Three-Dimensional Geometric Morphometric Characterization of Facial Sexual Dimorphism in Juveniles
<p>(<b>a</b>) Template and (<b>b</b>) target mesh with the annotated landmarks represented by the orange and black dots, respectively (tr: trichion; n: nasion; prn: pronasale; sn: subnasale; sl: sublabiale; gn: gnathion; ft: frontotemporale; zy: zygion; t:tragion; go: gonion); (<b>c</b>) rough alignment based on landmarks and rigid registration to approach the two meshes and to match the translation, rotation, and scaling of the template with those of the target; (<b>d</b>) non-rigid registration where the template is modified to represent the target; (<b>e</b>) final representation of the target after fine alignment of the template.</p> "> Figure 2
<p>Position of the digitized anatomical landmarks (tr: trichion; n: nasion; prn: pronasale; sn: subnasale; sl: sublabiale; gn: gnathion; ft: frontotemporale; zy: zygion; t:tragion; go: gonion).</p> "> Figure 3
<p>Plots of the first and second principal components with a 95% confidence interval.</p> "> Figure 4
<p>Effects of sex, size, and the interaction on the facial shape. Sex evaluates the female-to-male transition, while size is from narrower to larger faces (centroid size).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Facial Mapping
2.2. Spatially Dense Geometric Morphometrics (GMM) and Statistical Analysis
3. Results
4. Discussion
Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikitovic, D. Sexual Dimorphism (Humans). In The International Encyclopedia of Biological Anthropology; Wiley: Hoboken, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Kulathinal, R.J. Genetics of Sexual Dimorphism in Humans. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Del Bove, A.; Menéndez, L.; Manzi, G.; Moggi-Cecchi, J.; Lorenzo, C.; Profico, A. Mapping Sexual Dimorphism Signal in the Human Cranium. Sci. Rep. 2023, 13, 16847. [Google Scholar] [CrossRef]
- Kesterke, M.J.; Raffensperger, Z.D.; Heike, C.L.; Cunningham, M.L.; Hecht, J.T.; Kau, C.H.; Nidey, N.L.; Moreno, L.M.; Wehby, G.L.; Marazita, M.L.; et al. Using the 3D Facial Norms Database to Investigate Craniofacial Sexual Dimorphism in Healthy Children, Adolescents, and Adults. Biol. Sex Differ. 2016, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Kleisner, K.; Tureček, P.; Roberts, S.C.; Havlíček, J.; Valentova, J.V.; Akoko, R.M.; Leongómez, J.D.; Apostol, S.; Varella, M.A.C.; Saribay, S.A. How and Why Patterns of Sexual Dimorphism in Human Faces Vary across the World. Sci. Rep. 2021, 11, 5978. [Google Scholar] [CrossRef]
- Burke, D.; Sulikowski, D. A New Viewpoint on the Evolution of Sexually Dimorphic Human Faces. Evol. Psychol. 2010, 8, 573–585. [Google Scholar] [CrossRef]
- Bilfeld, M.F.; Dedouit, F.; Rousseau, H.; Sans, N.; Braga, J.; Rougé, D.; Telmon, N. Human Coxal Bone Sexual Dimorphism and Multislice Computed Tomography: Geometric Morphometric Analysis of 65 Adults. J. Forensic Sci. 2012, 57, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Spradley, M.K.; Jantz, R.L. Sex Estimation in Forensic Anthropology: Skull Versus Postcranial Elements. J. Forensic Sci 2011, 56, 289–296. [Google Scholar] [CrossRef]
- Claes, P.; Walters, M.; Shriver, M.D.; Puts, D.; Gibson, G.; Clement, J.; Baynam, G.; Verbeke, G.; Vandermeulen, D.; Suetens, P. Sexual Dimorphism in Multiple Aspects of 3D Facial Symmetry and Asymmetry Defined by Spatially Dense Geometric Morphometrics. J. Anat. 2012, 221, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Koudelová, J.; Brůžek, J.; Cagáňová, V.; Krajíček, V.; Velemínská, J. Development of Facial Sexual Dimorphism in Children Aged between 12 and 15 Years: A Three-Dimensional Longitudinal Study. Orthod. Craniofac. Res. 2015, 18, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.M.; Zhurov, A.; Playle, R.; Richmond, S. A Three-Dimensional Look for Facial Differences between Males and Females in a British-Caucasian Sample Aged 15 1/2 Years Old. Orthod. Craniofac. Res. 2008, 11, 180–185. [Google Scholar] [CrossRef]
- Zaidi, A.A.; White, J.D.; Mattern, B.C.; Liebowitz, C.R.; Puts, D.A.; Claes, P.; Shriver, M.D. Facial Masculinity Does Not Appear to Be a Condition-Dependent Male Ornament and Does Not Reflect MHC Heterozygosity in Humans. Proc. Natl. Acad. Sci. USA 2019, 116, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Weston, E.M.; Friday, A.E.; Liò, P. Biometric Evidence That Sexual Selection Has Shaped the Hominin Face. PLoS ONE 2007, 2, e710. [Google Scholar] [CrossRef] [PubMed]
- Skomina, Z.; Verdenik, M.; Hren, N.I. Effect of Aging and Body Characteristics on Facial Sexual Dimorphism in the Caucasian Population. PLoS ONE 2020, 15, e0231983. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, R.J.; McLearie, S.; Kinsella, A.; Waddington, J.L. Facial Surface Analysis by 3D Laser Scanning and Geometric Morphometrics in Relation to Sexual Dimorphism in Cerebral-Craniofacial Morphogenesis and Cognitive Function. J. Anat. 2005, 207, 283–295. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C.; Poggio, C.E.; Schmitz, J.H. Soft-Tissue Facial Morphometry from 6 Years to Adulthood: A Three-Dimensional Growth Study Using a New Modeling. Plast. Reconstr. Surg. 1999, 103, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Sforza, C.; Pizzini, G.; Vogel, G.; Miani, A. Sexual Dimorphism in the Human Face Assessed by Euclidean Distance Matrix Analysis. J. Anat. 1993, 183 Pt 3, 593–600. [Google Scholar]
- Kau, C.H.; Zhurov, A.; Richmond, S.; Cronin, A.; Savio, C.; Mallorie, C. Facial Templates: A New Perspective in Three Dimensions. Orthod. Craniofac. Res. 2006, 9, 10–17. [Google Scholar] [CrossRef]
- Velemínská, J.; Bigoni, L.; Krajíček, V.; Borský, J.; Šmahelová, D.; Cagáňová, V.; Peterka, M. Surface Facial Modelling and Allometry in Relation to Sexual Dimorphism. HOMO 2012, 63, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Samal, A.; Subramani, V.; Marx, D. Analysis of Sexual Dimorphism in Human Face. J. Vis. Commun. Image Represent. 2007, 18, 453–463. [Google Scholar] [CrossRef]
- Velemínská, J.; Jaklová, L.K.; Kočandrlová, K.; Hoffmannová, E.; Koudelová, J.; Suchá, B.; Dupej, J. Three-Dimensional Analysis of Modeled Facial Aging and Sexual Dimorphism from Juvenile to Elderly Age. Sci. Rep. 2022, 12, 21821. [Google Scholar] [CrossRef]
- Kočandrlová, K.; Dupej, J.; Hoffmannová, E.; Velemínská, J. Three-Dimensional Mixed Longitudinal Study of Facial Growth Changes and Variability of Facial Form in Preschool Children Using Stereophotogrammetry. Orthod. Craniofac. Res. 2021, 24, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.S.; Penington, A.J.; Hardiman, R.; Fan, Y.; Clement, J.G.; Kilpatrick, N.M.; Claes, P.D. Modelling 3D Craniofacial Growth Trajectories for Population Comparison and Classification Illustrated Using Sex-Differences. Sci. Rep. 2018, 8, 4771. [Google Scholar] [CrossRef]
- Matthews, H.; Penington, T.; Saey, I.; Halliday, J.; Muggli, E.; Claes, P. Spatially Dense Morphometrics of Craniofacial Sexual Dimorphism in 1-Year-Olds. J. Anat. 2016, 229, 549–559. [Google Scholar] [CrossRef]
- Khramtsova, E.A.; Davis, L.K.; Stranger, B.E. The Role of Sex in the Genomics of Human Complex Traits. Nat. Rev. Genet. 2019, 20, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, C.E.; Lewis, G.J.; Perrett, D.I.; Penke, L. Telling Facial Metrics: Facial Width Is Associated with Testosterone Levels in Men. Evol. Hum. Behav. 2013, 34, 273–279. [Google Scholar] [CrossRef]
- Law Smith, M.J.; Perrett, D.I.; Jones, B.C.; Cornwell, R.E.; Moore, F.R.; Feinberg, D.R.; Boothroyd, L.G.; Durrani, S.J.; Stirrat, M.R.; Whiten, S.; et al. Facial Appearance Is a Cue to Oestrogen Levels in Women. Proc. R. Soc. B Biol. Sci. 2006, 273, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Fink, B.; Grammer, K.; Mitteroecker, P.; Gunz, P.; Schaefer, K.; Bookstein, F.L.; Manning, J.T. Second to Fourth Digit Ratio and Face Shape. Proc. R. Soc. B Biol. Sci. 2005, 272, 1995–2001. [Google Scholar] [CrossRef]
- Marečková, K.; Chakravarty, M.M.; Lawrence, C.; Leonard, G.; Perusse, D.; Perron, M.; Pike, B.G.; Richer, L.; Veillette, S.; Pausova, Z.; et al. Identifying Craniofacial Features Associated with Prenatal Exposure to Androgens and Testing Their Relationship with Brain Development. Brain Struct. Funct. 2015, 220, 3233–3244. [Google Scholar] [CrossRef] [PubMed]
- Deegan, D.F.; Engel, N. Sexual Dimorphism in the Age of Genomics: How, When, Where. Front. Cell Dev. Biol. 2019, 7, 186. [Google Scholar] [CrossRef] [PubMed]
- Summersby, S.; Harris, B.; Denson, T.F.; White, D. Tracking Sexual Dimorphism of Facial Width-to-Height Ratio across the Lifespan: Implications for Perceived Aggressiveness. R. Soc. Open Sci. 2022, 9, 211500. [Google Scholar] [CrossRef]
- Rostovtseva, V.V.; Butovskaya, M.L.; Mezentseva, A.A.; Weissing, F.J. Effects of Sex and Sex-Related Facial Traits on Trust and Trustworthiness: An Experimental Study. Front. Psychol. 2023, 13, 925601. [Google Scholar] [CrossRef]
- Nielson, M.G.; Martin, C.L.; England, D.E.; Hanish, L.D.; Santos, C.E.; Delay, D.; Updegraff, K.A.; Rogers, A.A. Patterns of Gender Development Across Intersections of Age, Gender, and Ethnicity-Race. Arch. Sex Behav. 2024, 53, 1793–1812. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.E.; Nielson, M.G.; Martin, C.L.; DeLay, D. Early Adolescent Gender Development: The Differential Effects of Felt Pressure from Parents, Peers, and the Self. J. Youth Adolesc. 2019, 48, 1912–1923. [Google Scholar] [CrossRef] [PubMed]
- Milella, M.; Franklin, D.; Belcastro, M.G.; Cardini, A. Sexual Differences in Human Cranial Morphology: Is One Sex More Variable or One Region More Dimorphic? Anat. Rec. 2021, 304, 2789–2810. [Google Scholar] [CrossRef] [PubMed]
- Cappella, A.; Gibelli, D.; Vitale, A.; Zago, M.; Dolci, C.; Sforza, C.; Cattaneo, C. Preliminary Study on Sexual Dimorphism of Metric Traits of Cranium and Mandible in a Modern Italian Skeletal Population and Review of Population Literature. Leg. Med. 2020, 44, 101695. [Google Scholar] [CrossRef] [PubMed]
- Shrimpton, S.; Daniels, K.; de Greef, S.; Tilotta, F.; Willems, G.; Vandermeulen, D.; Suetens, P.; Claes, P. A Spatially-Dense Regression Study of Facial Form and Tissue Depth: Towards an Interactive Tool for Craniofacial Reconstruction. Forensic Sci. Int. 2014, 234, 103–110. [Google Scholar] [CrossRef]
- Cappella, A.; Bertoglio, B.; Di Maso, M.; Mazzarelli, D.; Affatato, L.; Stacchiotti, A.; Sforza, C.; Cattaneo, C. Sexual Dimorphism of Cranial Morphological Traits in an Italian Sample: A Population-Specific Logistic Regression Model for Predicting Sex. Biology 2022, 11, 1202. [Google Scholar] [CrossRef] [PubMed]
- Mydlová, M.; Dupej, J.; Koudelová, J.; Velemínská, J. Sexual Dimorphism of Facial Appearance in Ageing Human Adults: A Cross-Sectional Study. Forensic Sci. Int. 2015, 257, 519.e1–519.e9. [Google Scholar] [CrossRef]
- Bannister, J.J.; Juszczak, H.; Aponte, J.D.; Katz, D.C.; Knott, P.D.; Weinberg, S.M.; Hallgrímsson, B.; Forkert, N.D.; Seth, R. Sex Differences in Adult Facial Three-Dimensional Morphology: Application to Gender-Affirming Facial Surgery. Facial. Plast. Surg. Aesthet. Med. 2022, 24, S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Eggerstedt, M.; Smith, R.M.; Revenaugh, P.C. Sexual Dimorphism of the Nasal Skin and Soft Tissue Envelope. Aesthetic Plast. Surg. 2020, 44, 1924–1925. [Google Scholar] [CrossRef] [PubMed]
- Rajbhoj, A.A.; Matthews, H.; Doucet, K.; Claes, P.; Begnoni, G.; Willems, G.; de Llano-Pérula, M.C. Influence of Age and Diet Consistency on the Oral Muscle Pressure of Orthodontically Treated and Untreated Subjects with Normal Occlusion and Comparison of Their 3D Facial Shape. Clin. Oral Investig. 2023, 27, 3649–3661. [Google Scholar] [CrossRef]
- Rajbhoj, A.A.; Matthews, H.; Doucet, K.; Claes, P.; Willems, G.; Begnoni, G.; Cadenas de Llano-Pérula, M. Age- and Sex-Related Differences in 3D Facial Shape and Muscle Pressure in Subjects with Normal Occlusion. Comput. Biol. Med. 2022, 151, 106325. [Google Scholar] [CrossRef] [PubMed]
- Claes, P.; Daniels, K.; Walters, M.; Clement, J.; Vandermeulen, D.; Suetens, P. Dysmorphometrics: The Modelling of Morphological Abnormalities. Theor. Biol. Med. Model. 2012, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.S.; Palmer, R.L.; Baynam, G.S.; Quarrell, O.W.; Klein, O.D.; Spritz, R.A.; Hennekam, R.C.; Walsh, S.; Shriver, M.; Weinberg, S.M.; et al. Large-Scale Open-Source Three-Dimensional Growth Curves for Clinical Facial Assessment and Objective Description of Facial Dysmorphism. Sci. Rep. 2021, 11, 12175. [Google Scholar] [CrossRef] [PubMed]
- Hammond, P.; Suttie, M. Large-Scale Objective Phenotyping of 3D Facial Morphology. Hum. Mutat. 2012, 33, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Lye, R.; Obertová, Z.; Bachtiar, N.A.; Franklin, D. Validating the Use of Clinical MSCT Scans for Cranial Nonmetric Sex Estimation in a Contemporary Indonesian Population. Int. J. Leg. Med. 2024, 138, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.L. Sexing Skulls Using Discriminant Function Analysis of Visually Assessed Traits. Am. J. Phys. Anthr. 2008, 136, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Farkas, L.G. Anthropometry of the Head and Face, 2nd ed.; Raven Press: New York, NY, USA, 1994. [Google Scholar]
- Farkas, L.G.; Deutsch, C.K. Anthropometric Determination of Craniofacial Morphology. Am. J. Med. Genet. 1996, 65, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Sforza, C.; Serrao, G. A Three-Dimensional Quantitative Analysis of Lips in Normal Young Adults. Cleft. Palate Craniofac. J. 2000, 37, 48–54. [Google Scholar] [CrossRef]
- Ferrario, V.F.; Sforza, C.; Poggio, C.E.; Schmitz, J.H. Three-Dimensional Study of Growth and Development of the Nose. Cleft. Palate Craniofac. J. 1997, 34, 309–317. [Google Scholar] [CrossRef]
- Katsube, M.; Yamada, S.; Utsunomiya, N.; Morimoto, N. Application of Geometric Morphometrics for Facial Congenital Anomaly Studies. Congenit. Anom. 2022, 62, 88–95. [Google Scholar] [CrossRef]
- Brons, S.; Meulstee, J.W.; Nada, R.M.; Kuijpers, M.A.R.; Bronkhorst, E.M.; Bergé, S.J.; Maal, T.J.J.; Kuijpers-Jagtman, A.M. Uniform 3D Meshes to Establish Normative Facial Averages of Healthy Infants during the First Year of Life. PLoS ONE 2019, 14, e0217267. [Google Scholar] [CrossRef]
- Kuijpers-Jagtman, A.M. Facial Variation: From Visual Assessment to Three-Dimensional Quantification. Eur. J. Orthod. 2012, 34, 665–666. [Google Scholar] [CrossRef]
- Cappella, A.; Gaffuri, F.; Yang, J.; Tartaglia, F.C.; Solazzo, R.; Inchingolo, F.; Tartaglia, G.M.; Sforza, C. Volumetric Analyses of Dysmorphic Maxillofacial Structures Using 3D Surface-Based Approaches: A Scoping Review. J. Clin. Med. 2024, 13, 4740. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, S.M.; Raffensperger, Z.D.; Kesterke, M.J.; Heike, C.L.; Cunningham, M.L.; Hecht, J.T.; Kau, C.H.; Murray, J.C.; Wehby, G.L.; Moreno, L.M.; et al. The 3D Facial Norms Database: Part 1. A Web-Based Craniofacial Anthropometric and Image Repository for the Clinical and Research Community. Cleft. Palate Craniofac. J. 2016, 53, e185–e197. [Google Scholar] [CrossRef] [PubMed]
- Bassil-Nassif, N.; Bouserhal, J.; Treil, J.; Braga, J.; Garcia, R. Sexual Dimorphism and Facial Cavities: A 3D Imaging Volumetric Study. Orthod. Fr. 2011, 82, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Scendoni, R.; Kelmendi, J.; Arrais Ribeiro, I.L.; Cingolani, M.; De Micco, F.; Cameriere, R. Anthropometric Analysis of Orbital and Nasal Parameters for Sexual Dimorphism: New Anatomical Evidences in the Field of Personal Identification through a Retrospective Observational Study. PLoS ONE 2023, 18, e0284219. [Google Scholar] [CrossRef] [PubMed]
- Cappella, A.; Solazzo, R.; Yang, J.; Hassan, N.M.; Dolci, C.; Gibelli, D.; Tartaglia, G.; Sforza, C. Facial Asymmetry of Italian Children: A Cross-Sectional Analysis of Three-Dimensional Stereophotogrammetric Reference Values. Symmetry 2023, 15, 792. [Google Scholar] [CrossRef]
- Mitteroecker, P.; Schaefer, K. Thirty Years of Geometric Morphometrics: Achievements, Challenges, and the Ongoing Quest for Biological Meaningfulness. Am. J. Biol. Anthropol. 2022, 178, 181–210. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.S.; Mahdi, S.; Penington, A.J.; Marazita, M.L.; Shaffer, J.R.; Walsh, S.; Shriver, M.D.; Claes, P.; Weinberg, S.M. Using Data-driven Phenotyping to Investigate the Impact of Sex on 3D Human Facial Surface Morphology. J. Anat. 2023, 243, 274–283. [Google Scholar] [CrossRef]
- Wärmländer, S.K.T.S.; Garvin, H.; Guyomarc’h, P.; Petaros, A.; Sholts, S.B. Landmark Typology in Applied Morphometrics Studies: What’s the Point? Anat. Rec. 2019, 302, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Sforza, C.; Serrao, G.; Colombo, A.; Ciusa, V. Soft Tissue Facial Growth and Development as Assessed by the Three-Dimensional Computerized Mesh Diagram Analysis. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, V.F.; Sforza, C.; Colombo, A.; Schmitz, J.H.; Serrao, G. Morphometry of the Orbital Region: A Soft-Tissue Study from Adolescence to Mid-Adulthood. Plast. Reconstr. Surg. 2001, 108, 285–292, discussion 293. [Google Scholar] [CrossRef]
- Kau, C.H.; Richmond, S. Three-Dimensional Analysis of Facial Morphology Surface Changes in Untreated Children from 12 to 14 Years of Age. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 751–760. [Google Scholar] [CrossRef]
- Gibelli, D.; Cappella, A.; Dolci, C.; Sforza, C. 3D Surface Acquisition Systems and Their Applications to Facial Anatomy: Let’s Make a Point. Ital. J. Anat. Embryol. 2019, 124, 422–431. [Google Scholar] [CrossRef]
- Gibelli, D.; Dolci, C.; Cappella, A.; Sforza, C. Reliability of Optical Devices for Three-Dimensional Facial Anatomy Description: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Surg. 2020, 49, 1092–1106. [Google Scholar] [CrossRef] [PubMed]
- Heike, C.L.; Upson, K.; Stuhaug, E.; Weinberg, S.M. 3D Digital Stereophotogrammetry: A Practical Guide to Facial Image Acquisition. Head Face Med. 2010, 6, 18. [Google Scholar] [CrossRef]
- Slavkin, H.C. Developmental Craniofacial Biology; Lea and Febiger: Philadelphia, PA, USA, 1979. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- White, J.D.; Ortega-Castrillón, A.; Matthews, H.; Zaidi, A.A.; Ekrami, O.; Snyders, J.; Fan, Y.; Penington, T.; Van Dongen, S.; Shriver, M.D.; et al. MeshMonk: Open-Source Large-Scale Intensive 3D Phenotyping. Sci. Rep. 2019, 9, 6085. [Google Scholar] [CrossRef]
- Claes, P.; Walters, M.; Clement, J. Improved Facial Outcome Assessment Using a 3D Anthropometric Mask. Int. J. Oral Maxillofac. Surg. 2012, 41, 324–330. [Google Scholar] [CrossRef]
- Blender Online Community. Blender—A 3D Modelling and Rendering Package. Stichting Blender Foundation, Amsterdam. 2024. Available online: http://www.blender.org (accessed on 16 November 2024).
- The MathWorks Inc. MATLAB Version: 23.2.0 (R2023b), Natick, Massachusetts: The MathWorks Inc. 2023. Available online: https://www.mathworks.com (accessed on 16 November 2024).
- Mardia, K.V.; Bookstein, F.L.; Moreton, I.J. Statistical Assessment of Bilateral Symmetry of Shapes. Biometrika 2000, 87, 285–300. [Google Scholar] [CrossRef]
- Zhu, Y.; Wen, A.; Xiao, N.; Gao, Z.; Zheng, S.; Fu, X.; Zhao, Y.; Wang, Y. Automatic Extraction of Facial Median Sagittal Plane for Patients with Asymmetry Based on the EDMA Alignment Algorithm. Head Face Med. 2024, 20, 34. [Google Scholar] [CrossRef] [PubMed]
- Claes, P.; Liberton, D.K.; Daniels, K.; Rosana, K.M.; Quillen, E.E.; Pearson, L.N.; McEvoy, B.; Bauchet, M.; Zaidi, A.A.; Yao, W.; et al. Modeling 3D Facial Shape from DNA. PLoS Genet. 2014, 10, 1004224. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.J.; Cui, D.; Wen, P.Y.F.; Wong, H.M. Facial Growth and Development Trajectories Based on Three-Dimensional Images: Geometric Morphometrics with a Deformation Perspective. R. Soc. Open Sci. 2024, 11, 231438. [Google Scholar] [CrossRef]
- Lagravère, M.O.; Major, P.W. Proposed Reference Point for 3-Dimensional Cephalometric Analysis with Cone-Beam Computerized Tomography. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 657–660. [Google Scholar] [CrossRef]
- de Oliveira, A.E.F.; Cevidanes, L.H.S.; Phillips, C.; Motta, A.; Burke, B.; Tyndall, D. Observer Reliability of Three-Dimensional Cephalometric Landmark Identification on Cone-Beam Computerized Tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 256–265. [Google Scholar] [CrossRef]
- Baysal, A.; Sahan, A.O.; Ozturk, M.A.; Uysal, T. Reproducibility and Reliability of Three-Dimensional Soft Tissue Landmark Identification Using Three-Dimensional Stereophotogrammetry. Angle Orthod. 2016, 86, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Size, Shape, and Form: Concepts of Allometry in Geometric Morphometrics. Dev. Genes Evol. 2016, 226, 113–137. [Google Scholar] [CrossRef]
- Klingenberg, C.P. Methods for Studying Allometry in Geometric Morphometrics: A Comparison of Performance. Evol. Ecol. 2022, 36, 439–470. [Google Scholar] [CrossRef]
- Mitteroecker, P.; Gunz, P.; Windhager, S.; Schaefer, K. A Brief Review of Shape, Form, and Allometry in Geometric Morphometrics, with Applications to Human Facial Morphology. Hystrix Ital. J. Mammal. 2013, 24, 59–66. [Google Scholar]
- Claes, P.; Daniels, K.; Vandermeulen, D.; Suetens, P.; Shriver, M.D. A PLS Regression Framework for Spatially-Dense Geometric Morphometrics to Analyze Effects on Shape and Shape Characteristics: Applied to the Study of Genomic Ancestry and Sex on Facial Morphology. In Biological Shape Analysis; World Scientific: Singapore, 2015; pp. 205–215. [Google Scholar]
- Pokorný, Š.; Pavlovič, O.; Kleisner, K. Sexual Dimorphism: The Interrelation of Shape and Color. Arch. Sex Behav. 2024, 53, 3255–3265. [Google Scholar] [CrossRef]
- Smith, O.A.M.; Nashed, Y.S.G.; Duncan, C.; Pears, N.; Profico, A.; O’Higgins, P. 3D Modeling of Craniofacial Ontogeny and Sexual Dimorphism in Children. Anat. Rec. 2021, 304, 1918–1926. [Google Scholar] [CrossRef]
- Tanikawa, C.; Zere, E.; Takada, K. Sexual Dimorphism in the Facial Morphology of Adult Humans: A Three-Dimensional Analysis. HOMO 2016, 67, 23–49. [Google Scholar] [CrossRef] [PubMed]
- Cameron, N.; Bogin, B. Human Growth and Development, 2nd ed.; Cameron, N., Bogin, B., Eds.; Academic Press (Elsevier): Cambridge, MA, USA, 2012. [Google Scholar]
- Costello, B.J.; Rivera, R.D.; Shand, J.; Mooney, M. Growth and Development Considerations for Craniomaxillofacial Surgery. Oral Maxillofac. Surg. Clin. N. Am. 2012, 24, 377–396. [Google Scholar] [CrossRef] [PubMed]
- Enlow, D.H.; Hans, M.G. Essentials of Facial Growth; Needham Press, Inc.: Needham, MA, USA, 1996. [Google Scholar]
- Bulygina, E.; Mitteroecker, P.; Aiello, L. Ontogeny of Facial Dimorphism and Patterns of Individual Development within One Human Population. Am. J. Phys. Anthr. 2006, 131, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, B.H.; Broadbent, B.H.; Golden, W.H. Bolton Standards of Dentofacial Developmental Growth; Mosby: Clay, MO, USA, 1975. [Google Scholar]
- Neave, N.; Laing, S.; Fink, B.; Manning, J.T. Second to Fourth Digit Ratio, Testosterone and Perceived Male Dominance. Proc. Biol. Sci. 2003, 270, 2167–2172. [Google Scholar] [CrossRef]
- Weinberg, S.M.; Parsons, T.E.; Raffensperger, Z.D.; Marazita, M.L. Prenatal Sex Hormones, Digit Ratio, and Face Shape in Adult Males. Orthod. Craniofac. Res. 2015, 18, 21–26. [Google Scholar] [CrossRef]
- Ajmal, M.A.; Roberts, T.S.; Beshtawi, K.R.; Raj, A.C.; Sandeepa, N.C. Sexual Dimorphism in Odontometric Parameters Using Cone Beam CT: A Systematic Review. Head Face Med. 2023, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Damascena, N.P.; Lima, S.V.M.A.; Santiago, B.M.; Alemán-Aguilera, I.; Cunha, E.; Machado, C.E.P.; Martins-Filho, P.R. Accuracy of Geometric Morphometrics for Age Estimation Using Frontal Face Photographs of Children and Adolescents: A Promising Method for Forensic Practice. J. Forensic Leg. Med. 2024, 106, 102734. [Google Scholar] [CrossRef]
- Ratnayake, M.; Obertová, Z.; Dose, M.; Gabriel, P.; Bröker, H.M.; Brauckmann, M.; Barkus, A.; Rizgeliene, R.; Tutkuviene, J.; Ritz-Timme, S.; et al. The Juvenile Face as a Suitable Age Indicator in Child Pornography Cases: A Pilot Study on the Reliability of Automated and Visual Estimation Approaches. Int. J. Leg. Med. 2014, 128, 803–808. [Google Scholar] [CrossRef]
- Cattaneo, C.; Ritz-Timme, S.; Gabriel, P.; Gibelli, D.; Giudici, E.; Poppa, P.; Nohrden, D.; Assmann, S.; Schmitt, R.; Grandi, M. The Difficult Issue of Age Assessment on Pedo-Pornographic Material. Forensic Sci. Int. 2009, 183, e21–e24. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C.; Obertová, Z.; Ratnayake, M.; Marasciuolo, L.; Tutkuviene, J.; Poppa, P.; Gibelli, D.; Gabriel, P.; Ritz-Timme, S. Can Facial Proportions Taken from Images Be of Use for Ageing in Cases of Suspected Child Pornography? A Pilot Study. Int. J. Leg. Med. 2012, 126, 139–144. [Google Scholar] [CrossRef]
- Koudelová, J.; Hoffmannová, E.; Dupej, J.; Velemínská, J. Simulation of Facial Growth Based on Longitudinal Data: Age Progression and Age Regression between 7 and 17 Years of Age Using 3D Surface Data. PLoS ONE 2019, 14, e0212618. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, S.M. 3D Stereophotogrammetry versus Traditional Craniofacial Anthropometry: Comparing Measurements from the 3D Facial Norms Database to Farkas’s North American Norms. Am. J. Orthod. Dentofac. Orthop. 2019, 155, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Echeverry-Quiceno, L.M.; Candelo, E.; Gómez, E.; Solís, P.; Ramírez, D.; Ortiz, D.; González, A.; Sevillano, X.; Cuéllar, J.C.; Pachajoa, H.; et al. Population-Specific Facial Traits and Diagnosis Accuracy of Genetic and Rare Diseases in an Admixed Colombian Population. Sci. Rep. 2023, 13, 6869. [Google Scholar] [CrossRef] [PubMed]
- Nguengang Wakap, S.; Lambert, D.M.; Olry, A.; Rodwell, C.; Gueydan, C.; Lanneau, V.; Murphy, D.; Le Cam, Y.; Rath, A. Estimating Cumulative Point Prevalence of Rare Diseases: Analysis of the Orphanet Database. Eur. J. Hum. Genet. 2020, 28, 165–173. [Google Scholar] [CrossRef]
- Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; et al. Identifying Facial Phenotypes of Genetic Disorders Using Deep Learning. Nat. Med. 2019, 25, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Hallgrímsson, B.; Aponte, J.D.; Katz, D.C.; Bannister, J.J.; Riccardi, S.L.; Mahasuwan, N.; McInnes, B.L.; Ferrara, T.M.; Lipman, D.M.; Neves, A.B.; et al. Automated Syndrome Diagnosis by Three-Dimensional Facial Imaging. Genet. Med. 2020, 22, 1682–1693. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, Y.C.; Kim, S.G.; Garagiola, U. Advancements in Oral Maxillofacial Surgery: A Comprehensive Review on 3D Printing and Virtual Surgical Planning. Appl. Sci. 2023, 13, 9907. [Google Scholar] [CrossRef]
Unpaired Median Landmarks | ||
---|---|---|
Name | Abbreviation | Definition |
Trichion | tr | The point on the hairline in the midline of the forehead |
Nasion | n | The point in the midline of both the nasal root and the nasofrontal suture |
Pronasale | prn | The most protruded point of the apex nasi |
Subnasale | sn | The midpoint of the angle at the columella base where the lower border of the nasal septum and the surface of the upper lip meet |
Sublabiale | sl | The point in the midline of the mentolabial ridge |
Gnathion | gn | The lowest median landmarks on the lower border of the mandible |
Paired bilateral landmarks | ||
Name | Abbreviation | Definition |
Frontotemporale | ft | The point on each side of the forehead, laterally from the elevation of the linea temporalis |
Zygion | zy | The most lateral point of each zygomatic arch |
Tragion | t | The notch on the upper margin of the tragus |
Gonion | go | The most lateral point on the mandibular angle |
Age Group | Male | Female | Total | p-Value | |
---|---|---|---|---|---|
Early Childhood (3–6 y.o.) | n | 10 | 10 | 20 | 0.741 |
Mean age | 5.78 | 5.92 | 5.85 | ||
Late Childhood (7–12 y.o.) | n | 83 | 73 | 156 | 0.068 |
Mean age | 10.82 | 10.28 | 10.55 | ||
Puberty (13–15 y.o.) | n | 22 | 15 | 37 | 0.135 |
Mean age | 14.01 | 14.46 | 14.24 | ||
Adolescence (16–18 y.o.) | n | 34 | 57 | 91 | 0.768 |
Mean age | 17.88 | 17.89 | 17.89 | ||
Total (3–18 y.o.) | n Mean age | 149 12.12 | 155 12.14 | 304 12.13 |
Intra-Operator Reliability | Inter-Operator Reliability | |||||
---|---|---|---|---|---|---|
Landmark | X | Y | Z | X | Y | Z |
tr | 0.975 | 0.980 | 0.998 | 0.955 | 0.968 | 0.997 |
n | 0.985 | 0.990 | 0.996 | 0.975 | 0.989 | 0.996 |
prn | 0.995 | 0.998 | 0.939 | 0.986 | 0.997 | 0.966 |
sn | 0.991 | 0.995 | 0.938 | 0.985 | 0.991 | 0.961 |
sl | 0.989 | 0.995 | 0.993 | 0.969 | 0.994 | 0.995 |
gn | 0.950 | 0.996 | 0.993 | 0.940 | 0.985 | 0.989 |
t(r) | 0.991 | 0.994 | 0.996 | 0.989 | 0.997 | 0.965 |
t(l) | 0.992 | 0.994 | 0.959 | 0.977 | 0.986 | 0.954 |
ft(r) | 0.972 | 0.970 | 0.974 | 0.991 | 0.994 | 0.987 |
ft(l) | 0.943 | 0.938 | 0.966 | 0.963 | 0.967 | 0.977 |
zy(r) | 0.969 | 0.951 | 0.991 | 0.950 | 0.938 | 0.991 |
zy(l) | 0.980 | 0.917 | 0.981 | 0.960 | 0.927 | 0.978 |
go(r) | 0.991 | 0.988 | 0.977 | 0.988 | 0.986 | 0.992 |
go(l) | 0.942 | 0.952 | 0.983 | 0.965 | 0.967 | 0.997 |
Age Class | Male Average (SD) | Female Average (SD) | p-Value |
---|---|---|---|
Early Childhood | 4125.12 (166.20) | 4077.61 (189.63) | 0.559 |
Late Childhood | 4483.37 (198.75) | 4344.03 (185.89) | <0.001 * |
Puberty | 4798.73 (183.32) | 4667.29 (219.34) | 0.028 * |
Adolescence | 4928.30 (148.68) | 4674.60 (162.01) | <0.001 * |
Age Class | Wilk’s λ | p-Value |
---|---|---|
Early Childhood | 0.67544 | 0.181 |
Late Childhood | 0.63616 | <0.001 * |
Puberty | 0.63554 | <0.001 * |
Adolescence | 0.63938 | <0.001 * |
Early Childhood | Late Childhood | Puberty | Adolescence | |||||
---|---|---|---|---|---|---|---|---|
PC | Variance (%) | Eigenvalues | Variance (%) | Eigenvalues | Variance (%) | Eigenvalues | Variance (%) | Eigenvalues |
1 | 29.00 | 5550.35 | 21.23 | 4220.12 | 27.56 | 6346.45 | 24.20 | 5514.12 |
2 | 16.68 | 3192.57 | 13.96 | 2774.99 | 15.18 | 3494.95 | 18.50 | 4215.47 |
3 | 11.05 | 2115.75 | 9.57 | 1902.86 | 12.79 | 2946.58 | 9.83 | 2239.13 |
4 | 9.02 | 1726.42 | 7.49 | 1488.1 | 9.47 | 2181.67 | 7.84 | 1786.39 |
5 | 6.30 | 1251.54 | 6.28 | 1445.78 | 5.36 | 1221.34 | ||
6 | 5.64 | 1120.77 | 3.68 | 846.65 | 3.67 | 836.25 | ||
7 | 3.67 | 729.23 | 3.35 | 770.66 | 3.15 | 717.75 | ||
8 | 3.32 | 659.75 | 2.66 | 605.44 | ||||
9 | 2.43 | 482.26 | 2.22 | 506.71 | ||||
10 | 2.17 | 431.19 | 1.94 | 442.84 | ||||
11 | 1.99 | 394.66 | 1.74 | 397.15 | ||||
12 | 1.83 | 362.86 | 1.69 | 385.81 | ||||
13 | 1.49 | 296.48 | 1.47 | 335.05 | ||||
14 | 1.33 | 263.74 | ||||||
15 | 1.27 | 251.77 | ||||||
16 | 1.10 | 218.44 | ||||||
17 | 0.92 | 182.89 | ||||||
Total | 65.75 | 85.61 | 78.31 | 84.27 |
Procrustes Distance | p-Value10,000 | |
---|---|---|
Early Childhood | 0.00026 | <0.001 * |
Late Childhood | 0.00011 | <0.001 * |
Puberty | 0.00077 | <0.001 * |
Adolescence | 0.00143 | <0.001 * |
Sex | Size | Sex*Size | ||||
---|---|---|---|---|---|---|
p-Value10,000 | Partial R2 | p-Value10,000 | Partial R2 | p-Value10,000 | Partial R2 | |
Early Childhood | 0.699 | 0.0399 | 0.192 | 0.0698 | 0.432 | 0.0524 |
Late Childhood | 0.027 * | 0.0127 | <0.001 * | 0.0114 | 0.026 * | 0.0131 |
Puberty | <0.001 * | 0.0983 | <0.001 * | 0.1220 | 0.002 * | 0.1090 |
Adolescence | <0.001 * | 0.1182 | 0.156 | 0.0153 | 0.292 | 0.0129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solazzo, R.; Cappella, A.; Gibelli, D.; Dolci, C.; Tartaglia, G.; Sforza, C. Three-Dimensional Geometric Morphometric Characterization of Facial Sexual Dimorphism in Juveniles. Diagnostics 2025, 15, 395. https://doi.org/10.3390/diagnostics15030395
Solazzo R, Cappella A, Gibelli D, Dolci C, Tartaglia G, Sforza C. Three-Dimensional Geometric Morphometric Characterization of Facial Sexual Dimorphism in Juveniles. Diagnostics. 2025; 15(3):395. https://doi.org/10.3390/diagnostics15030395
Chicago/Turabian StyleSolazzo, Riccardo, Annalisa Cappella, Daniele Gibelli, Claudia Dolci, Gianluca Tartaglia, and Chiarella Sforza. 2025. "Three-Dimensional Geometric Morphometric Characterization of Facial Sexual Dimorphism in Juveniles" Diagnostics 15, no. 3: 395. https://doi.org/10.3390/diagnostics15030395
APA StyleSolazzo, R., Cappella, A., Gibelli, D., Dolci, C., Tartaglia, G., & Sforza, C. (2025). Three-Dimensional Geometric Morphometric Characterization of Facial Sexual Dimorphism in Juveniles. Diagnostics, 15(3), 395. https://doi.org/10.3390/diagnostics15030395