Enhancing the Understanding of Abdominal Trauma During the COVID-19 Pandemic Through Co-Occurrence Analysis and Machine Learning
<p>Flow chart of patient inclusion.</p> "> Figure 2
<p>Demographic impact co-occurrence matrix in Abdominal Traumatology.</p> "> Figure 3
<p>Model performance metrics on the demographic impact of abdominal trauma before and during the pandemic.</p> "> Figure 4
<p>LIME analysis of coefficients of parameters affecting prediction: pre- and post-pandemic demographic impact.</p> "> Figure 5
<p>Pre- and post-COVID Abdominal Traumatology management strategy comparison co-occurrence matrix.</p> "> Figure 6
<p>Model performance metrics on the management strategy of abdominal trauma before and during the pandemic.</p> "> Figure 7
<p>LIME analysis of coefficients of parameters affecting prediction: pre- and post-pandemic management strategy.</p> "> Figure 8
<p>Analysis of the impact of comorbidities on the management of abdominal trauma before and during the pandemic.</p> "> Figure 9
<p>Model performance metrics on the impact of comorbidities on the management of abdominal trauma before and during the pandemic.</p> "> Figure 10
<p>LIME analysis of coefficients of comorbidities affecting prediction: pre- and post-pandemic management strategy.</p> "> Figure 11
<p>COVID-19 pandemic biologic variable comparative co-occurrence matrix in abdominal trauma response.</p> "> Figure 12
<p>Model performance metrics on the impact of biologic variables on the management of abdominal trauma before and during the pandemic.</p> "> Figure 13
<p>LIME analysis of coefficients of parameters affecting prediction: pre- and post-pandemic biologic variables.</p> "> Figure 14
<p>Pre-COVID versus COVID-19 pandemic comparative co-occurrence matrix of biochemical markers in abdominal trauma.</p> "> Figure 15
<p>Model performance metrics on the impact of biochemical markers on the management of abdominal trauma before and during the pandemic.</p> "> Figure 16
<p>LIME analysis of coefficients of parameters affecting prediction: pre- and post-pandemic biochemical markers.</p> "> Figure 17
<p>Comparative co-occurrence matrix of specific trauma correlations and management: pre-COVID versus COVID-19 pandemic periods.</p> "> Figure 18
<p>Model performance metrics on the impact of specific trauma on the management of abdominal trauma before and during the pandemic.</p> "> Figure 19
<p>LIME analysis of coefficients of parameters affecting prediction: pre- and post-pandemic specific trauma.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Statistical Analysis
2.5. Machine Learning Model Validation
3. Results
3.1. Analysis of Demographic Factors and Clinical Outcomes in the Context of Pre- and Post-Pandemic Abdominal Trauma
3.2. Impact of Trauma Types on Clinical Outcomes Pre- and Post-Pandemic
3.3. Impact of Comorbidities and Surgical Interventions on Clinical Outcomes Pre- and Post-Pandemic
3.4. Analysis of the Influence of Hematological Factors and Comorbidities on Clinical Outcomes in the Pre- and Post-Pandemic Periods
3.5. Correlation of Laboratory Markers with Clinical Outcomes During Pre- and Post-Pandemic Periods
3.6. Exploration of the Relationships between Specific Traumas and Clinical Outcomes
4. Discussion
4.1. The Influence of Demographic Factors on Clinical Outcomes
4.2. The Impact of Occupation and BMI on Abdominal Trauma in the Context of the COVID-19 Pandemic
4.3. Age as a Predictive Factor for Clinical Outcomes in Abdominal Trauma During the COVID-19 Pandemic
4.4. The Impact of BMI on Treatment Duration and Outcomes During the COVID-19 Pandemic
4.5. Analysis of Biological and Laboratory Factors—Hemoglobin and Mortality
4.6. Analysis of Biological and Laboratory Factors—Red Cell Distribution Width (RDW) and Mortality
4.7. Efficiency of the Emergency System During the COVID-19 Pandemic
4.8. Future Perspectives and Clinical Implications of the Proposed Methodology
4.9. Addressing Gaps in Understanding Abdominal Trauma During the COVID-19 Pandemic
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Worobey, M.; Levy, J.I.; Serrano, L.M.; Crits-Christoph, A.; Pekar, J.E.; Goldstein, S.A.; Rasmussen, A.L.; Kraemer, M.U.G.; Newman, C.; Koopmans, M.P.G.; et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 2022, 377, 951–959. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation (WHO). Rolling Updates on Coronavirus Disease (COVID-19); WHO: Geneva, Switzerland, 2000; Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed on 11 March 2024).
- Vuthaluru, S.; Koliyadan, S.V.; Kanniwadi, S.S. Surgery during the COVID-19 pandemic. Lancet 2020, 396, e78. [Google Scholar] [CrossRef] [PubMed]
- Stöß, C.; Steffani, M.; Kohlhaw, K.; Rudroff, C.; Staib, L.; Hartmann, D.; Friess, H.; Müller, M.W. The COVID-19 pandemic: Impact on surgical departments of non-university hospitals. BMC Surg. 2020, 20, 313. [Google Scholar] [CrossRef] [PubMed]
- Pădureanu, V.; Caragea, D.C.; Florescu, M.M.; Vladu, I.M.; Rădulescu, P.M.; Florescu, D.N.; Rădulescu, D.; Pădureanu, R.; Efrem, I.C. Role of the SARS-COV2 infection in the evolution of acute pancreatitis (Review). Biomed. Rep. 2023, 19, 49. [Google Scholar] [CrossRef]
- Rădulescu, P.M.; Căluianu, E.I.; Traşcă, E.T.; Mercuţ, D.; Georgescu, I.; Georgescu, E.F.; Ciupeanu-Călugăru, E.D.; Mercuţ, M.F.; Mercuţ, R.; Padureanu, V.; et al. The Impact of the COVID-19 Pandemic on Outcomes in Acute Pancreatitis: A Propensity Score Matched Study Comparing before and during the Pandemic. Diagnostics 2023, 13, 2446. [Google Scholar] [CrossRef]
- Alberdi, F.; García, I.; Atutxa, L.; Zabarte, M. Epidemiology of severe trauma. Med. Intensiv. 2014, 38, 580–588. [Google Scholar] [CrossRef]
- James, S.L.; Castle, C.D.; Dingels, Z.V.; Fox, J.T.; Hamilton, E.B.; Liu, Z.; Roberts, N.L.S.; Sylte, D.O.; Bertolacci, G.J.; Cunningham, M.; et al. Estimating global injuries morbidity and mortality: Methods and data used in the Global Burden of Disease 2017 study. Inj. Prev. 2020, 26, i125–i153. [Google Scholar] [CrossRef]
- Heron, M. Deaths: Leading Causes for 2019. Natl. Vital. Stat. Rep. 2021, 70, 1–114. [Google Scholar]
- Johannsen, D.L.; DeLany, J.P.; Frisard, M.I.; Welsch, M.A.; Rowley, C.K.; Fang, X.; Jazwinski, S.M.; Ravussin, E.; Louisiana Healthy Aging Study. Physical activity in aging: Comparison among young, aged, and nonagenarian individuals. J. Appl. Physiol. 2008, 105, 495–501. [Google Scholar] [CrossRef]
- Khavinson, V.; Popovich, I.; Mikhailova, O. Towards realization of longer life. Acta Bio-Med. Atenei Parm. 2020, 91, e2020054. [Google Scholar] [CrossRef]
- Gioffrè-Florio, M.; Murabito, L.M.; Visalli, C.; Pergolizzi, F.P.; Famà, F. Trauma in elderly patients: A study of prevalence, comorbidities and gender differences. Il G. Chir 2018, 39, 35–40. [Google Scholar] [CrossRef]
- Boldea, G.J.; Caragea, D.C.; Nicolcescu, P.; Pădureanu, V.; Rădulescu, D.; Boldea, A.M.; Georgescu, I.; Georgescu, E.F. Effect of the COVID-19 pandemic on the management and outcomes of patients with traumatic injuries (Review). Biomed Rep. 2023, 19, 76. [Google Scholar] [CrossRef] [PubMed]
- Wiik Larsen, J.; Søreide, K.; Søreide, J.A.; Tjosevik, K.; Kvaløy, J.T.; Thorsen, K. Epidemiology of abdominal trauma: An age- and sex-adjusted incidence analysis with mortality patterns. Injury 2022, 53, 3130–3138. [Google Scholar] [CrossRef] [PubMed]
- Hakkenbrak, N.A.G.; Loggers, S.A.I.; Lubbers, E.; de Geus, J.; van Wonderen, S.F.; Berkeveld, E.; Mikdad, S.; Giannakopoulos, G.F.; Ponsen, K.J.; Bloemers, F.W.; et al. Trauma care during the COVID-19 pandemic in the Netherlands: A level 1 trauma multicenter cohort study. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 130. [Google Scholar] [CrossRef]
- Chang, W.-H. The influences of the COVID-19 pandemic on medical service behaviors. Taiwan. J. Obstet. Gynecol. 2020, 59, 821–827. [Google Scholar] [CrossRef]
- Duchesne, J.C.; Tatum, D.; Jones, G.; Davis, B.; Robledo, R.; DeMoya, M.; O’keeffe, T.; Ferrada, P.; Jacome, T.; Schroll, R.; et al. Multi-institutional analysis of neutrophil-to-lymphocyte ratio (NLR) in patients with severe hemorrhage: A new mortality predictor value. J. Trauma Acute Care Surg. 2017, 83, 888–893. [Google Scholar] [CrossRef]
- Fouladseresht, H.; Talepoor, A.G.; Eskandari, N.; Norouzian, M.; Ghezelbash, B.; Beyranvand, M.R.; Nejadghaderi, S.A.; Carson-Chahhoud, K.; Kolahi, A.-A.; Safiri, S. Potential Immune Indicators for Predicting the Prognosis of COVID-19 and Trauma: Similarities and Disparities. Front. Immunol. 2022, 12, 785946. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef]
- Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 2020, 11, 6317. [Google Scholar] [CrossRef]
- Su, W.; Qiu, Z.; Zhou, L.; Hou, J.; Wang, Y.; Huang, F.; Zhang, Y.; Jia, Y.; Zhou, J.; Liu, D.; et al. Sex differences in clinical characteristics and risk factors for mortality among severe patients with COVID-19: A retrospective study. Aging 2020, 12, 18833–18843. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Chinn, J.; De Ferrante, M.; Kirby, K.A.; Hohmann, S.F.; Amin, A. Male gender is a predictor of higher mortality in hospitalized adults with COVID-19. PLoS ONE 2021, 16, e0254066. [Google Scholar] [CrossRef] [PubMed]
- Raza, H.A.; Sen, P.; Bhatti, O.A.; Gupta, L. Sex hormones, autoimmunity and gender disparity in COVID-19. Rheumatol. Int. 2021, 41, 1375–1386. [Google Scholar] [CrossRef]
- Biolè, C.; Bianco, M.; Núñez-Gil, I.J.; Cerrato, E.; Spirito, A.; Roubin, S.R.; Viana-Llamas, M.C.; Gonzalez, A.; Castro-Mejía, A.F.; Eid, C.M.; et al. Gender Differences in the Presentation and Outcomes of Hospitalized Patients with COVID-19. J. Hosp. Med. 2021, 16, 349–352. [Google Scholar] [CrossRef]
- Ancochea, J.; Izquierdo, J.L.; Soriano, J.B. Evidence of Gender Differences in the Diagnosis and Management of Coronavirus Disease 2019 Patients: An Analysis of Electronic Health Records Using Natural Language Processing and Machine Learning. J. Women’s Health 2021, 30, 393–404. [Google Scholar] [CrossRef]
- Klein, S.L.; Dhakal, S.; Ursin, R.L.; Deshpande, S.; Sandberg, K.; Mauvais-Jarvis, F. Biological sex impacts COVID-19 outcomes. PLoS Pathog. 2020, 16, e1008570. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, S.M.; Alghannam, A.F.; Taha, N.; Alqahtani, S.S.; Al-Mutairi, A.; Al-Saud, N.; Alghnam, S. The Impact of COVID-19 Pandemic on Weight and Body Mass Index in Saudi Arabia: A Longitudinal Study. Front. Public Health 2022, 9, 775022. [Google Scholar] [CrossRef]
- Costello, V.L.; Chevance, G.; Wing, D.; Mansour-Assi, S.J.; Sharp, S.; Golaszewski, N.M.; Young, E.A.; Higgins, M.; Ibarra, A.; Larsen, B.; et al. Impact of the COVID-19 Pandemic on Objectively Measured Physical Activity and Sedentary Behavior Among Overweight Young Adults: Yearlong Longitudinal Analysis. JMIR Public Health Surveill. 2021, 7, e28317. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Chourdakis, M. Impact of the first COVID-19 lockdown on body weight: A combined systematic review and a meta-analysis. Clin. Nutr. 2022, 41, 3046–3054. [Google Scholar] [CrossRef]
- Nakeshbandi, M.; Maini, R.; Daniel, P.; Rosengarten, S.; Parmar, P.; Wilson, C.; Kim, J.M.; Oommen, A.; Mecklenburg, M.; Salvani, J.; et al. The impact of obesity on COVID-19 complications: A retrospective cohort study. Int. J. Obes. 2020, 44, 1832–1837. [Google Scholar] [CrossRef]
- Katsoulis, M.; Pasea, L.; Lai, A.G.; Dobson, R.J.B.; Denaxas, S.; Hemingway, H.; Banerjee, A. Obesity during the COVID-19 pandemic: Both cause of high risk and potential effect of lockdown? A population-based electronic health record study. Public Health 2021, 191, 41–47. [Google Scholar] [CrossRef]
- Hammouri, H.; Almomani, F.; Abdel Muhsen, R.; Abughazzi, A.; Daghmash, R.; Abudayah, A.; Hasan, I.; Alzein, E. Lifestyle Variations during and after the COVID-19 Pandemic: A Cross-Sectional Study of Diet, Physical Activities, and Weight Gain among the Jordanian Adult Population. Int. J. Environ. Res. Public Health 2022, 19, 1346. [Google Scholar] [CrossRef] [PubMed]
- Imam, Z.; Odish, F.; Gill, I.; O’Connor, D.; Armstrong, J.; Vanood, A.; Ibironke, O.; Hanna, A.; Ranski, A.; Halalau, A. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J. Intern. Med. 2020, 288, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why does COVID-19 disproportionately affect older people? Aging 2020, 12, 9959–9981. [Google Scholar] [CrossRef]
- Chinnadurai, R.; Ogedengbe, O.; Agarwal, P.; Money-Coomes, S.; Abdurrahman, A.Z.; Mohammed, S.; Kalra, P.A.; Rothwell, N.; Pradhan, S. Older age and frailty are the chief predictors of mortality in COVID-19 patients admitted to an acute medical unit in a secondary care setting- a cohort study. BMC Geriatr. 2020, 20, 409. [Google Scholar] [CrossRef]
- De Smet, R.; Mellaerts, B.; Vandewinckele, H.; Lybeert, P.; Frans, E.; Ombelet, S.; Lemahieu, W.; Symons, R.; Ho, E.; Frans, J.; et al. Frailty and Mortality in Hospitalized Older Adults With COVID-19: Retrospective Observational Study. J. Am. Med. Dir. Assoc. 2020, 21, 928–932.e1. [Google Scholar] [CrossRef]
- Koduri, G.; Gokaraju, S.; Darda, M.; Warrier, V.; Duta, I.; Hayes, F.; Sayed, I.E.; Noeman-Ahmed, Y. Clinical frailty score as an independent predictor of outcome in COVID-19 hospitalised patients. Eur. Geriatr. Med. 2021, 12, 1065–1073. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, H.C.; Cho, A.; Kim, J.; Yun, K.S.; Kim, J.; Lee, Y.K. Age-adjusted Charlson comorbidity index score is the best predictor for severe clinical outcome in the hospitalized patients with COVID-19 infection. Medicine 2021, 100, e25900. [Google Scholar] [CrossRef] [PubMed]
- Covino, M.; De Matteis, G.; Della Polla, D.A.; Santoro, M.; Burzo, M.L.; Torelli, E.; Simeoni, B.; Russo, A.; Sandroni, C.; Gasbarrini, A.; et al. Predictors of in-hospital mortality AND death RISK STRATIFICATION among COVID-19 PATIENTS aged ≥ 80 YEARs OLD. Arch. Gerontol. Geriatr. 2021, 95, 104383. [Google Scholar] [CrossRef]
- Suresh, S.; Siddiqui, M.; Abu Ghanimeh, M.; Jou, J.; Simmer, S.; Mendiratta, V.; Russell, S.; Al-Shammari, M.; Chatfield, A.; Alsheik, E.; et al. Association of obesity with illness severity in hospitalized patients with COVID-19: A retrospective cohort study. Obes. Res. Clin. Pract. 2021, 15, 172–176. [Google Scholar] [CrossRef]
- Palaiodimos, L.; Kokkinidis, D.G.; Li, W.; Karamanis, D.; Ognibene, J.; Arora, S.; Southern, W.N.; Mantzoros, C.S. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism 2020, 108, 154262. [Google Scholar] [CrossRef] [PubMed]
- Pranata, R.; Lim, M.A.; Yonas, E.; Vania, R.; Lukito, A.A.; Siswanto, B.B.; Meyer, M. Body mass index and outcome in patients with COVID-19: A dose-response meta-analysis. Diabetes Metab. 2021, 47, 101178. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Lv, Y.; Zha, W.; Zhou, N.; Hong, X. Association of body mass index (BMI) with critical COVID-19 and in-hospital mortality: A dose-response meta-analysis. Metabolism 2021, 117, 154373. [Google Scholar] [CrossRef]
- Bunnell, K.M.; Thaweethai, T.; Buckless, C.; Shinnick, D.J.; Torriani, M.; Foulkes, A.S.; Bredella, M.A. Body composition predictors of outcome in patients with COVID-19. Int. J. Obes. 2021, 45, 2238–2243. [Google Scholar] [CrossRef]
- Sjögren, L.; Stenberg, E.; Thuccani, M.; Martikainen, J.; Rylander, C.; Wallenius, V.; Olbers, T.; Kindblom, J.M. Impact of obesity on intensive care outcomes in patients with COVID-19 in Sweden-A cohort study. PLoS ONE 2021, 16, e0257891. [Google Scholar] [CrossRef] [PubMed]
- Klang, E.; Kassim, G.; Soffer, S.; Freeman, R.; Levin, M.A.; Reich, D.L. Severe Obesity as an Independent Risk Factor for COVID-19 Mortality in Hospitalized Patients Younger than 50. Obesity 2020, 28, 1595–1599. [Google Scholar] [CrossRef]
- Tremblay, D.; Rapp, J.L.; Alpert, N.; Lieberman-Cribbin, W.; Mascarenhas, J.; Taioli, E.; Ghaffari, S. Mild anemia as a single independent predictor of mortality in patients with COVID-19. EJHaem 2021, 2, 319–326. [Google Scholar] [CrossRef]
- Asadzadeh, R.; Mozafari, A.; Shafiei, E.; Kaffashian, M.; Ahmadi, I.; Darvish, M.; Bastaminejad, S. On-Admission Anemia and Survival Rate in COVID-19 Patients. Iran. Biomed. J. 2022, 26, 389–397. [Google Scholar] [CrossRef]
- Kuno, T.; So, M.; Takahashi, M.; Egorova, N.N. U shape association of hemoglobin level with in-hospital mortality for COVID-19 patients. J. Thromb. Thrombolysis 2022, 53, 113–117. [Google Scholar] [CrossRef]
- Mayneris-Perxachs, J.; Russo, M.F.; Ramos, R.; de Hollanda, A.; Arxé, A.A.; Rottoli, M.; Arnoriaga-Rodríguez, M.; Comas-Cufí, M.; Bartoletti, M.; Verrastro, O.; et al. Blood Hemoglobin Substantially Modulates the Impact of Gender, Morbid Obesity, and Hyperglycemia on COVID-19 Death Risk: A Multicenter Study in Italy and Spain. Front. Endocrinol. 2021, 12, 741248. [Google Scholar] [CrossRef]
- Raman, N.; Kv, P.; Ashta, K.K.; Vardhan, V.; Thareja, S.; Muthukrishnan, J.; Kumar, A.; Basavaraj. Ferritin and Hemoglobin as Predictors of Fatal Outcome in COVID-19: Two Sides of the Same Coin. J. Assoc. Physicians India 2021, 69, 11–12. [Google Scholar] [PubMed]
- Karampitsakos, T.; Akinosoglou, K.; Papaioannou, O.; Panou, V.; Koromilias, A.; Bakakos, P.; Loukides, S.; Bouros, D.; Gogos, C.; Tzouvelekis, A. Increased Red Cell Distribution Width Is Associated with Disease Severity in Hospitalized Adults with SARS-CoV-2 Infection: An Observational Multicentric Study. Front. Med. 2020, 7, 616292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fu, B.; Lin, Y.; Wei, X.; Geng, H.; Guo, W.; Yuan, H.; Liao, Y.; Qin, T.; Li, F.; et al. Red blood cell distribution width: A severity indicator in patients with COVID-19. J. Med Virol. 2022, 94, 2133–2138. [Google Scholar] [CrossRef]
- Sarkar, S.; Kannan, S.; Khanna, P.; Singh, A.K. Role of red blood cell distribution width, as a prognostic indicator in COVID-19: A systematic review and meta-analysis. Rev. Med. Virol. 2022, 32, e2264. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, H.; Cao, X.; Deng, R.; Ye, Y.; Fu, Z.; Gou, L.; Shao, F.; Li, J.; Fu, W.; et al. Red cell distribution width (RDW): A prognostic indicator of severe COVID-19. Ann. Transl. Med. 2020, 8, 1230. [Google Scholar] [CrossRef]
- Lucijanić, M.; Jordan, A.; Jurin, I.; Živković, N.P.; Sorić, E.; Hadžibegović, I.; Atić, A.; Stojić, J.; Rudan, D.; Jakšić, O.; et al. Red cell distribution width is a potent prognostic parameter for in-hospital and post-discharge mortality in hospitalized coronavirus disease 2019 patients: A registry-based cohort study on 3941 patients. Croat. Med. J. 2022, 63, 44–52. [Google Scholar] [CrossRef]
- Gowda, S.B.; Gosavi, S.; Rao, A.A.; Shastry, S.; Raj, S.C.; Menon, S.; Suresh, A.; Sharma, A. Prognosis of COVID-19: Red Cell Distribution Width, Platelet Distribution Width, and C-Reactive Protein. Cureus 2021, 13, e13078. [Google Scholar]
- Mozharovsky, V.V.; Kachalov, A.Y.; Nikolaev, N.V.; Tarasov, A.A.; Mozharovsky, K.V. Ekstrennaya khirurgiya v usloviyakh pandemii Covid-19 i ee vliyanie na iskhody khirurgicheskogo lecheniya [Emergency surgery under Covid-19 pandemic and its influence on postoperative outcomes]. Khirurgiia 2022, 1, 54–58. (In Russian) [Google Scholar]
- Jacob, N.; Chaudhary, O.; Darwish, N.M.; Vijay, V.; Pardoe, H. E-Handover in Surgery Improves Clinical Efficiency and Adherence to COVID-19 Infection Control Measures. Cureus 2021, 13, e13967. [Google Scholar] [CrossRef]
- Rausei, S.; Ferrara, F.; Zurleni, T.; Frattini, F.; Chiara, O.; Pietrabissa, A.; Sarro, G.; for Italian Association of Hospital Surgeons, and Collected Data Contributors. Dramatic decrease of surgical emergencies during COVID-19 outbreak. J. Trauma Acute Care Surg. 2020, 89, 1085–1091. [Google Scholar] [CrossRef]
- Osorio, J.; Madrazo, Z.; Videla, S.; Sainz, B.; A Rodríguez-González, A.; Campos, A.A.; Santamaría, M.; Pelegrina, A.A.; González-Serrano, C.; Aldeano, A.A.; et al. Analysis of outcomes of emergency general and gastrointestinal surgery during the COVID-19 pandemic. Br. J. Surg. 2021, 108, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Pecoraro, F.; Luzi, D.; Clemente, F. The efficiency in the ordinary hospital bed management: A comparative analysis in four European countries before the COVID-19 outbreak. PLoS ONE 2021, 16, e0248867. [Google Scholar] [CrossRef]
- Wong, J.S.H.; Cheung, K.M.C. Impact of COVID-19 on Orthopaedic and Trauma Service: An Epidemiological Study. J. Bone Jt. Surg. 2020, 102, e80. [Google Scholar] [CrossRef]
- Shamout, F.; Zhu, T.; Clifton, D.A. Machine Learning for Clinical Outcome Prediction. IEEE Rev. Biomed. Eng. 2021, 14, 116–126. [Google Scholar] [CrossRef]
- Stevens, L.M.; Mortazavi, B.J.; Deo, R.C.; Curtis, L.; Kao, D.P. Recommendations for Reporting Machine Learning Analyses in Clinical Research. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e006556. [Google Scholar] [CrossRef] [PubMed]
- MacKay, E.J.; Stubna, M.D.; Chivers, C.; Draugelis, M.E.; Hanson, W.J.; Desai, N.D.; Groeneveld, P.W. Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations. PLoS ONE 2021, 16, e0252585. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Colaprico, A.; Silva, T.C.; Chen, J.; An, H.; Ban, Y.; Huang, H.; Wang, L.; James, J.L.; Balko, J.M.; et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat. Commun. 2021, 12, 6276. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Chen, S.; Fatemifar, G.; Zeina, M.; Lumbers, R.T.; Mielke, J.; Gill, S.; Kotecha, D.; Freitag, D.F.; Denaxas, S.; et al. Machine learning for subtype definition and risk prediction in heart failure, acute coronary syndromes and atrial fibrillation: Systematic review of validity and clinical utility. BMC Med. 2021, 19, 85. [Google Scholar] [CrossRef]
- Ciarmiello, A.; Tutino, F.; Giovannini, E.; Milano, A.; Barattini, M.; Yosifov, N.; Calvi, D.; Setti, M.; Sivori, M.; Sani, C.; et al. Multivariable Risk Modelling and Survival Analysis with Machine Learning in SARS-CoV-2 Infection. J. Clin. Med. 2023, 12, 7164. [Google Scholar] [CrossRef]
Variable Name | Variable Type | Number and Percentage Pre-COVID Period | Number and Percentage COVID Period | Chi-Square Value | p-Value |
---|---|---|---|---|---|
Sex | M | 47 (53.41%) | 41 (46.59%) | 0.5504 | 0.458 |
F | 13 (43.33%) | 17 (56.67%) | |||
Occupation | Yes | 9 (45.00%) | 11 (55.00%) | 0.108 | 0.742 |
No | 51 (52.04%) | 47 (47.96%) | |||
Penetrating | Yes | 13 (52.00%) | 12 (48.00%) | 0.0091 | 0.923 |
No | 47 (50.54%) | 46 (49.46%) | |||
Self-injury | Yes | 6 (46.15%) | 7 (53.85%) | 0.0042 | 0.948 |
No | 54 (51.43%) | 51 (48.57%) | |||
Work accident | Yes | 1 (50.00%) | 1 (50.00%) | 0.0006 | 0.980 |
No | 59 (50.86%) | 57 (49.14%) | |||
Violence | Yes | 10 (43.48%) | 13 (56.52%) | 0.3085 | 0.578 |
No | 50 (52.63%) | 45 (47.37%) | |||
Animal-related | Yes | 4 (50.00%) | 4 (50.00%) | 0.1002 | 0.751 |
No | 56 (50.91%) | 54 (49.09%) | |||
Sports-related | Yes | 1 (100.00%) | 0 | - | - |
No | 59 (50.43%) | 58 (49.57%) | |||
Fall | Yes | 18 (54.55%) | 15 (45.45%) | 0.0873 | 0.767 |
No | 42 (49.41%) | 43 (50.59%) | |||
Road traffic | Yes | 19 (51.35%) | 18 (48.65%) | 0.0155 | 0.900 |
No | 41 (50.62%) | 40 (49.38%) | |||
Hepatitis | Yes | 6 (75.00%) | 2 (25.00%) | 1.1005 | 0.294 |
No | 54 (49.09%) | 56 (50.91%) | |||
Diabetes | Yes | 3 (33.33%) | 6 (66.67%) | 0.5575 | 0.455 |
No | 57 (52.29%) | 52 (47.71%) | |||
Obesity | Yes | 8 (33.33%) | 16 (66.67%) | 2.8703 | 0.090 |
No | 52 (55.32%) | 42 (44.68%) | |||
Fibrillation | Yes | 3 (37.50%) | 5 (62.50%) | 0.173 | 0.677 |
No | 57 (51.82%) | 53 (48.18%) | |||
Hypertension | Yes | 7 (31.82%) | 15 (68.18%) | 3.038 | 0.081 |
No | 53 (55.21%) | 43 (44.79%) | |||
Cogestive hearth failure | Yes | 4 (50.00%) | 4 (50.00%) | 0.1002 | 0.751 |
No | 56 (50.91%) | 54 (49.09%) | |||
Kidney Failure | Yes | 3 (50.00%) | 3 (50.00%) | 0.1417 | 0.706 |
No | 57 (50.89%) | 55 (49.11%) | |||
Alchoholism | Yes | 4 (40.00%) | 6 (60.00%) | 0.1495 | 0.699 |
No | 56 (51.85%) | 52 (48.15%) | |||
Surgery | Yes | 51 (48.11%) | 55 (51.89%) | 2.135 | 0.144 |
No | 9 (75.00%) | 3 (25.00%) | |||
Spleen | Yes | 23 (60.53%) | 15 (39.47%) | 1.569 | 0.210 |
No | 37 (46.25%) | 43 (53.75%) | |||
Pancreas | Yes | 0 (0%) | 2 (100.00%) | - | - |
No | 60 (51.72%) | 56 (48.28%) | |||
Liver | Yes | 11 (47.82%) | 12 (52.17%) | 0.0082 | 0.927 |
No | 49 (51.58%) | 46 (48.42%) | |||
Mesentery | Yes | 4 (66.67%) | 2 (33.33%) | 0.1417 | 0.707 |
No | 56 (50.00%) | 56 (50.00%) | |||
Stomach | Yes | 5 (55.56%) | 4 (44.44%) | 0.0028 | 0.957 |
No | 55 (50.46%) | 54 (49.54%) | |||
Intestine | Yes | 8 (53.33%) | 7 (46.67%) | 0.0049 | 0.943 |
No | 52 (50.49%) | 51 (49.51%) | |||
Hemoperitoneum | Yes | 35 (63.64%) | 20 (36.36%) | 5.817 | 0.016 * |
No | 25 (39.68%) | 38 (60.32%) | |||
Hemothorax | Yes | 8 (66.67%) | 4 (33.33%) | 0.726 | 0.394 |
No | 52 (49.06%) | 54 (50.94%) | |||
Pneumothorax | Yes | 6 (60.00%) | 4 (40.00%) | 0.0754 | 0.784 |
No | 54 (50.00%) | 54 (50.00%) | |||
Diaphragm | Yes | 3 (50.00%) | 3 (50.00%) | 0.1417 | 0.706 |
No | 57 (50.89%) | 55 (49.11%) | |||
Kidney | Yes | 3 (75.00%) | 1 (25.00%) | 0.2249 | 0.635 |
No | 57 (50.00%) | 57 (50.00%) | |||
Fractures | Yes | 21 (47.73%) | 23 (52.27%) | 0.1105 | 0.740 |
No | 39 (52.70%) | 35 (47.30%) | |||
Retroperitoneum | Yes | 9 (52.94%) | 8 (47.06%) | 0.009 | 0.921 |
No | 51 (50.50%) | 50 (49.50%) | |||
Abdominal Wall | Yes | 7 (53.85%) | 6 (46.15%) | 0.0385 | 0.844 |
No | 53 (50.96%) | 51 (49.04%) | |||
Awarenes | Yes | 44 (48.35%) | 47 (51.65%) | 0.6028 | 0.438 |
No | 16 (59.26%) | 11 (40.74%) | |||
Pain | Yes | 43 (48.31%) | 46 (51.69%) | 0.5629 | 0.453 |
No | 17 (58.62%) | 12 (41.38%) | |||
Reintervention | Yes | 1 (20.00%) | 4 (80.00%) | 0.908 | 0.341 |
No | 59 (52.21%) | 54 (47.79%) | |||
Condition | Deceased | 11 (55.00%) | 9 (45.00%) | 6.450 | 0.039 * |
Recovered | 44 (56.41%) | 34 (43.58%) | |||
Improved | 5 (25.00%) | 25 (75.00%) |
Variable | Univariate Analysis OR (95% CI) | p-Value | Multivariate Analysis OR (95% CI) | p-Value |
---|---|---|---|---|
Sex | 1.50 (0.65, 3.45) | 0.3419 | ||
Occupation | 0.75 (0.29, 1.98) | 0.5667 | ||
Penetrating | 1.06 (0.44, 2.57) | 0.8967 | ||
Self-injury | 0.81 (0.25, 2.57) | 0.7201 | ||
Work accident | 0.97 (0.06, 15.82) | 0.9807 | ||
Violence | 0.69 (0.28, 1.73) | 0.4321 | ||
Animal-related | 0.96 (0.23, 4.05) | 0.9604 | ||
Sports-related | 3.50 × 109 (0.00, Inf) | 0.9997 | ||
Fall | 1.23 (0.55, 2.75) | 0.6169 | ||
Road traffic | 1.03 (0.47, 2.24) | 0.9410 | ||
Hepatitis | 3.11 (0.60, 16.09) | 0.1759 | ||
Diabetes | 0.46 (0.11, 1.92) | 0.2840 | ||
Obesity | 0.40 (0.16, 1.03) | 0.0590 | ||
Fibrillation | 0.56 (0.13, 2.45) | 0.4394 | ||
Hypertension | 0.38 (0.14, 1.01) | 0.0529 | ||
Congestive heart failure | 0.96 (0.23, 4.05) | 0.9660 | ||
Kidney Failure | 0.63 (0.10, 3.93) | 0.6227 | ||
Alcoholism | 0.96 (0.19, 4.99) | 0.9660 | ||
Surgery | 0.31 (0.08, 1.21) | 0.0909 | ||
Spleen | 1.78 (0.81, 3.91) | 0.1492 | ||
Pancreas | 0.00 (0.00, Inf) | 0.9889 | ||
Liver | 0.96 (0.38, 2.42) | 0.9298 | ||
Mesentery | 2.00 (0.35, 11.36) | 0.4342 | ||
Stomach | 1.23 (0.31, 4.82) | 0.7691 | ||
Intestine | 1.12 (0.38, 3.32) | 0.8367 | ||
Hemoperitoneum | 2.66 (1.26, 5.61) | 0.0102 * | 2.82 (1.29, 6.18) | 0.0093 * |
Hemothorax | 2.08 (0.59, 7.32) | 0.2553 | ||
Pneumothorax | 1.50 (0.40, 5.62) | 0.5472 | ||
Diaphragm | 0.96 (0.19, 4.99) | 0.9660 | ||
Kidney | 3.00 (0.30, 29.71) | 0.3477 | ||
Fractures | 0.82 (0.39, 1.73) | 0.6013 | ||
Retroperitoneum | 1.10 (0.39, 3.09) | 0.8520 | ||
Abdominal Wall | 1.14 (0.36, 3.64) | 0.8188 | ||
Awareness | 0.64 (0.27, 1.54) | 0.3213 | ||
Pain | 0.66 (0.28, 1.54) | 0.3365 | ||
Reintervention | 0.23 (0.02, 2.11) | 0.1933 | ||
Condition | 0.82 (0.51, 1.31) | 0.4011 |
Variable Name | Median (IQR) Pre-COVID | Median (IQR) COVID Period | p Value |
---|---|---|---|
Age | 38.0 (27.0, 63.0) | 45.0 (37.5, 60.8) | 0.110 |
BMI | 85.1 (80.0, 85.1) | 85.1 (72.2, 85.1) | 0.292 |
Blood | 1.3 (0.3, 2.2) | 0.9 (0.4, 1.9) | 0.550 |
Hosp. Days | 7.0 (3.0, 10.0) | 6.0 (3.0, 8.0) | 0.188 |
Hours | 14.4 (9.9, 18.5) | 13.5 (9.5, 16.5) | 0.267 |
Time | 3.0 (1.1, 12.2) | 2.4 (1.3, 6.4) | 0.789 |
Number | 10.0 (9.0, 11.0) | 11.0 (10.0, 11.0) | 0.029 * |
Hb | 11.9 (9.6, 13.3) | 11.7 (10.0, 13.5) | 0.948 |
Hb/Hct | 3.0 (2.9, 3.1) | 3.0 (2.9, 3.1) | 0.291 |
Hct | 34.7 (27.9, 39.5) | 34.9 (30.4, 39.9) | 0.576 |
Urea | 33.5 (26.0, 39.8) | 34.0 (25.2, 39.8) | 0.850 |
Creatinine | 0.8 (0.7, 1.0) | 0.8 (0.6, 1.1) | 0.712 |
INR | 1.1 (1.1, 1.3) | 1.1 (1.0, 1.2) | 0.067 |
GPT | 42.5 (26.5, 133.0) | 43.5 (22.0, 163.3) | 0.661 |
GOT | 51.0 (30.0, 121.8) | 68.5 (30.5, 157.0) | 0.486 |
Neutrophils | 80.3 (72.9, 85.3) | 80.4 (73.4, 86.0) | 0.739 |
Monocytes | 7.7 (5.6, 8.4) | 7.5 (5.3, 8.5) | 0.775 |
Lymphocytes | 11.8 (6.8, 16.8) | 10.5 (6.2, 16.1) | 0.557 |
Platelets | 176.5 (125.0, 225.4) | 190.0 (156.3, 245.5) | 0.265 |
Leukocytes | 12.4 (9.1, 16.0) | 14.1 (11.1, 17.1) | 0.149 |
Erythrocytes | 3.8 (3.1, 4.2) | 3.9 (3.1, 4.4) | 0.421 |
MCV | 89.0 (86.5, 92.7) | 90.7 (87.5, 95.7) | 0.103 |
RDW | 12.5 (11.9, 13.4) | 13.2 (12.4, 14.0) | 0.006 * |
Sodium | 139.0 (136.8, 141.0) | 139.0 (136.0, 141.0) | 0.545 |
Potassium | 4.1 (3.9, 4.4) | 4.2 (3.8, 4.4) | 0.976 |
Glucose | 118.5 (94.8, 169.3) | 121.0 (99.2, 154.0) | 0.626 |
Amylase | 55.0 (45.0, 87.3) | 54.0 (39.0, 78.5) | 0.353 |
NLR | 6.5 (4.4, 12.4) | 7.6 (4.4, 13.6) | 0.732 |
IIC | 7.0 (4.8, 15.3) | 8.8 (6.0, 16.2) | 0.339 |
MCVL | 7.6 (5.4, 13.3) | 8.2 (5.7, 13.3) | 0.559 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radulescu, D.; Calafeteanu, D.M.; Radulescu, P.-M.; Boldea, G.-J.; Mercut, R.; Ciupeanu-Calugaru, E.D.; Georgescu, E.-F.; Boldea, A.M.; Georgescu, I.; Caluianu, E.-I.; et al. Enhancing the Understanding of Abdominal Trauma During the COVID-19 Pandemic Through Co-Occurrence Analysis and Machine Learning. Diagnostics 2024, 14, 2444. https://doi.org/10.3390/diagnostics14212444
Radulescu D, Calafeteanu DM, Radulescu P-M, Boldea G-J, Mercut R, Ciupeanu-Calugaru ED, Georgescu E-F, Boldea AM, Georgescu I, Caluianu E-I, et al. Enhancing the Understanding of Abdominal Trauma During the COVID-19 Pandemic Through Co-Occurrence Analysis and Machine Learning. Diagnostics. 2024; 14(21):2444. https://doi.org/10.3390/diagnostics14212444
Chicago/Turabian StyleRadulescu, Dumitru, Dan Marian Calafeteanu, Patricia-Mihaela Radulescu, Gheorghe-Jean Boldea, Razvan Mercut, Eleonora Daniela Ciupeanu-Calugaru, Eugen-Florin Georgescu, Ana Maria Boldea, Ion Georgescu, Elena-Irina Caluianu, and et al. 2024. "Enhancing the Understanding of Abdominal Trauma During the COVID-19 Pandemic Through Co-Occurrence Analysis and Machine Learning" Diagnostics 14, no. 21: 2444. https://doi.org/10.3390/diagnostics14212444