Acute Heart Failure and Non-Ischemic Cardiomyopathies: A Comprehensive Review and Critical Appraisal
Abstract
:1. Introduction
2. Acute Heart Failure
2.1. Clinical Presentation
2.2. Epidemiology and Prognosis
2.3. Etiology
2.4. Evidence on AHF in Observational Studies
2.5. Evidence on AHF in Randomized Clinical Trials
Patients (n) | Year of Publication | Population Characteristics | Randomized Arms | Primary Endpoint | Main Results | |
---|---|---|---|---|---|---|
SURVIVE trial [28] | 1327 | 2007 | Patients hospitalized with ADHF who required inotropic support | To receive intravenous levosimendan vs. dobutamine | All-cause mortality at 180 days | 26% vs. 28% (HR 0.91; 95% CI, 0.74–1.13; p = 0.40) |
UNLOAD trial [39] | 200 | 2007 | Patients hospitalized for HF with ≥2 signs of hypervolemia | To ultrafiltration or intravenous diuretics |
|
|
CHAMPION trial [29] | 550 | 2011 | Patients with NYHA class III symptoms, irrespective of the LVEF and with a previous hospital admission for HF | To management with a W-IHM system (treatment group) or without (control group) | The rate of HF-related hospitalizations at 6 months | 84 vs. 120 (rate 0.32 vs. 0.44, HR 0.72, 95% CI 0.60–0.85, p = 0.0002) |
DOSE trial [42] | 308 | 2011 | ADHF patients | To receive furosemide administered intravenously by means of either a bolus every 12 h or continuous infusion and at either a low dose (equivalent to the patient’s previous oral dose) or a high dose (2.5 times the previous oral dose) |
|
|
CARRESS-HF trial [43] | 188 | 2012 | Patients with ADHF, worsened renal function (increase in serum creatitine >0.3 mg/dL from baseline), and signs and symptoms of persistent congestion | To a strategy of stepped pharmacologic therapy or ultrafiltration | The bivariate change from baseline in serum creatinine levels and body weight, as assessed 96 h after randomization |
|
REVIVE I and II trials [30] | 100 (I) + 600 (II) | 2013 | ADHF patients with LVEF < 35% | To receive intravenous levosimendan or placebo for 24 h in addition to standard treatment | A composite that evaluated changes in clinical status during the first 5 days after randomization (time points 6 h, 24 h, and 5 days) | 58 patients in the levosimendan group vs. 82 in the placebo group experienced clinical worsening (p = 0.015 for the difference between the groups) |
ASTRONAUT trial [25] | 1615 | 2013 | Patients with EF and LVEF of 40% or less, BNP ≥ 400 pg/mL or NT-proBNP ≥ 1600 pg/mL, and signs and symptoms of fluid overload | To receive 150 mg (increased to 300 mg as tolerated) of aliskiren or placebo daily, in addition to standard therapy | CV death or HF rehospitalization at 6 months and 12 months | 24.9% of patients receiving aliskiren vs. 26.5% of patients receiving placebo at 6 months (HR, 0.92; 95% CI, 0.76–1.12; p = 0.41). At 12 months, the event rates were 35.0% for the aliskiren group vs. 37.3% for the placebo group (HR, 0.93; 95% CI, 0.79–1.09; p = 0.36) |
ROSE trial [44] | 360 | 2013 | Hospitalized patients with AHF and renal dysfunction (eGFR of 15–60 mL/min/1.73 m2) | 1:1 allocation ratio to the dopamine or nesiritide strategy. Within each strategy, participants were randomized in a double-blind, 2:1 ratio to active treatment or placebo |
|
|
CUORE Trial [40] | 56 | 2014 | Patients with severe congestive HF | To receive standard medical therapy or ultrafiltration as first-line treatment | Rehospitalizations for congestive HF during 1 year of FU | A lower incidence of rehospitalizations for HF in the ultrafiltration-treated patients (HR:0.14, 95% CI 0.04–0.48; p = 0.002) |
AVOID-HF trial [45] | 224 | 2015 | Patients hospitalized for congested HF | To AUF or ALD | First HF event within 90 days after hospital discharge | Estimated days to first HF event for the AUF and ALD group are, respectively, 62 vs. 34 (p = 0.106) |
BLAST-AHF trial [46] | 621 | 2017 | Patients hospitalized with AHF, as evidenced by elevated natriuretic peptides and at least two physical HF signs including congestion on chest radiograph, rales, edema, and/or elevated jugular venous pressure | To randomly assigned to one of the following four (1:1:1:1: placebo, 1, 5, or 25 mg/h of TRV027 for at least 48 h and up to 96 h) |
| No significant differences were observed between any of the dose groups compared with placebo with regard to the primary endpoint |
TRUE-AHF trial [30] | 2157 | 2017 | AHF patients defined as: an unplanned emergency department visit or hospitalization for AHF, dyspnea at rest that had worsened during the previous week, evidence of HF on chest radiography, a blood BNP level of more than 500 pg per milliliter, or an NT-proBNP level of more than 2000 pg per milliliter. All patients that continued to have dyspnea at rest for at least 2 h after IV furosemide at a dose of 40 mg (or equivalent) with sBP between 116–180 mmHg | To receive a continuous intravenous infusion of either Ularitide at a dose of 15 ng per kilogram of body weight per minute or matching placebo for 48 h, in addition to accepted therapy | Death from CV causes during a median follow-up of 15 months and clinical composite endpoint during the first 48 h | 236 vs. 225 (21.7% vs. 21.0%; HR: 1.03; 96% CI, 0.85 to 1.25; p = 0.75). No change in clinical course. |
PIONEER trial [27] | 881 | 2019 | Patients with HF with reduced EF who were hospitalized for ADHF (NT-proBNP concentration of 1600 pg per milliliter or more or a BNP) concentration of 400 pg per milliliter or more) | To receive sacubitril–valsartan vs. enalapril | The time-averaged proportional change in NT-pro-BNP concentration from baseline through weeks 4 and 8 | 0.53 in the sacubitril–valsartan group vs. 0.75 in the enalapril group (percent change, −46.7% vs. −25.3%; ratio of change with sacubitril–valsartan vs. enalapril, 0.71; 95% CI, 0.63 to 0.81; p < 0.001) |
RELAX AHF 2 trial [31] | 6545 | 2019 | Patients with AHF and dyspnea, vascular congestion on chest radiography, increased BNP, mild-to-moderate renal insufficiency, and a systolic blood pressure of at least 125 mmHg | To receive either a 48 h intravenous infusion of serelaxin or placebo, in addition to standard care |
|
|
GALACTIC trial [34] | 781 | 2019 | AHF patients with dyspnea, increased plasma concentrations of natriuretic peptides, and systolic blood pressure of at least 100 mm Hg | To a strategy of early intensive and sustained vasodilation (individualized doses of sublingual and transdermal nitrates, low-dose oral hydralazine for 48 h, and rapid up-titration of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, or sacubitril-valsartan) vs. usual care | Composite of all-cause mortality or rehospitalization for AHF at 180 days | 30.6 % vs. 27.8% (absolute difference for the primary endpoint, 2.8% [95% CI, −3.7% to 9.3%]; adjusted HR: 1.07 [95% CI, 0.83–1.39]; p = 0.59) |
AFFIRM-AHF trial [24] | 1108 | 2020 | AHF with concomitant iron deficiency (defined as ferritin < 100 μg/L, or 100–299 μg/L with transferrin saturation < 20%) and LVEF < 50% | To receive intravenous ferric carboxymaltose or placebo for up to 24 weeks, dosed according to the extent of iron deficiency | A composite of total hospitalizations for HF and CV death up to 52 weeks after randomization | 32% vs. 38% of patients in the placebo group (HR 0.80, 95% CI 0.66–0.98, p = 0.030) |
VICTORIA trial [35] | 5050 | 2020 | Patients with HF and LVEF > 45% who had recently been hospitalized or had received intravenous diuretic therapy | To receive vericiguat (target dose, 10 mg once daily) or placebo, in addition to guideline-based medical therapy | A composite of death from CV causes or first hospitalization for HF | 37.9% vs. 40.9% in the placebo group (HR: 0.90; 95% CI, 0.83 to 0.98; p = 0.02) |
Sean P. Collins et al. trial [47] | 479 | 2020 | AHF patients with a history of HF and a discharge within 23 h or less | To usual care vs. a tailored self-care intervention | A global rank of CV death, HF-related events (unscheduled clinic visit due to HF, ED revisit, or hospitalization), and changes in the KCCQ-12 summary score at 90 days | No significant difference in the primary outcome between patients in the intervention vs. usual care arms ([HR], 0.89; 95% CI, 0.73–1.10; p = 0.028) |
SOLOIST-WHF trial [32] | 1222 | 2021 | Patients with type 2 diabetes mellitus who were recently hospitalized for worsening HF | To receive sotagliflozin or placebo | The total number of deaths from CV causes and hospitalizations and urgent visits for HF | 51.0 vs. 76.3 (HR: 0.67; 95% CI: 0.52 to 0.85; p < 0.001) |
ADVOR trial [20] | 519 | 2022 | ADHF patients with clinically evident volume overload, elevated NT-pro-BNP, and loop diuretic therapy for at least 1 month before randomization | To receive either intravenous acetazolamide vs. placebo added to standardized intravenous loop diuretics | Successful decongestion assessed by a dedicated score indicating no more than trace edema within 3 days after randomization | 42.2% vs. 30.5% (p < 0.001) |
STRONG-HF trial [26] | 1078 | 2022 | Patients with AHF not treated with full doses of guideline-directed drug treatment | Rapid up-titration of treatments before discharge vs. standard approach | 180-day readmission to hospital due to HF or all-cause death | 15.2% vs. 23.3% (adjusted risk difference 8.1% [95% CI 2.9–13.2]; p = 0.0021; risk ratio 0.66 [95% CI 0.50–0.86]) |
EMPULSE trial [23] | 530 | 2022 | Primary diagnosis of AHF or ADHF regardless of LVEF, randomized when clinically stable (after 3 days) | To receive empagliflozin 10 mg once daily or placebo for 90 days | Clinical benefit, defined as a hierarchical composite of death from any cause, number of heart failure events and time to first heart failure event, or a 5 point or greater difference in change from baseline in the Kansas City Cardiomyopathy Questionnaire Total Symptom Score at 90 days | More patients treated with empagliflozin displayed a clinical benefit compared with placebo (stratified win ratio, 1.36; 95% confidence interval, 1.09–1.68; p = 0.0054), meeting the primary endpoint. |
CLOROTIC trial [21] | 230 | 2023 | Patients with CHF treated with oral furosemide (80–240 mg/day) for 1 month before admission for AHF | To receive HCTZ vs. placebo in addition to an intravenous furosemide regimen | Changes in:
|
|
COACH trial [22] | 5452 | 2023 | Patients with AHF who were seeking emergency care | In the intervention phase, low-risk patients (according to a point-of-care algorithm) were discharged early (in ≤3 days) vs. high-risk patients, who were admitted to the hospital | A composite of death from any cause or hospitalization for CV causes within:
|
|
LeoDOR trial [36] | 148 | 2023 | AHF patients requiring IV diuretics, IV inotropic therapy, IV vasodilators, or any combination of these. LVEF < 30%. At least one hospitalization or clinic visit for HF within 12 months before admission. NTproBNP elevated or NYHA III-IV symptoms after stabilization. | Patients were randomly assigned (2:1) to receive either levosimendan or placebo | A global rank endpoint in which all participants, regardless of treatment assignment, were ranked across three hierarchical tiers:
| The mean rank score was 72.55 for the levosimendan group vs. 73.81 for the placebo group (p = 0.863) |
PUSH-AHF trial [37] | 310 | 2023 | AHF patients requiring treatment with intravenous loop diuretics | To receive natriuresis-guided therapy or standard of care | The dual primary endpoints are:
|
|
SSU-AHF trial [48] | 193 | 2024 | Lower-risk patients who presented to the ED with signs and symptoms of AHF | To SSU or hospital admission from the ED |
|
|
COLICA trial [49] | 278 | 2024 | AHF patients with evidence of congestion requiring at least 40 mg of intravenous (i.v.) furosemide and elevated concentrations of NT-proBNP > 900 pg/mL | To receive either colchicine (loading dose 2 mg, followed by 0.5 mg every 12 h for 8 weeks) or placebo within the first 24 h of presentation | The time-averaged proportional change in NT-pro-BNP concentration from baseline through weeks 4 and 8 | Colchicine group [−62.2%, 95% CI −68.9% to −54.2%] vs. the placebo group (−62.1%, 95% CI −68.6% to −54.3%) |
PREMIER trial [38] | 400 | 2024 | In patients stabilized after hospitalization for AHF irrespective of LVEF | To continue angiotensin-converting enzyme inhibitor or angiotensin receptor blocker (control group) or to switch to Sac/Val (Sac/Val group) | 8-week proportional change in geometric means of NT-pro-BNP levels | The percent changes in NT-pro-BNP level geometric means at weeks 4/8 are −35%/−45% (Sac/Val group) and −18%/−32% (control group), and their group ratio (Sac/Val vs. control) is 0.80 (95% CI 0.68–0.94; p = 0.008) at week 4 and 0.81 (95% CI 0.68–0.95; p = 0.012) at week 8, respectively |
DICTATE-AHF trial [50] | 240 | 2024 | Hypervolemic hospitalized AHF | To dapagliflozin 10 mg once daily or structured usual care with protocolized diuretic titration until day 5 or hospital discharge | Diuretic efficiency expressed as cumulative weight change per cumulative loop diuretic dose | No difference between dapagliflozin vs. usual care in diuretic efficiency (OR: 0.65; 95% CI: 0.41–1.02; p = 0.06) |
Patients (n) | Year of Publication | Population Characteristics | Randomized Arms | Primary Endpoint | Main Results | |
---|---|---|---|---|---|---|
ISAR-SHOCK trial [51] | 25 | 2008 | AMI patients with CS | To receive Impella LP 2.5 (Abiomed Europe GmbH, Aachen, Germany) or IABP | Change in the CI from baseline to 30 min after implantation | Impella: ΔCI: 0.49 ± 0.46 l/min/m2; IABP: ΔCI: 0.11± 0.31 l/min/m2; p = 0.02 |
Joerg T. Fuhrmann et al. trial [52] | 32 | 2008 | Persistent refractory CS (systolic blood pressure < 90 mmHg or requirement of inotropic amines and vasopressors to maintain an unaugmented systolic blood pressure of at least 90 mm Hg, a CI below 2.5 L/min/m2, a PCOP above 18 mm Hg, and clinical signs of hypoperfusion) within 2 h after PCI | Infusion of either levosimendan or enoximone after initiation of current therapy, always including revascularization, intra-aortic balloon pump counterpulsation, and inotropes | All-cause mortality at 30 days | Survival rate at 30 days in the levosimendan-treated group (69%) vs. enoximone group (37%, p = 0.023) |
IABP SHOCK I trial [53] | 45 | 2010 | Patients undergoing PCI for AMI with CS | To receive IABP or not | APACHE II score after 4 days | In the IABP group, the APACHE II score was 18.2 ± 3.7 vs. 20.0 ± 2.4 in the standard treatment group. Hospital mortality was 36.8% in the IABP group vs. 28.6% in the standard treatment group. |
SOAP II trial [54] | 1679 | 2010 | Patients with CS, defined as mean arterial pressure less than 70 mmHg or systolic blood pressure less than 100 mm Hg, despite an adequate amount of fluids, and with signs of tissue hypoperfusion | To receive either dopamine or norepinephrine as first-line vasopressor therapy to restore and maintain blood pressure | The rate of death at 28 days after randomization | Rate of death at 28 days (52.5% in the dopamine group and 48.5% in the norepinephrine group; odds ratio with dopamine: 1.17; 95% CI: 0.97 to 1.42; p = 0.10) |
IABP-SHOCK II trial [55] | 600 | 2012 | Patients undergoing revascularization for AMI with CS | To IABP or no IABP | 30-day all-cause mortality | 39.7% in the IABP group vs. 41.3% in the control group (RR with IABP, 0.96; 95% CI, 0.79 to 1.17; p = 0.69) |
IMPRESS shock trial [56] | 48 | 2017 | AMI patients with severe CS undergoing immediate revascularization | To receive Impella CP or IABP | 30-day all-cause mortality | Mortality in patients treated with either IABP or Impella CP was similar (50% and 46%, respectively; HR with Impella CP: 0.96; 95% CI: 0.42 to 2.18; p = 0.92) |
Bruno Levy et al. trial [57] | 57 | 2018 | CS due to successfully revascularized AMI | To receive epinephrine or norepinephrine |
|
|
IMPELLA-STIC trial [58] | 12 | 2019 | Patients with AMI complicated by CS | To receive IABP vs. Impella LP 5.0 + IABP | Change in CPI from baseline to 12 h after implantation, measured with a Swan–Ganz catheter | IABP group: CPI = 0.08 ± 0.08W/m2 Impella LP5.0 + IABP group: CPI = −0.02 ± 0.25 W/m2; p = 0.4 |
ECMO-CS trial [41] | 117 | 2022 | Patients with either rapidly deteriorating or severe CS | To immediate VA-ECMO or non-immediate VA-ECMO | The composite of death from any cause, resuscitated circulatory arrest, and implementation of another mechanical circulatory support device at 30 days | 63.8% of patients in the immediate VA-ECMO group vs. 71.2% of patients in the non-immediate VA-ECMO group, respectively (HR: 0.72 [95% CI, 0.46–1.12]; p = 0.21) |
ECLS-SHOCK trial [59] | 420 | 2023 | Patients with AMI complicated by CS | To receive early ECLS plus usual medical treatment or usual medical treatment alone | Death from any cause at 30 days | 47.8% in the ECLS group vs. 49.0% in the control group (RR: 0.98; 95% CI: 0.80 to 1.19; p = 0.81) |
EURO SHOCK trial [60] | 35 | 2023 | AMI patients with persistent CS 30 min after PPCI of the culprit lesion | To receive either VA-ECMO or continue with standard therapy | 30-day all-cause mortality | 43.8% of patients in the VA-ECMO group vs. 61.1% of patients in standard therapy (HR: 0.56, 95% CI: 0.21–1.45; p = 0.22) |
DanGer Shock trial [61] | 355 | 2024 | Patients with AMI complicated by CS | To receive Impella CP plus standard care or standard care alone | Death from any cause at 180 days | 45.8% in the Impella group vs. 58.5% in the standard care group (HR: 0.74; 95% CI: 0.55 to 0.99; p = 0.04) |
2.6. Evidence on ADHF Rates in Randomized Trials of Chronic HF
3. AHF and Non-Ischemic Cardiomyopathies
3.1. Dilated Cardiomyopathy
3.1.1. AHF in DCM
3.1.2. Diagnosis of DCM
3.1.3. Treatment of DCM
3.1.4. MCS and HT in DCM
3.1.5. Prognosis of DCM
3.2. Hypertrophic Cardiomyopathy
3.2.1. AHF in HCM
- (1)
- The hyperkinetic-restrictive form is characterized by a small, stiff, and hypertrophic LV with severe diastolic dysfunction and a normal ejection fraction. In this case, HF presents as heart failure with a preserved ejection fraction (HfpEF) phenotype [120].
- (2)
- The hypokinetic-dilated form is characterized by an increase in volume and a reduction in LV wall thickness. This clinical presentation may be similar to DCM and the differential diagnosis may be challenging in the absence of prior documentation of asymmetrical LV hypertrophy or a family history. Patients with this phenotype, characterized by fibrotic replacement, cardiomyocyte necrosis, and microvascular ischemia, develop AHF more frequently [121]. Furthermore, patients with mutations in thin-filament genes (TNNT2, TNNI3, TPM1, and ACTC) or multiple gene mutations in sarcomeric proteins are more susceptible to progression towards AHF compared with other mutations [122].
3.2.2. Diagnosis of HCM
3.2.3. Treatment of HCM
3.2.4. MCS and HT in HCM
3.2.5. Prognosis of HCM
3.3. Restrictive Cardiomyopathy
3.3.1. AHF in RCM
3.3.2. Diagnosis of RCM
3.3.3. Treatment of RCM
3.3.4. MCS and HT in RCM
3.3.5. Prognosis of RCM
3.4. Non-Dilated Left Ventricular Cardiomyopathy
3.4.1. AHF in NDLVC
3.4.2. Diagnosis of NDLVC
3.4.3. Treatment, MCS, and HT in NDLVC
3.4.4. Prognosis of NDLVC
3.5. Arrhythmogenic Right Ventricular Cardiomyopathy
3.5.1. AHF in ARVC
- (1)
- First stage: asymptomatic, but still at risk of SCD;
- (2)
- Electrical phase: characterized by symptomatic monomorphic ventricular VT;
- (3)
- Advanced phase: characterized by advanced HF. In this phase, VT and ventricular fibrillation due to fibrosis and reactive inflammation are possible and LV involvement is frequent. Notably, LV involvement in the final stage of the disease is an old concept, as emerging data suggest that it can be found in the early stages of the disease [155]. Only 3.9% of ARVC patients manifest advanced HF, while specific data regarding AHF are scarce and often derived from studies not exclusively focused on this condition [123].
3.5.2. Diagnosis of ARVC
3.5.3. Treatment, MCS, and HT in ARVC
3.5.4. Prognosis of ARVC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | acute coronary syndrome |
ADHF | acutely decompensated heart failure |
AF | atrial fibrillation |
AHF | acute heart failure |
ALVC | arrhythmogenic left ventricular cardiomyopathy |
AKI | acute kidney injury |
APOA | apolipoprotein A (APOA) |
ARVC | arrhythmogenic right ventricular cardiomyopathy |
ATTRv | variant amyloid transthyretin |
CAD | coronary artery disease |
CCS | chronic coronary syndrome |
CHD | congenital heart disease |
CMP | Cardiomyopathy |
CMR | cardiac magnetic resonance |
CO | cardiac output |
COPD | chronic obstructive pulmonary disease |
CS | cardiogenic shock |
CVD | cardiovascular disease |
DCM | dilated cardiomyopathy |
DSP | desmoplakin |
ESC | European Society of Cardiology |
FLCN | filamin C |
GDMT | guideline-directed medical therapy |
eGFR | Glomerular Filtration Rate |
HCM | hypertrophic cardiomyopathy |
HES | hypereosinophilic syndrome |
HFpEF | heart failure with preserved ejection fraction |
HFrEF | Heart Failure with Reduced Ejection Fraction |
HF | heart failure |
HT | heart transplant |
ICD | Implantable Cardioverter Defibrillator |
ICU | intensive care unit |
LGE | late gadolinium enhancement |
LMNA | lamin A/C |
LP | likely pathogenic |
LV | left ventricular |
LVAD | Left Ventricular Assist Device |
LVEF | left ventricle ejection fraction |
MAACE | Major adverse arrhythmic cardiac events |
MCS | Mechanical circulatory support |
MI | myocardial infarction |
M-TEER | mitral transcatheter edge-to-edge repair |
NDLVC | non-dilated left ventricular cardiomyopathy |
NYHA | New York Heart Association Functional Classification |
P | pathogenic |
PE | pulmonary embolism |
PLN | phospholamban |
RCM | restrictive cardiomyopathy |
RHC | Right heart catheterization |
RMB | RNA binding motif protein |
RV | right ventricular |
SBP | systolic blood pressure |
SCD | sudden cardiac death |
VA | ventricular arrhythmia |
VT | ventricular tachycardia |
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Baumbach, A.; Böhm, M.; Burri, H.; Čelutkiene, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart. J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Beghini, A.; Sammartino, A.M.; Papp, Z.; von Haehling, S.; Biegus, J.; Ponikowski, P.; Adamo, M.; Falco, L.; Lombardi, C.M.; Pagnesi, M.; et al. 2024 Update in Heart Failure. ESC Heart Fail. 2025, 12, 8–42. [Google Scholar] [CrossRef] [PubMed]
- Chioncel, O.; Mebazaa, A.; Harjola, V.P.; Coats, A.J.; Piepoli, M.F.; Crespo-Leiro, M.G.; Laroche, C.; Seferovic, P.M.; Anker, S.D.; Ferrari, R.; et al. Clinical Phenotypes and Outcome of Patients Hospitalized for Acute Heart Failure: The ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1242–1254. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.M.; Stough, W.G.; Gallup, D.S.; Hasselblad, V.; Gheorghiade, M. Demographics, Clinical Characteristics, and Outcomes of Patients Hospitalized for Decompensated Heart Failure: Observations from the IMPACT-HF Registry. J. Card. Fail. 2005, 11, 200–205. [Google Scholar] [CrossRef]
- Chioncel, O.; Mebazaa, A.; Maggioni, A.P.; Harjola, V.P.; Rosano, G.; Laroche, C.; Piepoli, M.F.; Crespo-Leiro, M.G.; Lainscak, M.; Ponikowski, P.; et al. Acute Heart Failure Congestion and Perfusion Status—Impact of the Clinical Classification on in-Hospital and Long-Term Outcomes; Insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2019, 21, 1338–1352. [Google Scholar] [CrossRef]
- Marini, M.; Manfredi, R.; Battistoni, I.; Francioni, M.; Vittoria Matassini, M.; Pongetti, G.; Angelini, L.; Shkoza, M.; Bontempo, A.; Belfioretti, L.; et al. Acute Heart Failure: Differential Diagnosis and Treatment. Eur. Heart J. Suppl. 2023, 25, C276–C282. [Google Scholar] [CrossRef]
- Harjola, V.P.; Mebazaa, A.; Čelutkiene, J.; Bettex, D.; Bueno, H.; Chioncel, O.; Crespo-Leiro, M.G.; Falk, V.; Filippatos, G.; Gibbs, S.; et al. Contemporary Management of Acute Right Ventricular Failure: A Statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur. J. Heart Fail. 2016, 18, 226–241. [Google Scholar] [CrossRef]
- Chioncel, O.; Parissis, J.; Mebazaa, A.; Thiele, H.; Desch, S.; Bauersachs, J.; Harjola, V.P.; Antohi, E.L.; Arrigo, M.; Gal, T.B.; et al. Epidemiology, Pathophysiology and Contemporary Management of Cardiogenic Shock—A Position Statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1315–1341. [Google Scholar] [CrossRef]
- Thiele, H.; Ohman, E.M.; De Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of Cardiogenic Shock Complicating Myocardial Infarction: An Update 2019. Eur. Heart. J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef]
- Manzi, L.; Sperandeo, L.; Forzano, I.; Castiello, D.S.; Florimonte, D.; Paolillo, R.; Santoro, C.; Mancusi, C.; Di Serafino, L.; Esposito, G.; et al. Contemporary Evidence and Practice on Right Heart Catheterization in Patients with Acute or Chronic Heart Failure. Diagnostics 2024, 14, 136. [Google Scholar] [CrossRef]
- Spinar, J.; Parenica, J.; Vitovec, J.; Widimsky, P.; Linhart, A.; Fedorco, M.; Malek, F.; Cihalik, C.; Spinarová, L.; Miklik, R.; et al. Baseline Characteristics and Hospital Mortality in the Acute Heart Failure Database (AHEAD) Main Registry. Crit. Care 2011, 15, R291. [Google Scholar] [CrossRef] [PubMed]
- Kurmani, S.; Squire, I. Acute Heart Failure: Definition, Classification and Epidemiology. Curr. Heart Fail. Rep. 2017, 14, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, M.S.; Brutsaert, D.; Dickstein, K.; Drexler, H.; Follath, F.; Harjola, V.P.; Hochadel, M.; Komajda, M.; Lassus, J.; Lopez-Sendon, J.L.; et al. EuroHeart Failure Survey II (EHFS II): A Survey on Hospitalized Acute Heart Failure Patients: Description of Population. Eur. Heart J. 2006, 27, 2725–2736. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.A.; Fonarow, G.C.; Ziaeian, B. National Trends in Heart Failure Hospitalizations and Readmissions From 2010 to 2017. JAMA Cardiol. 2021, 6, 952–956. [Google Scholar] [CrossRef]
- Fonarow, G.C. The Acute Decompensated Failure National Registry(ADHERETM): Opportunities Improve Care of Patients With Acute Heart Failure. Rev. Cardiovasc. Med. 2003, 4, 21–30. [Google Scholar]
- Abraham, W.T.; Fonarow, G.C.; Albert, N.M.; Stough, W.G.; Gheorghiade, M.; Greenberg, B.H.; O’Connor, C.M.; Sun, J.L.; Yancy, C.W.; Young, J.B. Predictors of In-Hospital Mortality in Patients Hospitalized for Heart Failure: Insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J. Am. Coll. Cardiol. 2008, 52, 347–356. [Google Scholar] [CrossRef]
- Follath, F.; Yilmaz, M.B.; Delgado, J.F.; Parissis, J.T.; Porcher, R.; Gayat, E.; Burrows, N.; Mclean, A.; Vilas-Boas, F.; Mebazaa, A. Clinical Presentation, Management and Outcomes in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-HF). Intensive Care Med. 2011, 37, 619–626. [Google Scholar] [CrossRef]
- Musella, F.; Rosano, G.M.C.; Hage, C.; Benson, L.; Guidetti, F.; Moura, B.; Sibilio, G.; Boccalatte, M.; Dahlström, U.; Coats, A.J.S.; et al. Patient Profiles in Heart Failure with Reduced Ejection Fraction: Prevalence, Characteristics, Treatments and Outcomes in a Real-World Heart Failure Population. Eur. J. Heart Fail. 2023, 25, 1246–1253. [Google Scholar] [CrossRef]
- Schrage, B.; Sundermeyer, J.; Beer, B.N.; Bertoldi, L.; Bernhardt, A.; Blankenberg, S.; Dauw, J.; Dindane, Z.; Eckner, D.; Eitel, I.; et al. Use of Mechanical Circulatory Support in Patients with Non-Ischaemic Cardiogenic Shock. Eur. J. Heart Fail. 2023, 25, 562–572. [Google Scholar] [CrossRef]
- Mullens, W.; Dauw, J.; Martens, P.; Meekers, E.; Nijst, P.; Verbrugge, F.H.; Chenot, F.; Moubayed, S.; Dierckx, R.; Blouard, P.; et al. Acetazolamide in Decompensated Heart Failure with Volume Overload Trial (ADVOR): Baseline Characteristics. Eur. J. Heart Fail. 2022, 24, 1601–1610. [Google Scholar] [CrossRef]
- Trullàs, J.C.; Morales-Rull, J.L.; Casado, J.; Carrera-Izquierdo, M.; Sánchez-Marteles, M.; Conde-Martel, A.; Dávila-Ramos, M.F.; Llácer, P.; Salamanca-Bautista, P.; Pérez-Silvestre, J.; et al. Combining Loop with Thiazide Diuretics for Decompensated Heart Failure: The CLOROTIC Trial. Eur. Heart J. 2023, 44, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Straus, S.E.; Farkouh, M.E.; Austin, P.C.; Taljaard, M.; Chong, A.; Fahim, C.; Poon, S.; Cram, P.; Smith, S.; et al. Trial of an Intervention to Improve Acute Heart Failure Outcomes. N. Engl. J. Med. 2023, 388, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 Inhibitor Empagliflozin in Patients Hospitalized for Acute Heart Failure: A Multinational Randomized Trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Kirwan, B.A.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Fabien, V.; Filippatos, G.; Göhring, U.M.; Keren, A.; et al. Ferric Carboxymaltose for Iron Deficiency at Discharge after Acute Heart Failure: A Multicentre, Double-Blind, Randomised, Controlled Trial. Lancet 2020, 396, 1895–1904. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Böhm, M.; Greene, S.J.; Fonarow, G.C.; Lewis, E.F.; Zannad, F.; Solomon, S.D.; Baschiera, F.; Botha, J.; Hua, T.A.; et al. Effect of Aliskiren on Postdischarge Mortality and Heart Failure Readmissions among Patients Hospitalized for Heart Failure: The ASTRONAUT Randomized Trial. JAMA 2013, 309, 1125–1135. [Google Scholar] [CrossRef]
- Mebazaa, A.; Davison, B.; Chioncel, O.; Cohen-Solal, A.; Diaz, R.; Filippatos, G.; Metra, M.; Ponikowski, P.; Sliwa, K.; Voors, A.A.; et al. Safety, Tolerability and Efficacy of up-Titration of Guideline-Directed Medical Therapies for Acute Heart Failure (STRONG-HF): A Multinational, Open-Label, Randomised, Trial. Lancet 2022, 400, 1938–1952. [Google Scholar] [CrossRef]
- Velazquez, E.J.; Morrow, D.A.; DeVore, A.D.; Duffy, C.I.; Ambrosy, A.P.; McCague, K.; Rocha, R.; Braunwald, E. Angiotensin-Neprilysin Inhibition in Acute Decompensated Heart Failure. N. Engl. J. Med. 2019, 380, 539–548. [Google Scholar] [CrossRef]
- Mebazaa, A.; Nieminen, M.S.; Packer, M.; Cohen-Solal, A.; Kleber, F.X.; Pocock, S.J.; Thakkar, R.; Padley, R.J.; Põder, P.; Kivikko, M. Levosimendan vs Dobutamine for Patients with Acute Decompensated Heart Failure: The SURVIVE Randomized Trial. JAMA 2007, 297, 1883–1891. [Google Scholar] [CrossRef]
- Adamson, P.B.; Abraham, W.T.; Aaron, M.; Aranda, J.M.; Bourge, R.C.; Smith, A.; Stevenson, L.W.; Bauman, J.G.; Yadav, J.S. CHAMPION Trial Rationale and Design: The Long-Term Safety and Clinical Efficacy of a Wireless Pulmonary Artery Pressure Monitoring System. J. Card. Fail. 2011, 17, 3–10. [Google Scholar] [CrossRef]
- Packer, M.; O’Connor, C.; McMurray, J.J.V.; Wittes, J.; Abraham, W.T.; Anker, S.D.; Dickstein, K.; Filippatos, G.; Holcomb, R.; Krum, H.; et al. Effect of Ularitide on Cardiovascular Mortality in Acute Heart Failure. N. Engl. J. Med. 2017, 376, 1956–1964. [Google Scholar] [CrossRef]
- Sato, N.; Lam, C.S.P.; Teerlink, J.R.; Greenberg, B.H.; Tsutsui, H.; Oh, B.H.; Zhang, J.; Lefkowitz, M.; Hua, T.A.; Holbro, T.; et al. Evaluating the Efficacy, Safety, and Tolerability of Serelaxin When Added to Standard Therapy in Asian Patients With Acute Heart Failure: Design and Rationale of RELAX-AHF-ASIA Trial. J. Card. Fail. 2017, 23, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Colucci, W.; Fisher, L.; Massie, B.M.; Teerlink, J.R.; Young, J.; Padley, R.J.; Thakkar, R.; Delgado-Herrera, L.; Salon, J.; et al. Effect of Levosimendan on the Short-Term Clinical Course of Patients with Acutely Decompensated Heart Failure. JACC Heart Fail. 2013, 1, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Kozhuharov, N.; Goudev, A.; Flores, D.; Maeder, M.T.; Walter, J.; Shrestha, S.; Gualandro, D.M.; Junior, M.T.d.O.; Sabti, Z.; Müller, B.; et al. Effect of a Strategy of Comprehensive Vasodilation vs Usual Care on Mortality and Heart Failure Rehospitalization Among Patients With Acute Heart Failure: The GALACTIC Randomized Clinical Trial. JAMA 2019, 322, 2292–2302. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Pölzl, G.; Altenberger, J.; Comín-Colet, J.; Delgado, J.F.; Fedele, F.; García-González, M.J.; Gustafsson, F.; Masip, J.; Papp, Z.; Störk, S.; et al. Repetitive Levosimendan Infusions for Patients with Advanced Chronic Heart Failure in the Vulnerable Post-Discharge Period: The Multinational Randomized LeoDOR Trial. Eur. J. Heart Fail. 2023, 25, 2007–2017. [Google Scholar] [CrossRef]
- ter Maaten, J.M.; Beldhuis, I.E.; van der Meer, P.; Krikken, J.A.; Postmus, D.; Coster, J.E.; Nieuwland, W.; van Veldhuisen, D.J.; Voors, A.A.; Damman, K. Natriuresis-Guided Diuretic Therapy in Acute Heart Failure: A Pragmatic Randomized Trial. Nat. Med. 2023, 29, 2625–2632. [Google Scholar] [CrossRef]
- Tanaka, A.; Kida, K.; Matsue, Y.; Imai, T.; Suwa, S.; Taguchi, I.; Hisauchi, I.; Teragawa, H.; Yazaki, Y.; Moroi, M.; et al. In-Hospital Initiation of Angiotensin Receptor-Neprilysin Inhibition in Acute Heart Failure: The PREMIER Trial. Eur. Heart J. 2024, 45, 4482–4493. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Guglin, M.E.; Saltzberg, M.T.; Jessup, M.L.; Bart, B.A.; Teerlink, J.R.; Jaski, B.E.; Fang, J.C.; Feller, E.D.; Haas, G.J.; et al. Ultrafiltration versus Intravenous Diuretics for Patients Hospitalized for Acute Decompensated Heart Failure. J. Am. Coll. Cardiol. 2007, 49, 675–683. [Google Scholar] [CrossRef]
- Marenzi, G.; Muratori, M.; Cosentino, E.R.; Rinaldi, E.R.; Donghi, V.; Milazzo, V.; Ferramosca, E.; Borghi, C.; Santoro, A.; Agostoni, P. Continuous Ultrafiltration for Congestive Heart Failure: The CUORE Trial. J. Card. Fail. 2014, 20, 9–17. [Google Scholar] [CrossRef]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Felker, G.M.; Lee, K.L.; Bull, D.A.; Redfield, M.M.; Stevenson, L.W.; Goldsmith, S.R.; LeWinter, M.M.; Deswal, A.; Rouleau, J.L.; Ofili, E.O.; et al. Diuretic Strategies in Patients with Acute Decompensated Heart Failure. N. Engl. J. Med. 2011, 364, E1. [Google Scholar] [CrossRef] [PubMed]
- Bart, B.A.; Goldsmith, S.R.; Lee, K.L.; Givertz, M.M.; O’Connor, C.M.; Bull, D.A.; Redfield, M.M.; Deswal, A.; Rouleau, J.L.; LeWinter, M.M.; et al. Ultrafiltration in Decompensated Heart Failure with Cardiorenal Syndrome. N. Engl. J. Med. 2012, 367, 2296–2304. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Anstrom, K.J.; Givertz, M.M.; Stevenson, L.W.; Semigran, M.J.; Goldsmith, S.R.; Bart, B.A.; Bull, D.A.; Stehlik, J.; LeWinter, M.M.; et al. Low-Dose Dopamine or Low-Dose Nesiritide in Acute Heart Failure with Renal Dysfunction: The ROSE Acute Heart Failure Randomized Trial. JAMA 2013, 310, 2533–2543. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Negoianu, D.; Jaski, B.E.; Bart, B.A.; Heywood, J.T.; Anand, I.S.; Smelser, J.M.; Kaneshige, A.M.; Chomsky, D.B.; Adler, E.D.; et al. Aquapheresis Versus Intravenous Diuretics and Hospitalizations for Heart Failure. JACC Heart Fail. 2016, 4, 95–105. [Google Scholar] [CrossRef]
- Pang, P.S.; Butler, J.; Collins, S.P.; Cotter, G.; Davison, B.A.; Ezekowitz, J.A.; Filippatos, G.; Levy, P.D.; Metra, M.; Ponikowski, P.; et al. Biased Ligand of the Angiotensin II Type 1 Receptor in Patients with Acute Heart Failure: A Randomized, Double-Blind, Placebo-Controlled, Phase IIB, Dose Ranging Trial (BLAST-AHF). Eur. Heart J. 2017, 38, 2364–2373. [Google Scholar] [CrossRef]
- Collins, S.P.; Liu, D.; Jenkins, C.A.; Storrow, A.B.; Levy, P.D.; Pang, P.S.; Chang, A.M.; Char, D.; Diercks, D.J.; Fermann, G.J.; et al. Effect of a Self-Care Intervention on 90-Day Outcomes in Patients With Acute Heart Failure Discharged From the Emergency Department: A Randomized Clinical Trial. JAMA Cardiol. 2021, 6, 200–208. [Google Scholar] [CrossRef]
- Pang, P.S.; Berger, D.A.; Mahler, S.A.; Li, X.; Pressler, S.J.; Lane, K.A.; Bischof, J.J.; Char, D.; Diercks, D.; Jones, A.E.; et al. Short-Stay Units vs Routine Admission From the Emergency Department in Patients With Acute Heart Failure: The SSU-AHF Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2350511. [Google Scholar] [CrossRef]
- Pascual-Figal, D.; Núñez Villota, J.; Pérez-Martínez, M.T.; González-Juanatey, J.R.; Taibo-Urquía, M.; Llàcer Iborra, P.; González-Martín, J.; Villar, S.; Soler, M.; Mirabet, S.; et al. Colchicine in Acute Heart Failure: Rationale and Design of a Randomized Double-Blind Placebo-Controlled Trial (COLICA). Eur. J. Heart Fail. 2024, 26, 1999–2007. [Google Scholar] [CrossRef]
- Cox, Z.L.; Collins, S.P.; Hernandez, G.A.; McRae, A.T.; Davidson, B.T.; Adams, K.; Aaron, M.; Cunningham, L.; Jenkins, C.A.; Lindsell, C.J.; et al. Efficacy and Safety of Dapagliflozin in Patients With Acute Heart Failure. J. Am. Coll. Cardiol. 2024, 83, 1295–1306. [Google Scholar] [CrossRef]
- Seyfarth, M.; Sibbing, D.; Bauer, I.; Fröhlich, G.; Bott-Flügel, L.; Byrne, R.; Dirschinger, J.; Kastrati, A.; Schömig, A. A Randomized Clinical Trial to Evaluate the Safety and Efficacy of a Percutaneous Left Ventricular Assist Device versus Intra-Aortic Balloon Pumping for Treatment of Cardiogenic Shock Caused by Myocardial Infarction. J. Am. Coll. Cardiol. 2008, 52, 1584–1588. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, J.T.; Schmeisser, A.; Schulze, M.R.; Wunderlich, C.; Schoen, S.P.; Rauwolf, T.; Weinbrenner, C.; Strasser, R.H. Levosimendan Is Superior to Enoximone in Refractory Cardiogenic Shock Complicating Acute Myocardial Infarction. Crit. Care Med. 2008, 36, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Prondzinsky, R.; Lemm, H.; Swyter, M.; Wegener, N.; Unverzagt, S.; Carter, J.M.; Russ, M.; Schlitt, A.; Buerke, U.; Christoph, A.; et al. Intra-Aortic Balloon Counterpulsation in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock: The Prospective, Randomized IABP SHOCK Trial for Attenuation of Multiorgan Dysfunction Syndrome. Crit. Care Med. 2010, 38, 152–160. [Google Scholar] [CrossRef] [PubMed]
- De Backer, D.; Biston, P.; Devriendt, J.; Madl, C.; Chochrad, D.; Aldecoa, C.; Brasseur, A.; Defrance, P.; Gottignies, P.; Vincent, J.-L. Comparison of Dopamine and Norepinephrine in the Treatment of Shock. N. Engl. J. Med. 2010, 362, 779–789. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- Ouweneel, D.M.; Eriksen, E.; Sjauw, K.D.; van Dongen, I.M.; Hirsch, A.; Packer, E.J.S.; Vis, M.M.; Wykrzykowska, J.J.; Koch, K.T.; Baan, J.; et al. Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2017, 69, 278–287. [Google Scholar] [CrossRef]
- Levy, B.; Clere-Jehl, R.; Legras, A.; Morichau-Beauchant, T.; Leone, M.; Frederique, G.; Quenot, J.P.; Kimmoun, A.; Cariou, A.; Lassus, J.; et al. Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 72, 173–182. [Google Scholar] [CrossRef]
- Bochaton, T.; Huot, L.; Elbaz, M.; Delmas, C.; Aissaoui, N.; Farhat, F.; Mewton, N.; Bonnefoy, E. Mechanical Circulatory Support with the Impella® LP5.0 Pump and an Intra-Aortic Balloon Pump for Cardiogenic Shock in Acute Myocardial Infarction: The IMPELLA-STIC Randomized Study. Arch. Cardiovasc. Dis. 2020, 113, 237–243. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef]
- Banning, A.S.; Sabaté, M.; Orban, M.; Gracey, J.; López-Sobrino, T.; Massberg, S.; Kastrati, A.; Bogaerts, K.; Adriaenssens, T.; Berry, C.; et al. Venoarterial Extracorporeal Membrane Oxygenation or Standard Care in Patients with Cardiogenic Shock Complicating Acute Myocardial Infarction: The Multicentre, Randomised EURO SHOCK Trial. EuroIntervention 2023, 19, 482–492. [Google Scholar] [CrossRef]
- Møller, J.E.; Engstrøm, T.; Jensen, L.O.; Eiskjær, H.; Mangner, N.; Polzin, A.; Schulze, P.C.; Skurk, C.; Nordbeck, P.; Clemmensen, P.; et al. Microaxial Flow Pump or Standard Care in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2024, 390, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Carson, P.; Anand, I.; Doehner, W.; Haass, M.; et al. Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation 2021, 143, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Kalra, P.R.; Cleland, J.G.F.; Petrie, M.C.; Thomson, E.A.; Kalra, P.A.; Squire, I.B.; Ahmed, F.Z.; Al-Mohammad, A.; Cowburn, P.J.; Foley, P.W.X.; et al. Intravenous Ferric Derisomaltose in Patients with Heart Failure and Iron Deficiency in the UK (IRONMAN): An Investigator-Initiated, Prospective, Randomised, Open-Label, Blinded-Endpoint Trial. Lancet 2022, 400, 2199–2209. [Google Scholar] [CrossRef] [PubMed]
- Mentz, R.J.; Anstrom, K.J.; Eisenstein, E.L.; Sapp, S.; Greene, S.J.; Morgan, S.; Testani, J.M.; Harrington, A.H.; Sachdev, V.; Ketema, F.; et al. Effect of Torsemide vs Furosemide After Discharge on All-Cause Mortality in Patients Hospitalized With Heart Failure: The TRANSFORM-HF Randomized Clinical Trial. JAMA 2023, 329, 214–223. [Google Scholar] [CrossRef]
- Butler, J.; Anker, S.D.; Lund, L.H.; Coats, A.J.S.; Filippatos, G.; Siddiqi, T.J.; Friede, T.; Fabien, V.; Kosiborod, M.; Metra, M.; et al. Patiromer for the Management of Hyperkalemia in Heart Failure with Reduced Ejection Fraction: The DIAMOND Trial. Eur. Heart J. 2022, 43, 4362–4373. [Google Scholar] [CrossRef]
- Mcmurray, J.J.V.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014, 371, 132–133. [Google Scholar] [CrossRef]
- Anker, S.D.; Friede, T.; von Bardeleben, R.-S.; Butler, J.; Khan, M.-S.; Diek, M.; Heinrich, J.; Geyer, M.; Placzek, M.; Ferrari, R.; et al. Transcatheter Valve Repair in Heart Failure with Moderate to Severe Mitral Regurgitation. N. Engl. J. Med. 2024, 391, 1799–1809. [Google Scholar] [CrossRef]
- Baldus, S.; Doenst, T.; Pfister, R.; Gummert, J.; Kessler, M.; Boekstegers, P.; Lubos, E.; Schröder, J.; Thiele, H.; Walther, T.; et al. Transcatheter Repair versus Mitral-Valve Surgery for Secondary Mitral Regurgitation. N. Engl. J. Med. 2024, 391, 1787–1798. [Google Scholar] [CrossRef]
- Flather, M.D.; Shibata, M.C.; Coats, A.J.S.; Van Veldhuisen, D.J.; Parkhomenko, A.; Borbola, J.; Cohen-Solal, A.; Dumitrascu, D.; Ferrari, R.; Lechat, P.; et al. Randomized Trial to Determine the Effect of Nebivolol on Mortality and Cardiovascular Hospital Admission in Elderly Patients with Heart Failure (SENIORS). Eur. Heart J. 2005, 26, 215–225. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Tardif, J.-C. COMMANDER HF—A Trial and an Answer. N. Engl. J. Med. 2018, 379, 1372–1374. [Google Scholar] [CrossRef] [PubMed]
- Obadia, J.-F.; Messika-Zeitoun, D.; Leurent, G.; Iung, B.; Bonnet, G.; Piriou, N.; Lefèvre, T.; Piot, C.; Rouleau, F.; Carrié, D.; et al. Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation. N. Engl. J. Med. 2018, 379, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R.; et al. Transcatheter Mitral-Valve Repair in Patients with Heart Failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Sorajja, P.; Whisenant, B.; Hamid, N.; Naik, H.; Makkar, R.; Tadros, P.; Price, M.J.; Singh, G.; Fam, N.; Kar, S.; et al. Transcatheter Repair for Patients with Tricuspid Regurgitation. N. Engl. J. Med. 2023, 388, 1833–1842. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; De Boer, R.A.; et al. 2023 ESC Guidelines for the Management of Cardiomyopathies. Eur. Heart. J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Arbustini, E.; Narula, N.; William Dec, G.; Srinath Reddy, K.; Greenberg, B.; Kushwaha, S.; Marwick, T.; Pinney, S.; Bellazzi, R.; Favalli, V.; et al. Reply: The MOGE(S) Classification for a Phenotype-Genotype Nomenclature of Cardiomyopathy: More Questions than Answers? J. Am. Coll. Cardiol. 2014, 63, 2584–2586. [Google Scholar] [CrossRef]
- Pinto, Y.M.; Elliott, P.M.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; De Groote, P.; Imazio, M.; et al. Proposal for a Revised Definition of Dilated Cardiomyopathy, Hypokinetic Non-Dilated Cardiomyopathy, and Its Implications for Clinical Practice: A Position Statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2016, 37, 1850–1858. [Google Scholar] [CrossRef]
- Seferović, P.M.; Polovina, M.; Bauersachs, J.; Arad, M.; Gal, T.B.; Lund, L.H.; Felix, S.B.; Arbustini, E.; Caforio, A.L.P.; Farmakis, D.; et al. Heart Failure in Cardiomyopathies: A Position Paper from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 553–576. [Google Scholar] [CrossRef]
- Tymińska, A.; Ozierański, K.; Balsam, P.; Maciejewski, C.; Wancerz, A.; Brociek, E.; Marchel, M.; Crespo-Leiro, M.G.; Maggioni, A.P.; Drożdż, J.; et al. Ischemic Cardiomyopathy versus Non-Ischemic Dilated Cardiomyopathy in Patients with Reduced Ejection Fraction-Clinical Characteristics and Prognosis Depending on Heart Failure Etiology (Data from European Society of Cardiology Heart Failure Registries). Biology 2022, 11, 341. [Google Scholar] [CrossRef]
- Tat, E.; Ball, C.; Camren, G.P.; Wroblewski, I.; Dajani, K.A.; Goldberg, A.; Kinno, M.; Sanagala, T.; Syed, M.A.; Wilber, D.J.; et al. Impact of Late Gadolinium Enhancement Extent, Location, and Pattern on Ventricular Tachycardia and Major Adverse Cardiac Events in Patients with Ischemic vs. Non-Ischemic Cardiomyopathy. Front. Cardiovasc. Med. 2022, 9, 1026215. [Google Scholar] [CrossRef]
- Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated Cardiomyopathy: The Complexity of a Diverse Genetic Architecture. Nat. Rev. Cardiol. 2013, 10, 531–547. [Google Scholar] [CrossRef] [PubMed]
- Codd, M.B.; Sugrue, D.D.; Gersh, B.J.; Melton, L.J. Epidemiology of Idiopathic Dilated and Hypertrophic Cardiomyopathy. A Population-Based Study in Olmsted County, Minnesota, 1975-1984. Circulation 1989, 80, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, J.L.; Towbin, J.A. Dilated Cardiomyopathy. Lancet 2010, 375, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Japp, A.G.; Gulati, A.; Cook, S.A.; Cowie, M.R.; Prasad, S.K. The Diagnosis and Evaluation of Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 67, 2996–3010. [Google Scholar] [CrossRef]
- Herman, D.S.; Lam, L.; Taylor, M.R.G.; Wang, L.; Teekakirikul, P.; Christodoulou, D.; Conner, L.; DePalma, S.R.; McDonough, B.; Sparks, E.; et al. Truncations of Titin Causing Dilated Cardiomyopathy. N. Engl. J. Med. 2012, 366, 619–628. [Google Scholar] [CrossRef]
- Halliday, B.P.; Gulati, A.; Ali, A.; Newsome, S.; Lota, A.; Tayal, U.; Vassiliou, V.S.; Arzanauskaite, M.; Izgi, C.; Krishnathasan, K.; et al. Sex- and Age-Based Differences in the Natural History and Outcome of Dilated Cardiomyopathy. Eur. J. Heart Fail. 2018, 20, 1392–1400. [Google Scholar] [CrossRef]
- Gulati, A.; Jabbour, A.; Ismail, T.F.; Guha, K.; Khwaja, J.; Raza, S.; Morarji, K.; Brown, T.D.H.; Ismail, N.A.; Dweck, M.R.; et al. Association of Fibrosis with Mortality and Sudden Cardiac Death in Patients with Nonischemic Dilated Cardiomyopathy. JAMA 2013, 309, 896–908. [Google Scholar] [CrossRef]
- Bottiroli, M.; Calini, A.; Morici, N.; Tavazzi, G.; Galimberti, L.; Facciorusso, C.; Ammirati, E.; Russo, C.; Montoli, A.; Mondino, M. Acute Kidney Injury in Patients with Acute Decompensated Heart Failure-Cardiogenic Shock: Prevalence, Risk Factors and Outcome. Int. J. Cardiol. 2023, 383, 42–49. [Google Scholar] [CrossRef]
- Levy, B.; Perez, P.; Perny, J.; Thivilier, C.; Gerard, A. Comparison of Norepinephrine-Dobutamine to Epinephrine for Hemodynamics, Lactate Metabolism, and Organ Function Variables in Cardiogenic Shock. A Prospective, Randomized Pilot Study. Crit. Care Med. 2011, 39, 450–455. [Google Scholar] [CrossRef]
- Akhtar, K.H.; Maqsood, M.H.; Ansari, S.A.; Siddiqi, T.J.; Arshad, M.S.; Greene, S.J.; Butler, J.; Khan, M.S. An Individual Patient-Level Meta-Analysis of Ischemic Versus Nonischemic Cardiomyopathy and Trajectory of Decongestion in Patients With Acute Decompensated Heart Failure. Am. J. Cardiol. 2023, 200, 32–39. [Google Scholar] [CrossRef]
- Cherbi, M.; Gerbaud, E.; Lamblin, N.; Bonnefoy, E.; Bonello, L.; Levy, B.; Ternacle, J.; Schneider, F.; Elbaz, M.; Khachab, H.; et al. Cardiogenic Shock in Idiopathic Dilated Cardiomyopathy Patients: Red Flag for Myocardial Decline. Am. J. Cardiol. 2023, 206, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Cherbi, M.; Roubille, F.; Lamblin, N.; Bonello, L.; Leurent, G.; Levy, B.; Elbaz, M.; Champion, S.; Lim, P.; Schneider, F.; et al. One-Year Outcomes in Cardiogenic Shock Triggered by Ventricular Arrhythmia: An Analysis of the FRENSHOCK Multicenter Prospective Registry. Front. Cardiovasc. Med. 2023, 10, 1092904. [Google Scholar] [CrossRef] [PubMed]
- Miric, D.; Barac, A.; Capkun, V.; Bakovic, D. Right Ventricular Free Wall Strain in Acutely Decompensated Heart Failure Patients with Ischemic and Non-Ischemic Cardiomyopathy. Echocardiography 2021, 38, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, J.E.; Fonarow, G.C.; Ardehali, H.; Bonow, R.O.; Butler, J.; Sauer, A.J.; Epstein, S.E.; Khan, S.S.; Kim, R.J.; Sabbah, H.N.; et al. “Targeting the Heart” in Heart Failure: Myocardial Recovery in Heart Failure With Reduced Ejection Fraction. JACC Heart Fail. 2015, 3, 661–669. [Google Scholar] [CrossRef]
- McNamara, D.M.; Starling, R.C.; Cooper, L.T.; Boehmer, J.P.; Mather, P.J.; Janosko, K.M.; Gorcsan, J.; Kip, K.E.; Dec, G.W. Clinical and Demographic Predictors of Outcomes in Recent Onset Dilated Cardiomyopathy: Results of the IMAC (Intervention in Myocarditis and Acute Cardiomyopathy)-2 Study. J. Am. Coll. Cardiol. 2011, 58, 1112–1118. [Google Scholar] [CrossRef]
- Halliday, B.P.; Wassall, R.; Lota, A.S.; Khalique, Z.; Gregson, J.; Newsome, S.; Jackson, R.; Rahneva, T.; Wage, R.; Smith, G.; et al. Withdrawal of Pharmacological Treatment for Heart Failure in Patients with Recovered Dilated Cardiomyopathy (TRED-HF): An Open-Label, Pilot, Randomised Trial. Lancet 2019, 393, 61–73. [Google Scholar] [CrossRef]
- Wilcox, J.E.; Fonarow, G.C.; Yancy, C.W.; Albert, N.M.; Curtis, A.B.; Heywood, J.T.; Inge, P.J.; McBride, M.L.; Mehra, M.R.; O’Connor, C.M.; et al. Factors Associated with Improvement in Ejection Fraction in Clinical Practice among Patients with Heart Failure: Findings from IMPROVE HF. Am. Heart J. 2012, 163, 49–56.e2. [Google Scholar] [CrossRef]
- Kubanek, M.; Sramko, M.; Maluskova, J.; Kautznerova, D.; Weichet, J.; Lupinek, P.; Vrbska, J.; Malek, I.; Kautzner, J. Novel Predictors of Left Ventricular Reverse Remodeling in Individuals with Recent-Onset Dilated Cardiomyopathy. J. Am. Coll. Cardiol. 2013, 61, 54–63. [Google Scholar] [CrossRef]
- Todiere, G.; Barison, A.; Baritussio, A.; Cipriani, A.; Guaricci, A.I.; Pica, S.; Indolfi, C.; Pontone, G.; Dellegrottaglie, S. Acute Clinical Presentation of Nonischemic Cardiomyopathies: Early Detection by Cardiovascular Magnetic Resonance. J. Cardiovasc. Med. 2023, 24, E36–E46. [Google Scholar] [CrossRef]
- Donal, E.; Delgado, V.; Bucciarelli-Ducci, C.; Galli, E.; Haugaa, K.H.; Charron, P.; Voigt, J.U.; Cardim, N.; Masci, P.G.; Galderisi, M.; et al. Multimodality Imaging in the Diagnosis, Risk Stratification, and Management of Patients with Dilated Cardiomyopathies: An Expert Consensus Document from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1075–1093. [Google Scholar] [CrossRef]
- Di Marco, A.; Anguera, I.; Schmitt, M.; Klem, I.; Neilan, T.; White, J.A.; Sramko, M.; Masci, P.G.; Barison, A.; Mckenna, P.; et al. Late Gadolinium Enhancement and the Risk for Ventricular Arrhythmias or Sudden Death in Dilated Cardiomyopathy: Systematic Review and Meta-Analysis. JACC Heart Fail. 2017, 5, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Qian, W.; Zhang, X.; Li, D.; Qian, Z.; Xu, H.; Liao, S.; Chen, X.; Wang, Y.; Hou, X.; et al. Ring-like Late Gadolinium Enhancement for Predicting Ventricular Tachyarrhythmias in Non-Ischaemic Dilated Cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Sepehrkhouy, S.; Gho, J.M.I.H.; van Es, R.; Harakalova, M.; de Jonge, N.; Dooijes, D.; van der Smagt, J.J.; Buijsrogge, M.P.; Hauer, R.N.W.; Goldschmeding, R.; et al. Distinct Fibrosis Pattern in Desmosomal and Phospholamban Mutation Carriers in Hereditary Cardiomyopathies. Heart Rhythm. 2017, 14, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Cannatà, A.; De Angelis, G.; Boscutti, A.; Normand, C.; Artico, J.; Gentile, P.; Zecchin, M.; Heymans, S.; Merlo, M.; Sinagra, G. Arrhythmic Risk Stratification in Non-Ischaemic Dilated Cardiomyopathy beyond Ejection Fraction. Heart 2020, 106, 656–664. [Google Scholar] [CrossRef]
- Merlo, M.; Grilli, G.; Cappelletto, C.; Masé, M.; Porcari, A.; Ferro, M.D.; Gigli, M.; Stolfo, D.; Zecchin, M.; De Luca, A.; et al. The Arrhythmic Phenotype in Cardiomyopathy. Heart Fail. Clin. 2022, 18, 101–113. [Google Scholar] [CrossRef]
- Mirelis, J.G.; Escobar-Lopez, L.; Ochoa, J.P.; Espinosa, M.Á.; Villacorta, E.; Navarro, M.; Casas, G.; Mora-Ayestarán, N.; Barriales-Villa, R.; Mogollón-Jiménez, M.V.; et al. Combination of Late Gadolinium Enhancement and Genotype Improves Prediction of Prognosis in Non-Ischaemic Dilated Cardiomyopathy. Eur. J. Heart Fail. 2022, 24, 1183–1196. [Google Scholar] [CrossRef]
- Van Rijsingen, I.A.W.; Arbustini, E.; Elliott, P.M.; Mogensen, J.; Hermans-Van Ast, J.F.; Van Der Kooi, A.J.; Van Tintelen, J.P.; Van Den Berg, M.P.; Pilotto, A.; Pasotti, M.; et al. Risk Factors for Malignant Ventricular Arrhythmias in Lamin a/c Mutation Carriers a European Cohort Study. J. Am. Coll. Cardiol. 2012, 59, 493–500. [Google Scholar] [CrossRef]
- Paldino, A.; Dal Ferro, M.; Stolfo, D.; Gandin, I.; Medo, K.; Graw, S.; Gigli, M.; Gagno, G.; Zaffalon, D.; Castrichini, M.; et al. Prognostic Prediction of Genotype vs Phenotype in Genetic Cardiomyopathies. J. Am. Coll. Cardiol. 2022, 80, 1981–1994. [Google Scholar] [CrossRef]
- Rossano, J.W.; Dipchand, A.I.; Edwards, L.B.; Goldfarb, S.; Kucheryavaya, A.Y.; Levvey, R.N.B.J.; Lund, L.H.; Meiser, B.; Yusen, R.D.; Stehlik, J. The Registry of the International Society for Heart and Lung Transplantation: Nineteenth Pediatric Heart Transplantation Report-2016; Focus Theme: Primary Diagnostic Indications for Transplant. J. Heart Lung Transplant. 2016, 35, 1185–1195. [Google Scholar] [CrossRef]
- Yusen, R.D.; Edwards, L.B.; Dipchand, A.I.; Goldfarb, S.B.; Kucheryavaya, A.Y.; Levvey, B.J.; Lund, L.H.; Meiser, B.; Rossano, J.W.; Stehlik, J. The Registry of the International Society for Heart and Lung Transplantation: Thirty-Third Adult Lung and Heart-Lung Transplant Report-2016; Focus Theme: Primary Diagnostic Indications for Transplant. J. Heart Lung Transplant. 2016, 35, 1170–1184. [Google Scholar] [CrossRef]
- Lund, L.H.; Edwards, L.B.; Dipchand, A.I.; Goldfarb, S.; Kucheryavaya, A.Y.; Levvey, B.J.; Meiser, B.; Rossano, J.W.; Yusen, R.D.; Stehlik, J. The Registry of the International Society for Heart and Lung Transplantation: Thirty-Third Adult Heart Transplantation Report-2016; Focus Theme: Primary Diagnostic Indications for Transplant. J. Heart Lung Transplant. 2016, 35, 1158–1169. [Google Scholar] [CrossRef] [PubMed]
- Falco, L.; Valente, F.; De Falco, A.; Barbato, R.; Marotta, L.; Soviero, D.; Cantiello, L.M.; Contaldi, C.; Brescia, B.; Coscioni, E.; et al. Beyond Medical Therapy-An Update on Heart Failure Devices. J. Cardiovasc. Dev. Dis. 2024, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Rose, E.A.; Gelijns, A.C.; Moskowitz, A.J.; Heitjan, D.F.; Stevenson, L.W.; Dembitsky, W.; Long, J.W.; Ascheim, D.D.; Tierney, A.R.; Levitan, R.G.; et al. Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure. N. Engl. J. Med. 2001, 345, 1435–1443. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, D.; Li, B.; Takayama, H.; Garan, R.A.; Topkara, V.K.; Han, J.; Kurlansky, P.; Yuzefpolskaya, M.; Colombo, P.C.; Naka, Y.; et al. Outcome of Heart Transplantation after Bridge-to-Transplant Strategy Using Various Mechanical Circulatory Support Devices. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Khayata, M.; Al-Kindi, S.G.; Oliveira, G.H. Contemporary Characteristics and Outcomes of Adults with Familial Dilated Cardiomyopathy Listed for Heart Transplantation. World J. Cardiol. 2019, 11, 38–46. [Google Scholar] [CrossRef]
- Heymans, S.; Lakdawala, N.K.; Tschöpe, C.; Klingel, K. Dilated Cardiomyopathy: Causes, Mechanisms, and Current and Future Treatment Approaches. Lancet 2023, 402, 998–1011. [Google Scholar] [CrossRef]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the Cardiomyopathies: A Position Statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef]
- Olivotto, I.; Girolami, F.; Nistri, S.; Rossi, A.; Rega, L.; Garbini, F.; Grifoni, C.; Cecchi, F.; Yacoub, M.H. The Many Faces of Hypertrophic Cardiomyopathy: From Developmental Biology to Clinical Practice. J. Cardiovasc. Transl. Res. 2009, 2, 349–367. [Google Scholar] [CrossRef]
- Maron, M.S.; Olivotto, I.; Zenovich, A.G.; Link, M.S.; Pandian, N.G.; Kuvin, J.T.; Nistri, S.; Cecchi, F.; Udelson, J.E.; Maron, B.J. Hypertrophic Cardiomyopathy Is Predominantly a Disease of Left Ventricular Outflow Tract Obstruction. Circulation 2006, 114, 2232–2239. [Google Scholar] [CrossRef]
- Mancusi, C.; Basile, C.; Spaccarotella, C.; Gargiulo, G.; Fucile, I.; Paolillo, S.; Gargiulo, P.; Santoro, C.; Manzi, L.; Marzano, F.; et al. Novel Strategies in Diagnosing Heart Failure with Preserved Ejection Fraction: A Comprehensive Literature Review. High. Blood Press. Cardiovasc. Prev. 2024, 31, 127–140. [Google Scholar] [CrossRef]
- Olivotto, I.; Cecchi, F.; Poggesi, C.; Yacoub, M.H. Patterns of Disease Progression in Hypertrophic Cardiomyopathy: An Individualized Approach to Clinical Staging. Circ. Heart Fail. 2012, 5, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Morita, H.; Rehm, H.L.; Menesses, A.; McDonough, B.; Roberts, A.E.; Kucherlapati, R.; Towbin, J.A.; Seidman, J.G.; Seidman, C.E. Shared Genetic Causes of Cardiac Hypertrophy in Children and Adults. N. Engl. J. Med. 2008, 358, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Charron, P.; Elliott, P.M.; Gimeno, J.R.; Caforio, A.L.P.; Kaski, J.P.; Tavazzi, L.; Tendera, M.; Maupain, C.; Laroche, C.; Rubis, P.; et al. The Cardiomyopathy Registry of the EURObservational Research Programme of the European Society of Cardiology: Baseline Data and Contemporary Management of Adult Patients with Cardiomyopathies. Eur. Heart J. 2018, 39, 1784–1793. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Rowin, E.J.; Udelson, J.E.; Maron, M.S. Clinical Spectrum and Management of Heart Failure in Hypertrophic Cardiomyopathy. JACC Heart Fail. 2018, 6, 353–363. [Google Scholar] [CrossRef]
- Harris, K.M.; Spirito, P.; Maron, M.S.; Zenovich, A.G.; Formisano, F.; Lesser, J.R.; Mackey-Bojack, S.; Manning, W.J.; Udelson, J.E.; Maron, B.J. Prevalence, Clinical Profile, and Significance of Left Ventricular Remodeling in the End-Stage Phase of Hypertrophic Cardiomyopathy. Circulation 2006, 114, 216–225. [Google Scholar] [CrossRef]
- Maron, M.S.; Olivotto, I.; Betocchi, S.; Casey, S.A.; Lesser, J.R.; Losi, M.A.; Cecchi, F.; Maron, B.J. Effect of Left Ventricular Outflow Tract Obstruction on Clinical Outcome in Hypertrophic Cardiomyopathy. N. Engl. J. Med. 2003, 348, 465–466. [Google Scholar] [CrossRef]
- Melacini, P.; Basso, C.; Angelini, A.; Calore, C.; Bobbo, F.; Tokajuk, B.; Bellini, N.; Smaniotto, G.; Zucchetto, M.; Iliceto, S.; et al. Clinicopathological Profiles of Progressive Heart Failure in Hypertrophic Cardiomyopathy. Eur. Heart J. 2010, 31, 2111–2123. [Google Scholar] [CrossRef]
- Dimitrow, P.P.; Bober, M.; Michałowska, J.; Sorysz, D. Left Ventricular Outflow Tract Gradient Provoked by Upright Position or Exercise in Treated Patients with Hypertrophic Cardiomyopathy without Obstruction at Rest. Echocardiography 2009, 26, 513–520. [Google Scholar] [CrossRef]
- Magrì, D.; Re, F.; Limongelli, G.; Agostoni, P.; Zachara, E.; Correale, M.; Mastromarino, V.; Santolamazza, C.; Casenghi, M.; Pacileo, G.; et al. Heart Failure Progression in Hypertrophic Cardiomyopathy—Possible Insights From Cardiopulmonary Exercise Testing. Circ. J. 2016, 80, 2204–2211. [Google Scholar] [CrossRef]
- Moon, J.C.C.; Reed, E.; Sheppard, M.N.; Elkington, A.G.; Ho, S.Y.; Burke, M.; Petrou, M.; Pennell, D.J. The Histologic Basis of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2004, 43, 2260–2264. [Google Scholar] [CrossRef]
- Galati, G.; Leone, O.; Pasquale, F.; Olivotto, I.; Biagini, E.; Grigioni, F.; Pilato, E.; Lorenzini, M.; Corti, B.; Foà, A.; et al. Histological and Histometric Characterization of Myocardial Fibrosis in End-Stage Hypertrophic Cardiomyopathy: A Clinical-Pathological Study of 30 Explanted Hearts. Circ. Heart Fail. 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R.; Saeed, O.; Naftel, D.; Myers, S.; Kirklin, J.; Jorde, U.P.; Goldstein, D.J. Outcomes of Restrictive and Hypertrophic Cardiomyopathies After LVAD: An INTERMACS Analysis. J. Card. Fail. 2017, 23, 859–867. [Google Scholar] [CrossRef] [PubMed]
- DePasquale, E.C.; Deng, M.; Ardehali, A.; Jacoby, D. Outcomes of Heart Transplantation in Adults with Hypertrophic Cardiomyopathy (HCM): UNOS Registry Analysis. J. Heart Lung Transplant. 2016, 35, S64. [Google Scholar] [CrossRef]
- Kaski, J.P.; Syrris, P.; Burch, M.; Tomé Esteban, M.T.; Fenton, M.; Christiansen, M.; Andersen, P.S.; Sebire, N.; Ashworth, M.; Deanfield, J.E.; et al. Idiopathic Restrictive Cardiomyopathy in Children Is Caused by Mutations in Cardiac Sarcomere Protein Genes. Heart 2008, 94, 1478–1484. [Google Scholar] [CrossRef]
- Rapezzi, C.; Aimo, A.; Barison, A.; Emdin, M.; Porcari, A.; Linhart, A.; Keren, A.; Merlo, M.; Sinagra, G. Restrictive Cardiomyopathy: Definition and Diagnosis. Eur. Heart J. 2022, 43, 4679–4693. [Google Scholar] [CrossRef]
- Mori, H.; Kogaki, S.; Ishida, H.; Yoshikawa, T.; Shindo, T.; Inuzuka, R.; Furutani, Y.; Ishido, M.; Nakanishi, T. Outcomes of Restrictive Cardiomyopathy in Japanese Children—A Retrospective Cohort Study. Circ. J. 2022, 86, 1943–1949. [Google Scholar] [CrossRef]
- Ammash, N.M.; Seward, J.B.; Bailey, K.R.; Edwards, W.D.; Tajik, A.J. Clinical Profile and Outcome of Idiopathic Restrictive Cardiomyopathy. Circulation 2000, 101, 2490–2496. [Google Scholar] [CrossRef]
- Rivenes, S.M.; Kearney, D.L.; Smith, E.O.B.; Towbin, J.A.; Denfield, S.W. Sudden Death and Cardiovascular Collapse in Children with Restrictive Cardiomyopathy. Circulation 2000, 102, 876–882. [Google Scholar] [CrossRef]
- Webber, S.A.; Lipshultz, S.E.; Sleeper, L.A.; Lu, M.; Wilkinson, J.D.; Addonizio, L.J.; Canter, C.E.; Colan, S.D.; Everitt, M.D.; Jefferies, J.L.; et al. Outcomes of Restrictive Cardiomyopathy in Childhood and the Influence of Phenotype: A Report from the Pediatric Cardiomyopathy Registry. Circulation 2012, 126, 1237–1244. [Google Scholar] [CrossRef]
- Anderson, H.N.; Cetta, F.; Driscoll, D.J.; Olson, T.M.; Ackerman, M.J.; Johnson, J.N. Idiopathic Restrictive Cardiomyopathy in Children and Young Adults. Am. J. Cardiol. 2018, 121, 1266–1270. [Google Scholar] [CrossRef]
- Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T.; et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N. Engl. J. Med. 2018, 379, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Berk, J.L.; Gillmore, J.D.; Witteles, R.M.; Grogan, M.; Drachman, B.; Damy, T.; Garcia-Pavia, P.; Taubel, J.; Solomon, S.D.; et al. Vutrisiran in Patients with Transthyretin Amyloidosis with Cardiomyopathy. N. Engl. J. Med. 2025, 392, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Habib, G.; Bucciarelli-Ducci, C.; Caforio, A.L.P.; Cardim, N.; Charron, P.; Cosyns, B.; Dehaene, A.; Derumeaux, G.; Donal, E.; Dweck, M.R.; et al. Multimodality Imaging in Restrictive Cardiomyopathies: An EACVI Expert Consensus Document In Collaboration with the “Working Group on Myocardial and Pericardial Diseases” of the European Society of Cardiology Endorsed by The Indian Academy of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1090–1091. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Blauwet, L.A.; Gertz, M.A. Restrictive Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ. Res. 2017, 121, 819–837. [Google Scholar] [CrossRef]
- Grupper, A.; Park, S.J.; Pereira, N.L.; Schettle, S.D.; Gerber, Y.; Topilsky, Y.; Edwards, B.S.; Daly, R.C.; Stulak, J.M.; Joyce, L.D.; et al. Role of Ventricular Assist Therapy for Patients with Heart Failure and Restrictive Physiology: Improving Outcomes for a Lethal Disease. J. Heart Lung Transplant. 2015, 34, 1042–1049. [Google Scholar] [CrossRef]
- Depasquale, E.C.; Nasir, K.; Jacoby, D.L. Outcomes of Adults with Restrictive Cardiomyopathy after Heart Transplantation. J. Heart Lung Transplant. 2012, 31, 1269–1275. [Google Scholar] [CrossRef]
- Cheong, B.Y.C.; Muthupillai, R.; Wilson, J.M.; Sung, A.; Huber, S.; Amin, S.; Elayda, M.A.; Lee, V.V.; Flamm, S.D. Prognostic Significance of Delayed-Enhancement Magnetic Resonance Imaging: Survival of 857 Patients with and without Left Ventricular Dysfunction. Circulation 2009, 120, 2069–2076. [Google Scholar] [CrossRef]
- Castrichini, M.; De Luca, A.; De Angelis, G.; Neves, R.; Paldino, A.; Dal Ferro, M.; Barbati, G.; Medo, K.; Barison, A.; Grigoratos, C.; et al. Magnetic Resonance Imaging Characterization and Clinical Outcomes of Dilated and Arrhythmogenic Left Ventricular Cardiomyopathies. J. Am. Coll. Cardiol. 2024, 83, 1841–1851. [Google Scholar] [CrossRef]
- Aquaro, G.D.; Perfetti, M.; Camastra, G.; Monti, L.; Dellegrottaglie, S.; Moro, C.; Pepe, A.; Todiere, G.; Lanzillo, C.; Scatteia, A.; et al. Cardiac MR With Late Gadolinium Enhancement in Acute Myocarditis With Preserved Systolic Function: ITAMY Study. J. Am. Coll. Cardiol. 2017, 70, 1977–1987. [Google Scholar] [CrossRef]
- Augusto, J.B.; Eiros, R.; Nakou, E.; Moura-Ferreira, S.; Treibel, T.A.; Captur, G.; Akhtar, M.M.; Protonotarios, A.; Gossios, T.D.; Savvatis, K.; et al. Dilated Cardiomyopathy and Arrhythmogenic Left Ventricular Cardiomyopathy: A Comprehensive Genotype-Imaging Phenotype Study. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 326–336. [Google Scholar] [CrossRef]
- Monda, E.; Murredda, A.; Rubino, M.; Diana, G.; Palmiero, G.; Verrillo, F.; Cirillo, C.; Cirillo, A.; Fusco, A.; Frisso, G.; et al. Aetiology and Clinical Manifestations of Patients with Non-Dilated Left Ventricular Cardiomyopathy. Eur. J. Heart Fail. 2024, 26, 2579–2581. [Google Scholar] [CrossRef] [PubMed]
- Leo, I.; Dellegrottaglie, S.; Scatteia, A.; Torella, D.; Abete, R.; Aquaro, G.D.; Baggiano, A.; Barison, A.; Bogaert, J.; Calo’, L.; et al. CarDiac MagnEtic Resonance for Prophylactic Implantable-CardioVerter DefibrillAtor ThErapy in Non-Dilated Left Ventricular Cardiomyopathy: A Sub-Study from the DERIVATE Registry. Eur. Heart J. Cardiovasc. Imaging 2025. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Perazzolo Marra, M.; Zorzi, A.; Beffagna, G.; Cipriani, A.; De Lazzari, M.; Migliore, F.; Pilichou, K.; Rampazzo, A.; Rigato, I.; et al. Diagnosis of Arrhythmogenic Cardiomyopathy: The Padua Criteria. Int. J. Cardiol. 2020, 319, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Bhonsale, A.; Groeneweg, J.A.; James, C.A.; Dooijes, D.; Tichnell, C.; Jongbloed, J.D.H.; Murray, B.; Te Riele, A.S.J.M.; Van Den Berg, M.P.; Bikker, H.; et al. Impact of Genotype on Clinical Course in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy-Associated Mutation Carriers. Eur. Heart J. 2015, 36, 847–855. [Google Scholar] [CrossRef]
- Bauce, B.; Basso, C.; Rampazzo, A.; Beffagna, G.; Daliento, L.; Frigo, G.; Malacrida, S.; Settimo, L.; Danieli, G.A.; Thiene, G.; et al. Clinical Profile of Four Families with Arrhythmogenic Right Ventricular Cardiomyopathy Caused by Dominant Desmoplakin Mutations. Eur. Heart J. 2005, 26, 1666–1675. [Google Scholar] [CrossRef]
- Marcus, F.I.; McKenna, W.J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke, D.A.; Calkins, H.; Corrado, D.; Cox, M.G.P.J.; Daubert, J.P.; et al. Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Proposed Modification of the Task Force Criteria. Eur. Heart J. 2010, 31, 806–814. [Google Scholar] [CrossRef]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C.C.; Daubert, J.P.; de Chillou, C.; DePasquale, E.C.; Desai, M.Y.; et al. 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy. Heart Rhythm 2019, 16, e301–e372. [Google Scholar] [CrossRef]
- Gilljam, T.; Haugaa, K.H.; Jensen, H.K.; Svensson, A.; Bundgaard, H.; Hansen, J.; Dellgren, G.; Gustafsson, F.; Eiskjær, H.; Andreassen, A.K.; et al. Heart Transplantation in Arrhythmogenic Right Ventricular Cardiomyopathy—Experience from the Nordic ARVC Registry. Int. J. Cardiol. 2018, 250, 201–206. [Google Scholar] [CrossRef]
Patients (n) | Year of Publication | Population Characteristics | Randomized Arms | Primary Endpoint | Rates of ADHF and Main Results | |
SENIORS trial [70] | 2128 | 2005 | Patients aged >70 years and with a history of HF (hospital admission for HF within the previous year or known EF < 35%) | To receive nebivolol or placebo | A composite of all-cause mortality or CV hospital admission | 31.1% of patients in the nebivolol group vs. 35.3% in the placebo group (HR 0.86, 95% CI 0.74–0.99; p = 0.039) |
PARADIGM-HF trial [67] | 8442 | 2014 | Patients who had HF with a reduced EF of 40% or less | To receive either angiotensin receptor–neprilysin inhibitor (at a dose of 200 mg twice daily) or enalapril (at a dose of 10 mg twice daily) | A composite of death from CV causes or hospitalization for HF |
|
COMMANDER HF trial [71] | 5022 | 2018 | Patients with worsening chronic HF, a left ventricular EF of 40% or less, and underlying CAD | To receive rivaroxaban at a dose of 2.5 mg twice daily or placebo in addition to standard care after treatment for an episode of worsening HF | A composite of death from any cause, MI, or stroke |
|
MITRA-FR trial [72] | 152 | 2018 | Patients with chronic HF with reduced left ventricular EF (15–40%) and severe secondary mitral valve regurgitation | To undergo percutaneous mitral valve repair in addition to receiving medical therapy (intervention group) or to receive medical therapy alone (control group) | Composite of death from any cause or unplanned hospitalization for HF at 12 months |
|
COAPT trial [73] | 614 | 2018 | Patients with HF with reduced EF (20–50%) and moderate-to-severe or severe secondary mitral regurgitation who remained symptomatic despite the use of maximal doses of guideline-directed medical therapy | To transcatheter mitral valve repair plus medical therapy (device group) or medical therapy alone (control group) | All hospitalizations for HF within 24 months of follow-up | 35.8% per patient-year in the device group vs. 67.9% per patient-year in the control group (HR, 0.53; 95% CI, 0.40 to 0.70; p < 0.001) |
DAPA-HF trial [62] | 4744 | 2019 | Patients with NYHA class II, III, or IV HF and an EF of 40% or less | To receive either dapagliflozin (at a dose of 10 mg once daily) or placebo, in addition to recommended therapy | A composite of worsening HF (hospitalization or an urgent visit resulting in intravenous therapy for HF) or CV death over a median of 18.2 months |
|
EMPEROR-Reduced trial [63] | 3730 | 2020 | Patients with class II to IV HF with an EF of ≤40% | To empagliflozin (10 mg once daily) or placebo in addition to recommended treatments for HF | The composite of CV death or hospitalization for HF during a median follow-up of 16 months |
|
SOLOIST-WHF trial [32] | 1222 | 2021 | Patients with type 2 diabetes mellitus who were recently hospitalized for worsening HF | To receive sotagliflozin or placebo | The total number of deaths from CV causes and hospitalizations and urgent visits for HF within a median of 9 months | The rate (the number of events per 100 patient-years) of primary endpoint events was lower in the sotagliflozin group (51.0 in the sotagliflozin group vs. 76.3 in the placebo group (HR: 0.67; 95% CI: 0.52 to 0.85; p < 0.001)) |
IRONMAN trial [64] | 1137 | 2022 | Patients with HF (EF ≤ 45%) and transferrin saturation less than 20% or serum ferritin less than 100 μg/L | To intravenous ferric derisomaltose or usual care | Recurrent hospital admissions for HF and CV death within a median follow-up of 2.7 years | 22.4% of patients in the ferric derisomaltose group and 27.5% of patients in the usual care group (RR: 0.82 [95% CI 0.66 to 1.02]; p = 0.070) |
DIAMOND trial [66] | 1642 | 2022 | Patients with HF and reduced EF and current or a history of RAASi-related hyperkalemia | To receive Patiromer or placebo | Mean change in serum potassium from baseline over a median follow-up of 27 weeks |
|
TRANSFORM-HF trial [65] | 2859 | 2023 | Patients hospitalized with HF (regardless of EF) | To receive torsemide or furosemide | All-cause mortality over a median follow-up of 17.4 months |
|
TRILUMINATE trial [74] | 350 | 2023 | Patients with severe tricuspid regurgitation, symptomatic, in NYHA class II, III, or IV, a pulmonary artery systolic pressure of less than 70 mm Hg, and in stable (≥30 days) guideline-directed medical therapy for HF | To receive either TEER or medical therapy (control) | Hierarchical composite of death from any cause or tricuspid valve surgery, hospitalization for HF, and an improvement in quality of life as measured with KCCQ at the 1-year follow-up | 11,348 wins for the TEER group, 7643 wins for the control group, and 11,634 ties between the groups (win ratio: 1.48 (95% CI, 1.06 to 2.13; p = 0.02). The annualized rate of hospitalization for HF was 0.21 events per patient-year in the TEER group vs. 0.17 events per patient-year in the control group |
RESHAPE HF2 trial [68] | 505 | 2024 | Patients with HF and moderate-to-severe functional mitral regurgitation | To either transcatheter mitral valve repair and guideline-recommended medical therapy (device group) or medical therapy alone (control group) |
|
|
MATTERHORN trial [69] | 210 | 2024 | Patients with HF and secondary mitral regurgitation who have symptoms despite guideline-directed medical therapy | To undergo either transcatheter edge-to-edge repair (intervention group) or surgical mitral valve repair or replacement (surgery group) | A composite of death, hospitalization for HF, mitral valve reintervention, implantation of an assist device, or stroke within 1 year after the procedure |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzi, L.; Buongiorno, F.; Narciso, V.; Florimonte, D.; Forzano, I.; Castiello, D.S.; Sperandeo, L.; Paolillo, R.; Verde, N.; Spinelli, A.; et al. Acute Heart Failure and Non-Ischemic Cardiomyopathies: A Comprehensive Review and Critical Appraisal. Diagnostics 2025, 15, 540. https://doi.org/10.3390/diagnostics15050540
Manzi L, Buongiorno F, Narciso V, Florimonte D, Forzano I, Castiello DS, Sperandeo L, Paolillo R, Verde N, Spinelli A, et al. Acute Heart Failure and Non-Ischemic Cardiomyopathies: A Comprehensive Review and Critical Appraisal. Diagnostics. 2025; 15(5):540. https://doi.org/10.3390/diagnostics15050540
Chicago/Turabian StyleManzi, Lina, Federica Buongiorno, Viviana Narciso, Domenico Florimonte, Imma Forzano, Domenico Simone Castiello, Luca Sperandeo, Roberta Paolillo, Nicola Verde, Alessandra Spinelli, and et al. 2025. "Acute Heart Failure and Non-Ischemic Cardiomyopathies: A Comprehensive Review and Critical Appraisal" Diagnostics 15, no. 5: 540. https://doi.org/10.3390/diagnostics15050540
APA StyleManzi, L., Buongiorno, F., Narciso, V., Florimonte, D., Forzano, I., Castiello, D. S., Sperandeo, L., Paolillo, R., Verde, N., Spinelli, A., Cristiano, S., Avvedimento, M., Canonico, M. E., Bardi, L., Giugliano, G., & Gargiulo, G. (2025). Acute Heart Failure and Non-Ischemic Cardiomyopathies: A Comprehensive Review and Critical Appraisal. Diagnostics, 15(5), 540. https://doi.org/10.3390/diagnostics15050540