An Efficient Deep Learning Approach for Malaria Parasite Detection in Microscopic Images
<p>Architecture of proposed EDRI model.</p> "> Figure 2
<p>Sample images from the red blood cell dataset, showing both parasitized and uninfected cells.</p> "> Figure 3
<p>Loss values and accuracy of proposed models during the training and validation.</p> "> Figure 4
<p>Confusion matrices of the proposed model.</p> "> Figure 5
<p>AUROC curve of the proposed model.</p> ">
Abstract
:1. Introduction
- Propose the development of the EDRI model, an efficient deep learning architecture that can accurately detect malaria from red blood cell images while maintaining computational efficiency.
- We evaluate the EDRI model using the NIH Malaria dataset [8], using performance metrics such as accuracy, precision, recall, F1 score, and AUC, compared to existing methods.
- We validate the EDRI model’s design choices involves conducting an ablation study that systematically examines the impact of its constituent components on overall performance.
- Extensive experiments are also conducted using baseline models, providing a rigorous benchmarking of the EDRI model’s efficacy against established deep learning architectures.
- Discussion of practical implications, including the model’s suitability for deployment in resource-limited settings and its potential integration into mobile health platforms and IoT systems for remote diagnostics
2. Background and Related Work
2.1. Traditional Malaria Detection Methods
2.1.1. Microscopic Examination
2.1.2. Antigen-Based Rapid Diagnostic Tests (RDTs)
2.1.3. Limitations of Traditional Approaches
2.2. Machine Learning and Deep Learning for Malaria Detection
2.2.1. Advancements in Machine Learning Techniques
2.2.2. CNN-Based Malaria Detection Models
2.2.3. Advanced Network Architectures
2.2.4. Challenges and Limitations of Existing Models
2.3. Our Proposed EDRI Model
3. Methodology
3.1. Integrating EfficientNetB2, DenseNet, ResNet, and Inception Blocks
3.2. Architectural Design
3.3. Advantages over Existing Approaches
4. Materials and Methods
Dataset and Data Preprocessing
5. Experimental Setup
5.1. Hardware and Software Configuration
5.2. Training Protocol
5.3. Performance Metrics
- TP: The model’s true positive rate indicates the proportion of actual positive instances correctly predicted as positive.
- TN: The true negative rate represents the correct identification of negative cases by the model, out of all negative instances.
- FP: The false positive rate highlights the instances where the model mistakenly classifies negative cases as positive.
- FN: The false negative rate reveals the instances where the model incorrectly predicts positive cases as negative.
- Accuracy: This metric calculates the model’s overall correctness, determined by dividing the sum of correct predictions (TP + TN) by the total number of predictions made.
6. Results and Discussion
6.1. Ablation Studies
6.2. Baseline Comparison Results
6.3. Testing Accuracy and Loss Curves
6.4. Confusion Matrix
6.5. Comparative Analysis with Existing Models
6.6. Implications for Practical Deployment
6.7. Limitations of the Study
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milne, L.M.; Kyi, M.S.; Chiodini, P.L.; Warhurst, D.C. Accuracy of routine laboratory diagnosis of malaria in the United Kingdom. J. Clin. Pathol. 1994, 47, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Payne, D. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull. World Health Organ. 1988, 66, 621–626. [Google Scholar] [PubMed]
- O’meara, W.P.; Noor, A.; Gatakaa, H.; Tsofa, B.; McKenzie, F.E.; Marsh, K. The impact of primary health care on malaria morbidity–defining access by disease burden. Trop. Med. Int. Health 2006, 11, 426–433. [Google Scholar] [CrossRef]
- Wongsrichanalai, C.; Barcus, M.J.; Muth, S.; Sutamihardja, A.; Wernsdorfer, W.H. A review of malaria diagnostic tools: Microscopy and rapid diagnostic test (RDT). Am. J. Trop. Med. Hyg. 2007, 77, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Mharakurwa, S.; Simoloka, C.; Thuma, P.E.; Shiff, C.J.; Sullivan, D.J. PCR detection of Plasmodium falciparum in human urine and saliva samples. Malar. J. 2006, 5, 103. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for the Treatment of Malaria, 3rd ed.; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Murray, C.K.; Gasser, R.A., Jr.; Magill, A.J.; Miller, R.S. Update on rapid diagnostic testing for malaria. Clin. Microbiol. Rev. 2008, 21, 97–110. [Google Scholar] [CrossRef]
- Chiodini, P.L.; Bowers, K.; Jorgensen, P.; Barnwell, J.W.; Grady, K.K.; Luchavez, J.; Moody, A.H.; Cenizal, A.; Bell, D. The heat stability of Plasmodium lactate dehydrogenase-based and histidine-rich protein 2-based malaria rapid diagnostic tests. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 331–337. [Google Scholar] [CrossRef]
- Dalrymple, U.; Cameron, E.; Bhatt, S.; Weiss, D.J.; Gupta, S.; Gething, P.W. Quantifying the contribution of Plasmodium falciparum malaria to febrile illness amongst African children. Elife 2017, 6, e29198. [Google Scholar] [CrossRef]
- Gillet, P.; Mori, M.; Van Esbroeck, M.; Ende, J.V.D.; Jacobs, J. Assessment of the prozone effect in malaria rapid diagnostic tests. Malar. J. 2009, 8, 271. [Google Scholar] [CrossRef]
- Stresman, G.H. Beyond temperature and precipitation: Ecological risk factors that modify malaria transmission. Acta Trop. 2010, 116, 167–172. [Google Scholar] [CrossRef]
- McMorrow, M.L.; Aidoo, M.; Kachur, S.P. Malaria rapid diagnostic tests in elimination settings—Can they find the last parasite? Clin. Microbiol. Infect. 2011, 17, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Das, D.K.; Ghosh, M.; Pal, M.; Maiti, A.K.; Chakraborty, C. Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron 2015, 68, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Delahunt, C.B.; Delahunt, C.B.; Mehanian, C.; Hu, L.; McGuire, S.K.; Champlin, C.R.; Horning, M.P.; Wilson, B.K.; Thompon, C.M. Automated microscopy and machine learning for expert-level malaria field diagnosis. In Proceedings of the 2015 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 8–11 October 2015; Volume 116, pp. 393–399. [Google Scholar]
- Chen, I.; Clarke, S.E.; Gosling, R.; Hamainza, B.; Killeen, G.; Magill, A.; O’Meara, W.; Price, R.N.; Riley, E.M. “Asymptomatic” malaria: A chronic and debilitating infection that should be treated. PLoS Med. 2016, 13, e1001942. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Liang, Z.; Powell, A.; Ersoy, I.; Poostchi, M.; Silamut, K.; Palaniappan, K.; Guo, P.; Hossain, M.A.; Sameer, A.; Maude, R.J.; et al. CNN-based image analysis for malaria diagnosis. In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; IEEE: New York, NY, USA, 2016; pp. 493–496. [Google Scholar] [CrossRef]
- Dong, Y.; Jiang, Z.; Shen, H.; Pan, W.D.; Williams, L.A.; Reddy, V.V.; Benjamin, W.H.; Bryan, A.W. Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells. In Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Orland, FL, USA, 16–19 February 2017; IEEE: New York, NY, USA, 2017; pp. 101–104. [Google Scholar] [CrossRef]
- Quan, Q.; Wang, J.; Liu, L. An effective convolutional neural network for classifying red blood cells in malaria diseases. Interdiscip. Sci. Comput. Life Sci. 2020, 123, 217–225. [Google Scholar] [CrossRef]
- Umer, M.; Sadiq, S.; Ahmad, M.; Ullah, S.; Choi, G.S.; Mehmood, A. A novel stacked CNN for malarial parasite detection in thin blood smear images. IEEE Access 2020, 8, 93782–93792. [Google Scholar] [CrossRef]
- Goni, M.O.F.; Mondal, M.N.I.; Islam, S.R.; Nahiduzzaman, M.; Islam, M.R.; Anower, M.S.; Kwak, K.S. Diagnosis of malaria using double hidden layer extreme learning machine algorithm with CNN feature extraction and parasite inflator. IEEE Access 2023, 11, 4117–4130. [Google Scholar] [CrossRef]
- Musaev, J.; Anorboev, A.; Seo, Y.S.; Nguyen, N.T.; Hwang, D. ICNN-Ensemble: An Improved Convolutional Neural Network Ensemble Model for Medical Image Classification. IEEE Access 2023, 11, 86285–86296. [Google Scholar] [CrossRef]
- Pamungkas, Y.; Njoto, E.N.; Eljatin, D.S.; Hardyanti, I.F.; Umamah, T.; Putri, K.J. Implementation of EfficientNet-B0 Architecture in Malaria Detection System Based on Patient Red Blood Cell (RBC) Images. In Proceedings of the International Conference on Information Technology Research and Innovation (ICITRI), Jakarta, Indonesia, 5–6 September 2024; pp. 123–128. [Google Scholar]
- Dev, A.; Fouda, M.M.; Kerby, L.; Fadlullah, Z.M. Advancing Malaria Identification from Microscopic Blood Smears Using Hybrid Deep Learning Frameworks. IEEE Access 2024, 12, 71705–71715. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Rosenthal, P.J. How do we best diagnose malaria in Africa? Am. J. Trop. Med. Hyg. 2012, 86, 192–193. [Google Scholar] [CrossRef] [PubMed]
- Poostchi, M.; Silamut, K.; Maude, R.J.; Jaeger, S.; Thoma, G. Image analysis and machine learning for detecting malaria. Transl. Res. 2018, 194, 36–55. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, S.; Antani, S.K. Modality-specific deep learning model ensembles toward malaria parasite detection in thin-blood smear images. PeerJ 2020, 8, e9396. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Chicago, IL, USA, 19–22 May 2019; pp. 6105–6114. Available online: https://arxiv.org/abs/1905.11946 (accessed on 30 October 2024).
- Lin, M.; Chen, Q.; Yan, S. Network in Network. arXiv 2013, arXiv:1312.4400. Available online: https://arxiv.org/abs/1312.4400 (accessed on 30 October 2024).
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. Available online: http://jmlr.org/papers/v15/srivastava14a.html (accessed on 30 October 2024).
- National Institutes of Health. NIH Malaria Dataset. 2018. Available online: https://lhncbc.nlm.nih.gov/LHC-research/LHC-projects/image-processing/malaria-datasheet.html (accessed on 1 July 2024).
- Quinn, J.A.; Nakasi, R.; Mugagga, P.K.; Byanyima, P.; Lubega, W.; Andama, A. Deep Convolutional Neural Networks for Microscopy-based Point of Care Diagnostics. In Proceedings of the 2016 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 13–16 October 2016; IEEE: New York, NY, USA, 2016; pp. 206–212. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. Available online: http://proceedings.mlr.press/v37/ioffe15.html (accessed on 30 October 2024).
- Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification Using Deep Learning. arXiv 2017, arXiv:1712.04621. Available online: https://arxiv.org/abs/1712.04621 (accessed on 20 October 2024).
- Khoshgoftaar, T.M.; Golawala, M.; Van Hulse, J. An Empirical Study of Learning from Imbalanced Data Using Random Forest. In Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), Patras, Greece, 29–31 October 2007; Volume 2, pp. 310–317. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. Available online: https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf (accessed on 15 November 2024).
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; Available online: https://arxiv.org/abs/1412.6980 (accessed on 10 October 2024).
- Prechelt, L. Early Stopping—But When? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–69. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? Adv. Neural Inf. Process. Syst. 2014, 27, 3320–3328. Available online: https://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf (accessed on 30 September 2024).
- Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Kumar, A.; Kim, J.; Lyndon, D.; Fulham, M.; Feng, D. An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification. IEEE J. Biomed. Health Inform. 2017, 21, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Rajaraman, S.; Antani, S.; Poostchi, M.; Silamut, K.; Hossain, M.A.; Maude, R.J.; Jaeger, S. Pre-trained Convolutional Neural Networks as Feature Extractors toward Improved Malaria Parasite Detection in Thin Blood Smear Images. PeerJ 2018, 6, e4568. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, S.; Kanna, R.J. Deep Learning Approach to Detect Malaria from Microscopic Images. Multimed. Tools Appl. 2019, 78, 35033–35051. [Google Scholar] [CrossRef]
- Bibin, D.; Nair, M.S.; Punitha, P. Malaria Parasite Detection from Peripheral Blood Smear Images Using Deep Belief Networks. IEEE Access 2017, 5, 9099–9108. [Google Scholar] [CrossRef]
- Hemachran, K.; Nithya, V.; Mahesh, A. Identification of Malaria Parasite Using MobileNetV2 and Deep Learning Techniques. Int. J. Adv. Sci. Technol. 2020, 29, 13077–13086. [Google Scholar]
Parameters | Value |
---|---|
Optimizer | Adam [42] |
Initial Learning Rate | 0.0001 |
Training Epochs | 50 |
Batch Size | 32 |
Early Stopping | Triggered after 5 epochs |
Learning Rate Adjustment | Factor of 0.2 reduction after 3 epochs |
Model Weights Initialization | EfficientNetB2 backbone partially frozen |
Metric | Value |
---|---|
Accuracy | 97.68% |
Precision | 98.88% |
Recall | 96.44% |
F1 Score | 97.65% |
AUC-ROC | 99.76% |
Log Loss | 0.07 |
Model Version | Accuracy | Precision | Recall | F1 Score | AUC | Loss |
---|---|---|---|---|---|---|
EfficientNetB2 + Residual + Inception (No Dense) | 95.97% | 98.90% | 92.96% | 95.85% | 99.43% | 0.11 |
EfficientNetB2 + Dense + Inception (No Residual) | 96.37% | 97.90% | 94.78% | 96.31% | 99.15% | 0.12 |
EfficientNetB2 + Dense + Residual (No Inception) | 97.27% | 98.01% | 96.47% | 97.25% | 99.46% | 0.08 |
EfficientNetB2 Backbone Only | 95.00% | 95.91% | 94.00% | 94.94% | 98.60% | 0.24 |
Proposed EDRI model | 97.68% | 98.88% | 96.44% | 97.65% | 99.76% | 0.07 |
Model | Accuracy | Precision | Recall | F1 Score | AUC | Loss |
---|---|---|---|---|---|---|
VGG16 | 91.55% | 91.83% | 91.55% | 91.53% | 96.84% | 0.22 |
VGG19 | 89.26% | 89.39% | 89.26% | 89.25% | 94.75% | 0.29 |
InceptionV3 | 93.80% | 93.83% | 93.80% | 93.79% | 98.14% | 0.17 |
DenseNet121 | 94.30% | 94.37% | 94.30% | 94.30% | 98.38% | 0.16 |
MobileNetV2 | 93.11% | 93.27% | 93.11% | 93.10% | 98.11% | 0.18 |
Xception | 94.05% | 94.13% | 94.05% | 94.05% | 98.02% | 0.17 |
NASNetMobile | 84.66% | 78.88% | 94.66% | 86.06% | 96.14% | 0.35 |
EfficientNetB0 | 93.00% | 95.74% | 90.00% | 92.78% | 95.04% | 0.27 |
EfficientNetB1 | 96.00% | 94.23% | 98.00% | 96.08% | 99.64% | 0.12 |
EfficientNetB2 | 95.00% | 95.92% | 94.00% | 94.95% | 98.60% | 0.24 |
EfficientNetB3 | 89.00% | 84.21% | 96.00% | 89.72% | 96.88% | 0.35 |
Proposed Model | 97.68% | 98.88% | 96.44% | 97.65% | 99.76% | 0.07 |
Reference | Method | No. of Images | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%) | AUC (%) |
---|---|---|---|---|---|---|---|
Dong et al. (2017) [19] | CNN | 27,558 | 95.28 | 95.10 | 95.50 | – | – |
Rajaraman et al. (2018) [48] | Ensemble of pre-trained CNNs | 27,558 | 95.90 | – | – | 95.90 | – |
Vijayalakshmi and Kanna (2019) [49] | VGG-19 + SVM | 2550 | 93.00 | 89.95 | 93.44 | 91.66 | – |
Bibin et al. (2017) [50] | Deep Belief Network | 27,558 | 97.37 | – | 96.58 | – | – |
Liang et al. [18] | CNN | 27,558 | 96.54 | – | 96.70 | – | – |
Hemachandran et al. (2020) [51] | MobileNetV2 | 27,558 | 97.06 | 97.00 | 97.00 | 98.00 | 96.77 |
Dong et al. (2017) [19] | CNN | 27,558 | 95.28 | 95.10 | 95.50 | – | – |
Rajaraman et al. (2018) [48] | Ensemble of Pre-trained CNNs | 27,558 | 95.90 | – | – | 95.90 | – |
Proposed EDRI Model | EfficientNetB2 + Dense, Residual, Inception Blocks | 27,558 | 97.68 | 98.88 | 96.44 | 97.65 | 99.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boit, S.; Patil, R. An Efficient Deep Learning Approach for Malaria Parasite Detection in Microscopic Images. Diagnostics 2024, 14, 2738. https://doi.org/10.3390/diagnostics14232738
Boit S, Patil R. An Efficient Deep Learning Approach for Malaria Parasite Detection in Microscopic Images. Diagnostics. 2024; 14(23):2738. https://doi.org/10.3390/diagnostics14232738
Chicago/Turabian StyleBoit, Sorio, and Rajvardhan Patil. 2024. "An Efficient Deep Learning Approach for Malaria Parasite Detection in Microscopic Images" Diagnostics 14, no. 23: 2738. https://doi.org/10.3390/diagnostics14232738
APA StyleBoit, S., & Patil, R. (2024). An Efficient Deep Learning Approach for Malaria Parasite Detection in Microscopic Images. Diagnostics, 14(23), 2738. https://doi.org/10.3390/diagnostics14232738