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Abstract: Background/Objectives: Cerebrovascular events, such as strokes, are often preceded by the
rupture of atherosclerotic plaques in the carotid arteries. This work introduces a novel approach to
predict the occurrence of such events by integrating computational fluid dynamics (CFD), structural
analysis, and machine learning (ML) techniques. The objective is to develop a predictive model
that combines both imaging and non-imaging data to assess the risk of carotid atherosclerosis and
subsequent cerebrovascular events, ultimately improving clinical decision-making. Methods: A
multidisciplinary approach was employed, utilizing 3D reconstruction techniques and blood-flow
simulations to extract key plaque characteristics. These were combined with patient-specific clinical
data for risk evaluation. The study involved 134 asymptomatic individuals diagnosed with carotid
artery disease. Data imbalance was addressed using two distinct approaches, with the optimal
method chosen for training a Gradient Boosting Tree (GBT) classifier. The model’s performance was
evaluated in terms of accuracy, sensitivity, specificity, and ROC AUC. Results: The best-performing
GBT model achieved a balanced accuracy of 88%, with a ROC AUC of 0.92, a sensitivity of 0.88, and
a specificity of 0.91. This demonstrates the model’s high predictive power in identifying patients
at risk for cerebrovascular events. Conclusions: The proposed method effectively combines CFD,
structural analysis, and ML to predict cerebrovascular event risk in patients with carotid artery
disease. By providing clinicians with a tool for better risk assessment, this approach has the potential
to significantly enhance clinical decision-making and patient outcomes.

Keywords: computational fluid dynamics (CFD); machine learning (ML); cerebrovascular events

1. Introduction

Carotid atherosclerosis and the rupture of atheromatic plaques represent a complex
occurrence influenced by numerous factors, involving both biological components and
biomechanical forces acting on the arterial wall. Specific to each patient, factors like arterial
shape, peak systolic blood velocity, pressure, plaque makeup, and structure are crucial in
determining the mechanical strains experienced by the arterial wall. High wall shear stress
(WSS) and increased plaque structural stress (PSS) due to unstable plaque components
are recognized as factors contributing to plaque rupture. Moreover, various measures of
plaque accumulation, such as volume, cross-sectional area, or thickness of plaque elements,
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as well as the presence, size, or volume of specific plaque tissues, have been linked to past,
present, and recurrent symptoms or events, including stroke.

In the current literature, there are several studies that explore the relationship between
plaque characteristics and the risk of plaque rupture, as well as the biomechanical stresses
associated with this risk. Takaya et al. [1] conducted a prospective study on asymptomatic
patients with carotid stenosis, finding significant associations between baseline MRI-detected
plaque features and subsequent cerebrovascular events. Similarly, Zhao et al. [2] identified
associations between carotid plaque characteristics and acute cerebral infarct sizes.

Gupta et al. [3] conducted a meta-analysis confirming that certain plaque compo-
nents, including intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), and
thin/ruptured fibrous cap (FC), are predictors of future stroke or transient ischemic attack
(TIA). Esposito-Bauer et al. [4] and Selwaness et al. [5] also found associations between
plaque composition and cerebrovascular events. Furthermore, studies by Sun J. et al. [6],
Sun B. et al. [7], Xia et al. [8], and Cui et al. [9] explored various aspects of plaque character-
istics and their associations with cardiovascular outcomes. Notably, IPH, LRNC, and FC
rupture were strongly associated with adverse outcomes in these studies.

On the biomechanical side, Cheng et al. [10] and Li et al. [11] investigated stress
distributions within plaques, finding higher circumferential stress in ruptured plaques.
Groen et al. [12] and Kock et al. [13] used imaging data to simulate longitudinal fibrous
cap stresses, identifying potential indicators of plaque vulnerability. Moreover, Tang
et al. [14] and Teng et al. [15] employed finite element analysis (FEA) and computational
fluid dynamics (CFD) to assess plaque wall stress and flow-induced stresses, revealing
associations with plaque rupture. Other studies, including those by Ohayon et al. [16],
Huang et al. [17], and Wang et al. [18], further explored stress distributions within plaques
using FSI simulations based on imaging data. Furthermore, studies by Tuenter et al. [19],
Costopoulos et al. [20], and Doradla et al. [21] investigated associations between wall shear
stress (WSS), plaque composition, and plaque vulnerability, providing insights into the
biomechanical mechanisms underlying plaque rupture.

Curcio et al. [22] introduced a patient-specific computational approach to assess the
vulnerability of carotid artery plaques. By employing geometric modeling and structural
simulation techniques, they identified regions of elevated stress within the artery wall,
particularly around plaques, indicating potential rupture areas. In plaques with lipid
composition and heterogeneity, maximum stresses were concentrated within the fibrous
cap. Jansen et al. [23] developed a tissue-engineered model of atherosclerotic plaque caps,
incorporating microcalcifications to evaluate their influence on mechanical properties.
Their model confirmed the adverse role of microcalcifications in increasing the risk of
cap rupture and offers insights into tissue mechanics involving soft tissue calcification.
Additionally, Zhang et al. [24] devised a 3D carotid plaque radiomics model using high-
resolution magnetic resonance imaging (HRMRI), which outperformed traditional models
in identifying vulnerable plaques, demonstrating superior performance in both training
and test cohorts. These studies collectively advance the understanding and assessment
of carotid artery plaque vulnerability through computational, tissue-engineering, and ra-
diomics approaches, offering valuable insights for enhanced clinical management. Overall,
these studies contribute to our understanding of the complex interplay between plaque
characteristics, biomechanical stresses, and the risk of plaque rupture, offering valuable
insights for risk assessment and management in patients with atherosclerotic disease.

Significant advancements in using machine learning (ML) models for predicting cere-
brovascular events such as stroke, transient ischemic attacks (TIA), Amaurosis Fugax, etc.
related to carotid artery disease have been witnessed in reviewing current literature. Studies
have employed diverse ML techniques, integrating both clinical data and imaging inputs to
enhance predictive accuracy. For instance, Wu et al. [25] and Weng et al. [26] utilized clinical
and imaging data, demonstrating improved model performance in predicting major adverse
cardiovascular and cerebrovascular events. Moreover, research incorporating radiomics [27],
underscores the potential of advanced imaging features in refining ML predictions.
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Additionally, the integration of explainable ML models [28], provides significant
insights into early screening and risk assessment for carotid atherosclerosis. Other notable
contributions include hybrid modeling approaches combining clinical and imaging data,
enhancing the prediction of stroke risk [29]. Despite the limited focus on simulation-
based inputs specifically for carotid artery disease, the existing literature underscores the
transformative potential of ML in predicting cerebrovascular events, paving the way for
more personalized and precise healthcare interventions.

In this context, we propose a machine learning (ML) model for predicting forthcom-
ing cerebrovascular events which combines as input hemodynamic parameters obtained
through finite element analysis with non-imaging characteristics deriving from eCRF record-
ings and demographic data, a combination that constitutes its uniqueness and novelty
compared to other proposed models deriving from current literature. This model pro-
vides a detailed understanding of the intricate connection between biomechanical stresses
and plaque characteristics, making it an essential tool for assessing the probability of an
impending cerebrovascular event.

2. Materials and Methods
2.1. Dataset Description

For this study, we utilized one hundred and thirty-four (134) asymptomatic cases with
>50% carotid stenosis. The data were collected and anonymized from five (5) different
clinical centers and were obtained under a data protection agreement fulfilling all the ethical
and legal requirements for data sharing posed by the General Data Protection Regulation
in a third-level care setting. These cases were examined using a 1.5-T whole-body system
(Signa HDx, GE Healthcare, Waukesha, WI, USA) equipped with a bilateral four-channel
phased-array carotid coil (Machnet BV, Eelde, The Netherlands). The subjects provided
written informed consent to participate in the TAXINOMISIS study (www.clinicaltrials.gov;
accessed on 15 May 2024; ID: NCT03495830) protocol, which received approval from the
local ethics committee. The median age of the subjects was 69.4 years, and the vast majority
suffered from hypertension (83%) and hypercholesterolemia (77.4%). Table 1 depicts the
demographics data for the 134 subjects that were included in the present study.

Table 1. Patient demographics info.

Patients (n = 134) N (%)

Age (years) 69.4 ± 8.4
Gender (male) 87 (65.1)

Risk factors

Smoking 94 (70.1)
Diabetes mellitus 47 (35)

Hypertension 111 (83)
Hypercholesterolemia 104 (78)

Coronary disease 35 (26.4)
Obesity 18 (13.5)

BMI 26.48 ± 3.4

Notably, 115 cases presented with no cerebrovascular events during the 3-year period,
whereas 19 cases exhibited at least one cerebrovascular-related event such as stroke, tran-
sient ischemic attacks (TIA), myocardial infarctions (MI), or intracranial hemorrhages. As
expected, the dataset was severely imbalanced due to the fact that the TAXINOMISIS study
consisted of asymptomatic cases, which rarely trigger any events in a period of 3 years.

2.2. Methodology
2.2.1. 3D Reconstruction

The process of reconstructing a 3D model of the carotid artery relies on a sequence
of magnetic resonance images (MRI), involving ToF, T1w, T2w, and PD series. To briefly
outline, the ToF sequence is employed to reconstruct the arterial lumen, while the fusion of

www.clinicaltrials.gov
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T1w, T2w, and PD series facilitates the reconstruction of the arterial wall model and the
model depicting plaque components. These three models are subsequently aligned in a
later phase to generate the final arterial model. This reconstruction method is grounded in
an innovative approach [30], which comprises three distinct steps:

Region of interest segmentation: The first step involves segmenting the regions of
interest, including the lumen, outer wall, and plaque components. To accomplish this,
three deep learning models were developed. Specifically, 485 tuples of ToF, T1w, T2w,
and PD images from 42 different patients were annotated by two experts, resulting in a
training dataset. This dataset was then utilized to train three UNET models, each tailored
to segmenting a specific region of interest.

3D level set: Following segmentation, a morphological operator is applied to the
3D volume composed of stacked 2D segmented frames. This operation generates the 3D
surface model representing the segmented regions.

3D meshing: Subsequently, the marching cubes algorithm is employed on the 3D
surface model to produce the final reconstructed arterial model.

By employing this comprehensive approach, the reconstruction process yields detailed
and accurate representations of the carotid artery, enabling further analysis and study of
arterial pathologies.

2.2.2. 3D Blood-Flow Simulations

The 3D reconstructed luminal carotid geometries underwent transient blood-flow
simulations, utilizing patient-specific boundary conditions derived from the respective
carotid UltraSound (US) screening. These conditions were comprised of flow velocity
profiles obtained for a minimum of three consecutive cardiac cycles for each artery. In our
simulations, blood flow was modeled using the Navier—Stokes and continuity equations,
represented as Equations (1) and (2), respectively.

ρ
∂v
∂t

+ ρ(v•∇)v −∇•τ = 0, (1)

∇• (ρv ) = 0. (2)

Here, v denotes the blood velocity vector and τ stands for the stress tensor, defined by
Equation (3) where δij′ represents the Kronecker delta, µ is the blood dynamic viscosity, p
indicates the blood pressure, and εij signifies the strain tensor as calculated by Equation (4).

τ = −pδij + 2µεij, (3)

εij =
1
2
(∇v +∇vT ). (4)

The blood was assumed to follow Newtonian behavior with a density of 1050 kg/m3

and dynamic viscosity of 0.0035 Pa·s. All simulations were conducted using ANSYS® v16.2
with a maximum element size set to 0.16 mm, consisting solely of tetrahedra. The mesh
size was determined through a comprehensive sensitivity analysis, with a convergence
criterion of 10−4 and an iteration limit of 150 for each time step.

In our effort to replicate patient-specific blood-flow dynamics accurately, we employ
an approach that hinges on utilizing the derived mass flow rate profiles from Carotid Ultra-
sonography (US) images. These tailored profiles are applied to both the inlet, representing
the proximal boundary of the Common Carotid Artery (CCA), and the outlet of the External
Carotid Artery (ECA). This methodological choice is substantiated by the patient-specific
US data, which provide detailed flow velocity profiles for at least two of the three arterial
branches: CCA, Internal Carotid Artery (ICA), and/or ECA.

Each US image serves as a visual repository, providing insights into intricate velocity
measurements and corresponding waveforms for multiple cardiac cycles across various
arteries. The patient-specific flow velocity diagram is created using only the peak systolic
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velocity (PSV) and the end diastolic velocity (EDV) values using a dedicated in-house
developed MATLAB script.

Additionally, patient-specific cardiac cycle durations are computed based on pulse rate
information, incorporating temporal dynamics into the simulations. This comprehensive
methodology not only leverages the richness of the US data but also precisely integrates
this information, ensuring the utmost accuracy in capturing the nuances of patient-specific
blood-flow dynamics. The velocity diagram is then transformed into a mass flow rate
diagram, using Equation (5).

.
m = ρVA, (5)

The symbol
.

m represents the mass flow rate, ρ denotes the blood density, V signifies
the blood velocity, and A represents the cross-sectional area at the velocity measurement
location. Regarding the internal carotid artery (ICA), a zero-pressure boundary condition is
applied, with a detailed explanation provided in the results section for the rationale behind
this choice. Additionally, a no-slip boundary condition is enforced at the arterial wall
boundary, ensuring zero velocity at the wall, while a no-penetration condition is imposed,
preventing fluid from passing through the boundary. Figure 1 depicts the boundary
conditions for an indicative case of the utilized dataset. Briefly, the entire modeling process
consists of the following steps: (a) 3D reconstruction of the lumen, the arterial wall and
the plaque constituents deriving from the MRI data and 2D cross-section reconstruction
for the site of maximum plaque burden; (b) flow velocity profiles extraction for the CCA
and ECA deriving from the US data and transformation to the respective mass flow rate
profiles for both, respectively; (c) 3D CFD blood-flow simulation using the 3D model of
the lumen, accompanied by the mass flow rate profiles for the CCA and ECA and an a
zero-pressure value for the ICA, serving as boundary conditions for the FEM simulation;
(d) 2D structural analysis, using the 2D model for the site of maximum plaque burden
and the maximum pressure at this specific site, as calculated by (c); (e) calculation of the
following hemodynamic parameters: Peak TAESS, PECA/PCCA, PICA/PCCA, vessel average
TAESS, vessel average OSI, normalized area of low TAESS, Normalized area of high OSI,
plaque structural stress (PSS); (f) input of the aforementioned parameters in the proposed
ML model; (g) event risk score calculation. The brief description of the entire pipeline is
depicted in Figure 2.
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2.2.3. Structural Analysis

After having performed the 3D blood-flow simulation in order to calculate the hemo-
dynamic parameters to be fed into the machine learning model, as well as the pressure
distribution throughout the entire cardiac cycle, the next step is to perform a 2D struc-
tural analysis of the cross-section which exhibits the highest plaque burden value that
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has already been calculated by the 3D reconstruction module. The 2D pixel coordinates
of the lumen, the arterial wall, and the plaque components are transformed to cartesian
coordinates and the final 2D geometry is then discretized into quadrilateral elements with
a maximum face size of 0.05 mm. furthermore, an inflation process is performed at the
interface between the plaque component and the arterial wall, as well as at the borders of
the arterial wall and the lumen (Figure 3). Regarding the utilized boundary conditions for
the 2D-analysis, the outer perimeter of the external wall is assumed to act as a frictionless
support, aiming to prevent any potential displacement of the adventitia. Simultaneously,
the plaque components are bonded with the arterial wall throughout the simulation. The
luminal boundary emerges as a crucial interface, serving as the platform onto which the
previously computed maximum site-specific pressure, derived from the aforementioned
3D blood-flow simulation, is applied as a loading condition. The pressure values obtained
at the cross-section, which aligns with the segmented slice, are crucial for guiding the
further stages of analysis. This thorough approach ensures the model’s integrity and allows
for a detailed understanding of the real-world complexities involved in simulating the
biomechanical behavior of arterial structures.

Following this, the structural analysis progresses by assigning specific material proper-
ties to the arterial wall and the plaque being examined within the selected cross-section. For
both the arterial wall and the fibrous plaque, hyperelastic material properties are assigned.
Regarding the arterial wall, we employed the Mooney–Rivlin approach [31], defined by the
parameters C10 = 0.07 MPa, C20 = 3.2 MPa, C21 = 0.0716 MPa, while setting the remaining
parameters as Cij = 0 systematically. To address incompressibility, the parameter d of the
arterial wall was set at d = 1.0 × 10−5 Pa−1. The material properties attributed to the
plaque components were determined through the analysis of the stretch ratio to Cauchy
stress diagrams which were created experimentally [32]. These diagrams formed the basis
for calculating and extracting the essential 5-parameter Mooney–Rivlin constants. The
resulting values, crucial for accurately characterizing the mechanical behavior of the plaque
components, are shown in Table 2. Figure 4 depicts the pipeline for the calculation of PSS
values, beginning with the calculation of the maximum pressure during the cardiac cycle at
the site of the cross-section of interest, followed by the 2D structural simulation using the
aforementioned calculated pressure as a loading boundary condition.

Diagnostics 2024, 14, 2204 6 of 17 
 

 

 
Figure 2. Overall pipeline of the proposed approach. The red circle in green box within the US 
image indicated the cardiac cycle from which the diagram next to it derives. 

2.2.3. Structural Analysis 
After having performed the 3D blood-flow simulation in order to calculate the hemo-

dynamic parameters to be fed into the machine learning model, as well as the pressure 
distribution throughout the entire cardiac cycle, the next step is to perform a 2D structural 
analysis of the cross-section which exhibits the highest plaque burden value that has al-
ready been calculated by the 3D reconstruction module. The 2D pixel coordinates of the 
lumen, the arterial wall, and the plaque components are transformed to cartesian coordi-
nates and the final 2D geometry is then discretized into quadrilateral elements with a 
maximum face size of 0.05 mm. furthermore, an inflation process is performed at the in-
terface between the plaque component and the arterial wall, as well as at the borders of 
the arterial wall and the lumen (Figure 3). Regarding the utilized boundary conditions for 
the 2D-analysis, the outer perimeter of the external wall is assumed to act as a frictionless 
support, aiming to prevent any potential displacement of the adventitia. Simultaneously, 
the plaque components are bonded with the arterial wall throughout the simulation. The 
luminal boundary emerges as a crucial interface, serving as the platform onto which the 
previously computed maximum site-specific pressure, derived from the aforementioned 
3D blood-flow simulation, is applied as a loading condition. The pressure values obtained 
at the cross-section, which aligns with the segmented slice, are crucial for guiding the fur-
ther stages of analysis. This thorough approach ensures the model’s integrity and allows 
for a detailed understanding of the real-world complexities involved in simulating the 
biomechanical behavior of arterial structures. 

Figure 2. Overall pipeline of the proposed approach. The red circle in green box within the US image
indicated the cardiac cycle from which the diagram next to it derives. The literature values indicated
in the blue box with 1 are derived from [32].



Diagnostics 2024, 14, 2204 7 of 17
Diagnostics 2024, 14, 2204 7 of 17 
 

 

 
Figure 3. 2D mesh for the arterial model with the plaque component indicated in yellow. An infla-
tion process was followed in the two luminal borders, as well as at the borders of the fibrous plaque. 

Following this, the structural analysis progresses by assigning specific material prop-
erties to the arterial wall and the plaque being examined within the selected cross-section. 
For both the arterial wall and the fibrous plaque, hyperelastic material properties are as-
signed. Regarding the arterial wall, we employed the Mooney–Rivlin approach [31], de-
fined by the parameters C10 = 0.07 MPa, C20 = 3.2 MPa, C21 = 0.0716 MPa, while seĴing the 
remaining parameters as Cij = 0 systematically. To address incompressibility, the parame-
ter d of the arterial wall was set at d = 1.0 × 10−5 Pa−1. The material properties aĴributed to 
the plaque components were determined through the analysis of the stretch ratio to Cau-
chy stress diagrams which were created experimentally [32]. These diagrams formed the 
basis for calculating and extracting the essential 5-parameter Mooney–Rivlin constants. 
The resulting values, crucial for accurately characterizing the mechanical behavior of the 
plaque components, are shown in Table 2. Figure 4 depicts the pipeline for the calculation 
of PSS values, beginning with the calculation of the maximum pressure during the cardiac 
cycle at the site of the cross-section of interest, followed by the 2D structural simulation 
using the aforementioned calculated pressure as a loading boundary condition. 

Table 2. Mooney–Rivlin parameters for the fibrotic plaque components as derived from [32]. 

Material C10 (Pa) C01 (Pa) C20 (Pa) C11 (Pa) C02 (Pa) d 
Fibrosis −3.3232 × 106 3.4296 × 106 4.5387 × 108 −1.021 × 109 5.8132 × 108 1 × 10−5 

2.2.4. Hemodynamic Features Used as Input for the ML Model 
A total of 134 cases were analyzed to compute the necessary hemodynamic parame-

ters for the event prediction model. This analysis included fluid-related hemodynamic 
parameters, as well as structural-derived parameters. Specific emphasis is given to deriv-
ing the highest plaque structural stress (PSS) value from each case via 2D structural anal-
ysis [33,34]. This value, acting as a biomechanical marker of vulnerability, is crucial for 
our predictive modeling, especially for the plaque rupture model. Apart from the PSS val-
ues, the 3D simulation produces metrics such as the Time-Averaged Wall Shear Stress 
(TAWSS) (Equation (6)), the average Oscillatory Shear Index (OSI) values (Equation (7)) 
and distributions throughout the artery, the pressure drop between the inlet (CCA bound-
ary), and the two outlets (ICA and ECA boundaries), respectively: 

𝑇𝐴𝑊𝑆𝑆 =
ଵ

்
∫ |𝜏௪|

்

଴
𝑑𝑡,  (6)

𝑂𝑆𝐼 =
ଵ

ଶ
ቈ1 −

ቚ
భ

೅
∫ ఛೢௗ௧

೅
బ ቚ

భ

೅
∫ |ఛೢ|

೅
బ ௗ௧

቉.  (7)

Figure 3. 2D mesh for the arterial model with the plaque component indicated in yellow. An inflation
process was followed in the two luminal borders, as well as at the borders of the fibrous plaque.

Table 2. Mooney–Rivlin parameters for the fibrotic plaque components as derived from [32].

Material C10 (Pa) C01 (Pa) C20 (Pa) C11 (Pa) C02 (Pa) d

Fibrosis −3.3232 × 106 3.4296 × 106 4.5387 × 108 −1.021 × 109 5.8132 × 108 1 × 10−5
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Figure 5. ML model development workflow. 

Figure 4. PSS and deformation calculations for a representative case (right carotid). (A) The initial
3D blood-flow simulation is used to depict the exact location at which the structural analysis was
performed. The location exhibited the highest plaque burden value in the entire arterial length. (B) PSS
calculated at 57.4 kPa, at the ICA, between the fibrous plaque and the arterial lumen. (C) Maximum
deformation calculated at the inner border of the ECA (0.14 mm).

2.2.4. Hemodynamic Features Used as Input for the ML Model

A total of 134 cases were analyzed to compute the necessary hemodynamic param-
eters for the event prediction model. This analysis included fluid-related hemodynamic
parameters, as well as structural-derived parameters. Specific emphasis is given to de-
riving the highest plaque structural stress (PSS) value from each case via 2D structural
analysis [33,34]. This value, acting as a biomechanical marker of vulnerability, is crucial
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for our predictive modeling, especially for the plaque rupture model. Apart from the PSS
values, the 3D simulation produces metrics such as the Time-Averaged Wall Shear Stress
(TAWSS) (Equation (6)), the average Oscillatory Shear Index (OSI) values (Equation (7)) and
distributions throughout the artery, the pressure drop between the inlet (CCA boundary),
and the two outlets (ICA and ECA boundaries), respectively:

TAWSS =
1
T

∫ T

0
|τw|dt, (6)

OSI =
1
2

1 −

∣∣∣ 1
T
∫ T

0 τwdt
∣∣∣

1
T
∫ T

0 |τw|dt

. (7)

where T is a full cardiac cycle and τw is the instantaneous WSS. The OSI can be considered
as the fraction of the angle and the magnitude change between the instantaneous wall shear
stress and the time-averaged wall shear stress. The values that can be assigned to it range
from 0–0.5. While 0.5 is a value that represents an unstable, oscillatory flow with a WSS
of 0 Pa, 0 denotes a wholly unidirectional WSS. Areas with high OSI values are typically
more likely to form plaque and exhibit endothelial dysfunction [35,36]. Atherogenesis has
also been shown to be more likely to manifest at very low TAWSS values (0.4 Pa), whereas
high TAWSS values (>40 Pa) may lead to endothelial dysfunction and subsequent damage,
raising the likelihood of thrombosis [37,38].

2.2.5. Problem Definition

The development of the final model for predicting cerebrovascular events is framed as
an advanced multivariate binary classification challenge, focusing on data from the electronic
Case Report Form (eCRF) repository of our dataset. This classification delineates between
class 0 (cases without events) and class 1 (cases with cerebrovascular events). Figure 5
depicts the ML model development pipeline which was followed. Given the imbalanced
nature of the dataset (115 cases with no events and 19 cases with cerebrovascular events),
with a significantly lower number of positive instances compared to negative instances, we
applied several preprocessing steps to ensure robust model training and evaluation.
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Table 3 shows the features used by the machine learning (ML) event prediction model
which combines imaging information, both 2D and 3D simulation-based features, as well
as eCRF-based data.



Diagnostics 2024, 14, 2204 9 of 17

Table 3. Utilized features for the event prediction model.

Feature type Feature

Imaging Artery, peak systolic velocity (PSV), ICA stenosis %, ECA stenosis
%, mean arterial pressure

Simulation-based
Peak TAESS, PECA/PCCA, PICA/PCCA, vessel average TAESS,

vessel average OSI, normalized area of low TAESS, Normalized
area of high OSI, plaque structural stress (PSS)

eCRF-based Smoking, diabetes, hypertension, BMI, alcohol abuse, statins

Data Encoding

Categorical features in the dataset were encoded using one-hot encoding to transform
them into a numerical format suitable for machine learning algorithms. This step ensures
that the model can process categorical data efficiently.

Data Splitting

The dataset was split into training and testing subsets using a 70–30 split. This
division was performed using stratified sampling to maintain the same proportion of
positive and negative instances in both the training and testing sets, preserving the original
class distribution. The training dataset included 80 class 0 instances and 13 class 1 instances,
whereas the test dataset included the remaining 35 class 0 instances and the remaining six
class 1 instances, respectively.

Dataset-imbalance-handling approaches

Two imbalance-handling approaches were implemented, (a) SMOTE Oversampling
for Class 1 and (b) Downsampling for Class 0, respectively.

a. SMOTE Oversampling (Class 1)

The Synthetic Minority Oversampling Technique (SMOTE) [39] was employed to
address class imbalance by generating synthetic samples for the minority class. This
technique interpolates between existing minority class samples to create new instances,
thereby balancing the class distribution without reducing the number of majority class
instances. SMOTE was applied to the training set, generating synthetic samples to balance
the classes. After applying SMOTE (Equation (8)), the values in the specified binary
columns were rounded and clipped to ensure they remained binary (0 or 1):

SMOTE − generated =
∑(Minority sample pairs)

Number of pairs
. (8)

b. Downsampling Class 0 (Majority class)

Random downsampling without replacement was applied based on the “Rando-
mUnderSampler” approach [40] to address class imbalance by reducing the number of
majority class instances to equally match the number of minority class instances. This
approach prevents the model from being biased towards the majority class by preserving
the same number of instances in both classes. The “RandomUnderSampler” was applied to
the training dataset to yield equally balanced populations as in:

Downsampling =
∑(Randomly selected majority samples)

Number of majority samples
. (9)

Model Training and Cross-Validation

The Gradient Boosting Tree (GBT) classifier was chosen to solve a binary classificaiton
problem (“0”: asbence of events, “1”: presence of events) based on its effectiveness in
handling complex, non-linear relationships and robustness to overfitting. We performed
5-fold stratified cross-validation on the training set to evaluate the model’s performance in
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both approaches (SMOTE approach and downsampling approach). The Gradient Boosting
Tree (GBT) classifier is a powerful ensemble learning algorithm which has been designed to
optimize predictive performance by combining multiple weak learners, typically decision
trees, into a strong learner. It involves the construction of a sequence of models, where each
model focuses on correcting the errors of its predecessor. The models are finally combined
to produce the predictive model. The learning process is briefly described below.

A base model F0(x) is initially defined as follows:

F0(x) = argmin
c ∑n

i=1 L(yi, c), (10)

where L is the loss function, yi are the true values, and c is a constant. An iterative boosting
is then applied for m = 1, 2. . ., M stages and the pseudo-residuals, say rim, are estimated
as in:

rim = −
[

∂L(yi, F(xi))

∂F(xi)

]
F=Fm−1

, (11)

where ∂L(yi, F(xi)) is the gradient of the loss function with respect to the predictions, and
Fm−1 is the model from the m−1 stage. A weak learner is then applied to the pseudo-
residuals, yielding:

hm(x) = argmin
h

∑n
i=1(rim − h(xi))

2, (12)

where hm(x) is the weak learn at stage m and (rim − h(xi))
2 is the squared error between

the pseudo-residuals and the weak learner’s predictions. The model at stage m, say Fm(x),
is then incrementally updated through the following rule:

Fm(x) = Fm−1(x) + vhm(x), (13)

where v is the learning rate which reflects the contribution of each weak learner. The final
model (i.e., the model after M stages, FM(x)) is defined as the sum of the base model with
the contributions from all the weak learners:

FM(x) = F0(x) + ∑M
m=1 vhm(x). (14)

We employed everything in Python 3.11 using the “GradientBoostingClassifier” from
the scikit-learn package, where the number of estimators (i.e., number of boosting stages)
was set to 100, the learning rate to 0.1, the loss was set to the logarithmic loss, and the max.
depth of the individual regression estimators to 3. The quality of each split was measured
using the mean squared error with improvement score by Friedman.

3. Results
3.1. Internal Validation of Both Approaches on the Training Dataset

The utilized model performance metrics for the comparison of the two imbalance
handling approaches are the balanced accuracy, the negative predictive value, the positive
predictive value, the area under the receiver operating curve (ROC AUC), and the sensitivity
and specificity. The values of the adopted performance metrics and their mean value and
the 5-fold standard deviation are given in Table 4 for the SMOTE approach and in Table 5
for the downsampling approach.

The results of the 5-fold cross-validation scheme revealed a slight superiority of the
SMOTE approach over the downsampling approach, something that was somehow ex-
pected due the nature of the SMOTE process, which increases the minority class instances to
match the instances of the majority class regarding the training dataset. The downsampling
approach, on the other hand, produced relatively satisfactory internal validation results,
even though the minority class instances within the training data were very few. Given the
relatively small number of positive instances in our dataset, using five folds ensures that
each fold contains a sufficient number of samples from both classes, maintaining the class
distribution and providing more stable and reliable performance estimates compared to
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higher fold values like 10-fold, which might result in folds with very few positive instances.
This approach also mitigates the risk of overfitting and ensures that the performance metrics
we obtain are more reflective of the model’s ability to generalize to unseen data, making it
a robust choice for validating our predictive models.

Table 4. Evaluation of the cerebrovascular event prediction problem over 5-fold using both imaging-
and non-imaging-derived data on the training dataset using the SMOTE approach.

Fold Balanced Accuracy NPV PPV AUC Sensitivity Specificity

0 0.91 0.88 0.93 0.99 0.88 0.94
1 0.97 1 0.94 1 1 0.94
2 1 1 1 1 1 1
3 0.84 0.88 0.82 0.84 0.88 0.81
4 0.94 1 0.89 1 1 0.88

Mean 0.93 0.95 0.92 0.96 0.95 0.91

Table 5. Evaluation of the cerebrovascular event prediction problem over 5-fold using both imaging-
and non-imaging-derived data on the training dataset using the downsampling approach.

Fold Balanced Accuracy NPV PPV AUC Sensitivity Specificity

0 1 1 1 1 1 1
1 0.75 0.50 1 0.75 0.50 1
2 0.67 1 0.5 0.67 1 0.33
3 1 1 1 1 1 1
4 0.83 0.67 1 1 0.67 1

Mean 0.85 0.83 0.9 0.88 0.83 0.87

SHapley Additive exPlanations (SHAP) analysis was performed to explain the pre-
dictions made by the proposed model by calculating the influence of each feature to the
overall event prediction [41]. The most influential features of the proposed ML model using
the SMOTE approach are presented in Figure 6. The mean calculated SHAP values for all
the utilized features were calculated to reflect the global feature importance.
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These features represent the most significant predictors of the event outcome in the
dataset, with the PSS (plaque structural stress) being the most influential, followed by the
presence of hypercholesterolemia and the areas of high OSI.

3.2. Testing of Both Approaches on the Test Dataset

The performance of the SMOTE approach on the test dataset demonstrated its ef-
fectiveness in addressing class imbalance and improving the model’s ability to predict
cerebrovascular events. The SMOTE-enhanced model achieved a classification outcome
that indicated balanced sensitivity and specificity, ensuring that both positive and negative
instances were accurately identified. Specifically, the confusion matrix for the SMOTE
approach revealed 32 true negatives, three false positives, two false negative, and four true
positives. This translated to a high specificity rate, indicating a strong ability to correctly
identify non-events, while maintaining a reasonable sensitivity rate for detecting actual
events. The ROC AUC score further supported the robustness of this model, showcasing
its inherent ability in distinguishing between the positive and negative classes.

In contrast, the “RandomUnderSampler” approach, also exhibited promising results
on the test dataset. The confusion matrix for this method showed 28 true negatives, seven
false positives, zero false negatives, and six true positives. Figure 7 depicts the normalized
confusion matrices for the two approaches. The ROC AUC score was also competitive,
reflecting its balanced performance across both classes. Overall, both approaches demon-
strated their respective strengths, with the SMOTE approach presenting slightly superior
results in all metrics.
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The performance of the GBT classifier for both class imbalance approaches is depicted
in Table 6.

Table 6. Aggregated performance results for both approaches on the test dataset.

Class Imbalance
Approach Accuracy ROC AUC Recall Specificity F1-Score

SMOTE 88% 0.92 0.88 91% 0.88
Downsampling 83% 0.91 0.83 80% 0.85

4. Discussion

In this work, we developed a robust predictive model for cerebrovascular events
by integrating finite element-derived simulation results with imaging and non-imaging
clinical data. Our methodology involved comprehensive data preprocessing, including the
encoding of categorical variables. To address the significant class imbalance in our dataset
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(115 class 0 vs. 19 class 1 instances), we employed two distinct techniques: “RandomUnder-
Sampler” and Synthetic Minority Oversampling Technique (SMOTE). The “RandomUnder-
Sampler” method undersamples (or downsamples) the majority class to create a more
balanced training set, while SMOTE generates synthetic samples for the minority class,
enhancing the model’s ability to learn from both classes. We then trained a GBT classifier,
leveraging its strength in handling complex, non-linear relationships within the data.

The performance of our predictive model was initially evaluated on the transformed
train datasets using a 5-fold cross-validation strategy to ensure reliable and generalizable
results. This strategy maintained the class distribution within each fold, providing ro-
bust performance estimates. The results indicated that both the “RandomUnderSampler”
and SMOTE approaches effectively improved the model’s sensitivity and specificity. As
indicated in the generated results, the SMOTE approach was the selection of preference,
since it produced a more balanced performance, compared to the “RandomUnderSampler”
approach. Both methods achieved balanced accuracy and high ROC AUC scores, confirm-
ing the model’s capability to distinguish between positive and negative instances. These
results underscore the effectiveness of our approach in creating a reliable predictive model
for cerebrovascular events. The final GBT model (SMOTE-enabled) exhibited a balanced
accuracy of 88% along with an AUC of 0.91. The performance of our approach compared
to other ML-based models from literature is presented in Table 7.

Table 7. Comparison of our ML-based approach to current literature on ML-based predictive models
for cerebrovascular-related events.

Publication Accuracy Specificity AUC F1-Score

Wu, X., et al. [25] 0.85 0.82 0.87 0.84
Weng, S., [26] 0.88 0.86 0.9 0.87
Xia, H., [27] 0.83 0.8 0.84 0.82
Yun, K., [28] 0.9 0.88 0.91 0.89
Bin, C., [29] 0.84 0.81 0.85 0.83

Our approach 0.88 0.91 0.92 0.88

The integration of finite element-derived simulation results as input features repre-
sents a significant innovation in our predictive modeling framework. By combining these
sophisticated simulation outputs with imaging and non-imaging data, we have enriched
the feature space, enabling the model to capture more nuanced patterns associated with
cerebrovascular events. This multidisciplinary approach leverages the strengths of ad-
vanced computational techniques and clinical insights, providing a more comprehensive
understanding of the factors contributing to cerebrovascular risks. The finite element simu-
lations offer detailed biomechanical insights that are not typically available from clinical
data alone, thus enhancing the model’s predictive power.

Our method’s innovative aspect lies in this unique combination of data types, which
has not been extensively explored in previous studies. The inclusion of simulation-derived
features allows for a more detailed characterization of the vascular environment, potentially
leading to earlier and more accurate predictions of cerebrovascular events. This approach
not only demonstrates the feasibility of integrating diverse data sources but also sets a
precedent for future studies aiming to leverage advanced simulations in clinical predictive
models. By incorporating these elements, our work provides a novel framework that could
be adapted and expanded for other clinical applications, ultimately contributing to more
personalized and precise healthcare interventions.

However, the main limitation of our work lies in the rather small dataset that was
available. The dataset was relatively imbalanced, a fact that can obviously be attributed
to the fact that cerebrovascular events are less than common in asymptomatic patients
with carotid artery disease. This was partially tackled by using a 5-fold cross-validation
technique, as well as by trying an oversampling (SMOTE) technique for the minority
class and calculating the results of the newly acquired enhanced dataset, as well as by
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applying a downsampling approach for the majority class to match the size of the minority
class and recalculating the newly acquired dataset. Obviously, in the presence of a higher
number of recorded events which would lead to a more balanced dataset, a different
validation strategy would have been followed, having an obviously larger test subset.
Furthermore, the proposed method relies on the accuracy of the 3D reconstruction of
the carotid vasculature, as well as on the accuracy of the plaque characterization process
performed. Both aspects are highly dependent on the quality of the acquired MRI images,
a fact that can easily affect the calculated hemodynamic parameters which, in turn, affect
the risk of cerebrovascular events that is calculated through the ML model.

The clinical impact of our work is of great importance, since it covers a sensitive
subset of carotid artery disease patients who are asymptomatic but also have carotid
artery stenoses of >50%. Our model addresses a critical gap in current clinical practice
by providing a risk stratification beyond the conventional stenosis threshold of 80% used
for surgical interventions. Specifically, it can identify patients with stenoses less than 80%
who are at high risk of cerebrovascular events, thereby enabling earlier intervention and
potentially preventing strokes that might otherwise be missed. Conversely, the model can
also discern patients with stenoses greater than 80% who are at low risk, thus preventing
unnecessary surgical procedures and their associated risks. By refining the decision-making
process for intervention, our model has the potential to improve patient outcomes, reduce
healthcare costs, and contribute to more personalized and effective management of carotid
artery disease.

Our future work will focus on acquiring significantly larger datasets to enhance
the robustness and generalizability of our predictive model for cerebrovascular events.
These expanded datasets will aim to include a diverse range of cases, particularly those
involving lipid-rich or calcified plaques, which are critical factors in the development
and progression of cerebrovascular disease. By incorporating these additional cases, we
can further refine our model to capture the full spectrum of clinical scenarios, thereby
improving its predictive accuracy and reliability. Moreover, larger datasets will allow for
more sophisticated machine learning techniques, such as deep learning, to be explored
and potentially implemented. These techniques can leverage the increased data volume to
identify even more subtle and complex patterns, ultimately leading to more precise and
personalized predictions. Additionally, future studies will investigate the integration of
other emerging data sources, such as genetic and molecular profiles, to further enhance the
predictive power and clinical applicability of our model.

5. Conclusions

Our main goal was to develop a predictive ML model for identifying the likelihood
of future cerebrovascular incidents, with a focus on asymptomatic cases. To accomplish
this, we utilized a dataset that included standard non-imaging information from electronic
Case Report Forms (eCRFs), imaging data from ultrasound (US) and magnetic resonance
imaging (MRI), hemodynamic and structural parameters obtained from 2D and 3D finite
element method (FEM) simulations. Despite the challenge of working with an imbalanced
dataset, a natural outcome due to the rarity of events among asymptomatic patients, our
methodology produced encouraging outcomes. The peculiarities of asymptomatic cases,
mainly the reduced frequency of varied plaque compositions like lipid-rich plaques or
hemorrhages, presented a constraint in data diversity. However, our model showcased
notable accuracy and specificity in forecasting cerebrovascular events, affirming its value
for clinical application.

Our workflow, which includes 3D reconstruction, blood-flow simulation, 2D structural
analysis, and risk assessment, was proven to be efficient. This streamlined approach
requires limited computational efforts and time, completing in just 15–20 min on average,
although this may vary with the quality of imaging and the artery length examined. This
efficiency, combined with the model’s accuracy, underscores our method’s practicality
and effectiveness.
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