sd Yes Yes Yes

NN

Nfcl 3 2 1
Act None Tanh Sigmoid
Sd Yes Yes Yes

Lambda 0.082873 4.065 × 10−5 9.6923 × 10−7

Fls 207 159 15
Sls 148 4 -
Tls 85 - -

Ensemble

Em GentleBoost GentleBoost GentleBoost
Nl 20 500 451
Lr 0.61762 0.046416 0.0015096

Mns 92 8 17

Figure 4 illustrates the ROC curves for machine learning classifiers optimized using
three different parameter tuning methods: (a) BO, (b) RS, and (c) GS. Across all methods,
Stacking and Ensemble classifiers demonstrated superior performance, with ROC curves
closely approaching the top-left corner, indicating a high true positive rate and a low false
positive rate. The Stacking model consistently outperformed all other classifiers, showing
the highest area under the curve (AUC) across all optimization strategies. This highlights
the effectiveness of combining multiple base learners and selecting the best-performing
model as the meta-learner. The NN and SVM classifiers also exhibited strong ROC curves,
particularly under RS and GS methods. In contrast, the DT classifier consistently showed
the lowest ROC curve performance, reinforcing its limitations in this context. The random
guess line (y = x) serves as a baseline for comparison, further emphasizing the effectiveness
of Stacking and Ensemble methods in PD classification.

Figure 5 compares the AUC values of different optimization methods (BO, RS, GS)
applied to various models (DT, SVM, k-NN, NN, Ensemble, and Stacking). Stacking and
Ensemble models demonstrated the best performance across all optimization methods, with
RS-Ensemble achieving the highest AUC value of 0.96, followed closely by GS-Stacking and
BO-Stacking with 0.95. GS was particularly effective for SVM, NN, and Stacking models,
while BO showed strong performance with both the Ensemble and Stacking models. In
contrast, the DT model consistently exhibited the lowest performance with an AUC value
of 0.74 across all methods. While RS previously emerged as the most effective optimization
approach due to its superior performance with the Ensemble model, the inclusion of
Stacking shows that both GS and BO can yield comparable results. Overall, Stacking and
Ensemble models proved to be the most successful in PD classification, highlighting the
advantage of combining multiple base learners for improved predictive accuracy.
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Table 4. Performance metric values of ML classifiers.

Data Classifier Accuracy Error Rate Precision Recall F1-Score

Tr
ai

ni
ng

(V
al

id
at

io
n)

BO-DT 83.96 16.04 83.35 83.96 83.49
BO-SVM 82.64 17.36 82.40 82.64 82.51
BO-k-NN 86.60 13.40 86.40 86.60 86.48
BO-NN 83.58 16.42 83.01 83.58 82.17

BO-Ensemble 86.60 13.40 86.18 86.60 85.99
BO-Stacking 87.52 12.48 89.97 92.84 91.38

GS-DT 83.96 16.04 83.35 83.96 83.49
GS-SVM 84.34 15.66 84.10 84.34 84.20
GS-k-NN 86.23 13.77 86.49 86.23 86.34
GS-NN 85.85 14.15 85.49 85.85 85.61

GS-Ensemble 87.92 12.08 87.67 87.92 87.35
GS-Stacking 89.04 10.96 91.21 93.63 92.41

RS-DT 83.96 16.04 83.35 83.96 83.49
RS-SVM 83.96 16.04 83.30 83.96 82.86
RS-k-NN 86.23 13.77 86.41 86.23 86.31
RS-NN 85.47 14.53 85.31 85.47 85.38

RS-Ensemble 87.36 12.64 87.05 87.36 86.73
RS-Stacking 86.77 13.23 88.86 93.10 90.93

Te
st

in
g

BO-DT 79.20 20.80 79.58 79.20 79.38
BO-SVM 84.07 15.93 83.42 84.07 83.53
BO-k-NN 86.28 13.72 85.96 86.28 86.07
BO-NN 82.30 17.70 81.49 82.30 80.53

BO-Ensemble 86.28 13.72 85.80 86.28 85.65
BO-Stacking 90.75 9.25 96.11 92.51 94.28

GS-DT 79.20 20.80 79.58 79.20 79.38
GS-SVM 86.73 13.27 86.58 86.73 86.65
GS-k-NN 87.61 12.39 87.77 87.61 87.68
GS-NN 86.73 13.27 86.31 86.73 86.38

GS-Ensemble 90.27 9.73 90.10 90.27 89.94
GS-Stacking 92.07 7.93 96.69 93.58 95.11

RS-DT 80.09 19.91 80.71 80.09 80.36
RS-SVM 84.96 15.04 84.55 84.96 83.78
RS-k-NN 88.05 11.95 88.13 88.05 88.09
RS-NN 84.96 15.04 84.33 84.96 84.20

RS-Ensemble 89.38 10.62 89.14 89.38 89.02
RS-Stacking 91.19 8.81 97.18 91.98 94.51
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The SHAP summary plots in Figure 6 illustrate the feature contributions to the GS-
Ensemble model, which achieved peak performance in PD classification with an accuracy
of 90.27% and an F1-score of 89.94%. These plots reveal the most impactful features for
each class (Class 0 and Class 1), highlighting the significance of wavelet-based measures.
Features such as mean_MFCC_2nd_coef, which relate to the characteristics of acoustic
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signals, played a crucial role in the model’s decision-making process. The x-axis displays the
SHAP values, showing the contribution of each feature in influencing a prediction toward
a specific class. Meanwhile, the color gradient, ranging from yellow to blue, represents the
feature values. These results highlight the GS-Ensemble model’s effectiveness in utilizing
both time-frequency and acoustic features for precise classification.
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4. Discussion
This study explored the application of machine learning algorithms for diagnosing PD

using vocal characteristics. By leveraging a publicly available dataset, the study employed
Chi-Square-based feature selection to identify the most relevant acoustic attributes and com-
pared five different machine learning classifiers—SVM, k-NN, DT, NN, Ensemble and Stack-
ing models. Additionally, three distinct hyperparameter optimization techniques—GS, RS,
and BO—were evaluated to determine the most effective model configuration. The findings
demonstrated that Stacking classifiers, particularly those optimized through GS, exhibited
the highest performance, achieving 92.07% accuracy and an F1-score of 0.95. These results
highlight the effectiveness of Stacking Learning and hyperparameter optimization in PD
classification and confirm the potential of vocal characteristics as valuable biomarkers for
early diagnosis.

Table 5 summarizes the accuracy, F1-score and AUC values from various studies
on diagnosing PD using vocal characteristics. The GS-Ensemble approach proposed in
this study yielded competitive results compared to existing methods, demonstrating a
well-balanced performance across key metrics. While some studies have reported higher
classification accuracies, the results of this study remain robust and consistent. For instance,
while this study achieved 92.07% accuracy, prior works such as [40] (KNN, MLP, SVM and
RF), [41] (MIRFE-XGBoost) and [42] (SVM cascaded DNN) have reported accuracies of
95.9%, 93.88%, and 96.42%, respectively. These variations may be attributed to differences
in dataset size, preprocessing techniques, and modeling choices. However, it is important
to emphasize that this study takes a holistic and interpretable approach, incorporating
an extensive feature selection process and multiple optimization strategies to enhance
generalization and model efficiency.
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Table 5. Comparison of the literature.

References Method Accuracy F1-Score AUC

[40] KNN, MLP, SVM and RF 95.9 - -
[41] MIRFE-XGBoost 93.88 93.74 0.978
[42] SVM cascaded DNN 96.42 - -
[43] AdaBoost 96 95 -
[44] Evolutionary Wavelet NNs 90 - -
[22] SVM 85 - -
[45] RF 99 96 -
[46] Ensemble 95 97 -
[47] Fine Tuned NN 86.47 - -
[48] Ensemble Voting 96.41 97.59 -

This study GS-Ensemble 90.27 89.94 0.95
This study GS-Stacking 92.07 95.11 0.95

Despite the competitive performance of the GS-Ensemble and GS-Stacking models, fur-
ther improvements can be explored. Future research could integrate evolutionary algorithms,
such as genetic algorithms and particle swarm optimization, to refine hyperparameter se-
lection. Additionally, hybrid architectures combining machine learning and deep learning
approaches could further enhance feature representation and classification accuracy.

In summary, the proposed GS-Ensemble and GS-Stacking models achieve highly
competitive results, particularly in terms of F1-score and AUC, while maintaining in-
terpretability and computational efficiency. While certain deep learning models report
marginally higher accuracy, this study provides a well-balanced and robust approach
to PD classification using vocal characteristics. Future work will build on these efforts
by fine-tuning Ensemble Learning strategies, implementing advanced optimization tech-
niques, and increasing the diversity of datasets to increase classification accuracy and
clinical relevance.

5. Conclusions
This paper aimed at exploring the behavior of a range of machine learning classi-

fiers optimized with different hyperparameter tuning methods (BO, RS, and GS) for PD
classification. To improve the efficiency and accuracy of the model, Chi-Square feature
selection was used before training, which limited the classifiers to pivotal vocal features
only. This preprocessing step enhanced the classification performance while keeping the
computational complexity in check. It was observed that Stacking-based classifiers were
superior to other models for all the optimization methods in terms of accuracy and F1-score.
Among these, the GS-Stacking model was identified as the optimal strategy, which attained
a test accuracy of 92.07% and F1-score of 0.95 compared to other classifiers in terms of
predictive accuracy. These findings further reinforce the importance of feature selection and
hyperparameter tuning to improve the performance of machine learning models for PD
diagnosis. The effectiveness of Ensemble and Stacking Learning for complex classification
tasks was demonstrated, especially in medical applications that involve vocal biomarkers,
highlighting the GS-Stacking model’s success.

Although this study offered crucial findings in the application of machine learning for
PD diagnosis, further investigations can build on these findings by examining new feature
selection approaches, optimizing Ensemble Learning strategies, and assessing the effect of
extra temporal vocal features on enhancing the diagnostic accuracy. Including more varied
and more realistic clinical data in the dataset may also help to support the goodness of fit
of the proposed model.
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The following abbreviations are used in this manuscript:

PD Parkinson’s Disease
MFCC Mel Frequency Cepstral Coefficient
WT Wavelet transform
RPDE Recurrence Period Density Entropy
DFA Detrended Fluctuation Analysis
PPE Pitch Period Entropy
GQ Glottis Quotient
GNE Glottal to Noise Excitation
VFER Vocal Fold Excitation Ratio
EMD Empirical Mode Decomposition
BO Bayesian Optimization
GS Grid Search
RS Random Search
TPR True positive rate
FPR False positive rate
AUC-ROC Area under the receiver operating characteristic curve
SHAP SHapley Additive exPlanations
SVM Support Vector Machine
k-NN k-nearest neighbor
DT Decision Tree
NN Neural Network
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