On the Johnson–Tzitzeica Theorem, Graph Theory, and Yang–Baxter Equations
<p>The three coins problem (Tzitzeica 1908; Johnson 1916).</p> "> Figure 2
<p>A mathematical scheme. If <math display="inline"><semantics> <mi mathvariant="script">X</mi> </semantics></math>, <math display="inline"><semantics> <mi mathvariant="script">Y</mi> </semantics></math>, and <math display="inline"><semantics> <mi mathvariant="script">Z</mi> </semantics></math> have certain properties, then there exists a related <math display="inline"><semantics> <mi mathvariant="script">T</mi> </semantics></math>, with the same properties.</p> "> Figure 3
<p>The tangent to the third circle in <span class="html-italic">O</span> meets the line <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>C</mi> </mrow> </semantics></math> in <span class="html-italic">R</span>.</p> "> Figure 4
<p>The points <span class="html-italic">P</span>, <span class="html-italic">Q</span>, and <span class="html-italic">R</span> are collinear.</p> "> Figure 5
<p>The limit case of the following picture implies our theorem.</p> "> Figure 6
<p>The hypothesis of a Johnson–Tzitzeica theorem for graph diagrams: we consider an oriented graph with 7 vertices and 9 oriented edges.</p> "> Figure 7
<p>Proof of a Johnson–Tzitzeica theorem for graph diagrams: there exist a new vertex <span class="html-italic">T</span> and 3 oriented arrows making all the vertices in the graph sinks or sources of degree 3.</p> "> Figure 8
<p>A mixed graph.</p> "> Figure 9
<p>A mixed graph leading to a geometry theorem.</p> "> Figure 10
<p>The circles of radius r with centers <span class="html-italic">A</span>, <span class="html-italic">B</span>, and <span class="html-italic">C</span> meet at the point <span class="html-italic">T</span>.</p> "> Figure 11
<p>A graph diagram describing the relations among the above equations.</p> ">
Abstract
:1. Introduction
2. The Tzitzeica–Johnson Theorem and Pictorial Mathematics
3. The Tzitzeica–Johnson Theorem and Graph Diagrams
4. Yang–Baxter Equations, Relations, and Graphs
5. Applications, Historical Aspects, and Final Comments
Funding
Acknowledgments
Conflicts of Interest
References
- Circles, J. From Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Johnson_circles (accessed on 28 October 2021).
- Johnson, R.A. A Circle Theorem. Am. Math. Mon. 1916, 23, 161–162. [Google Scholar] [CrossRef]
- Cieslinski, J.; Doliwa, A.; Santini, P.M. The integrable discrete analogues of orthogonal coordinate systems are multidimensional circular lattices. Phys. Lett. A 1997, 235, 480–488. [Google Scholar] [CrossRef]
- Doliwa, A. Desargues maps and the Hirota–Miwa equation. Proc. R. Soc. A 2010, 466, 1177–1200. [Google Scholar] [CrossRef] [Green Version]
- Doliwa, A. Non-Commutative Rational Yang–Baxter. Lett. Math. Phys. 2014, 104, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Doliwa, A.; Sergeev, S.M. The pentagon relation and incidence geometry. J. Math. Phys. 2014, 55, 063504. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.N. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 1967, 19, 1312–1315. [Google Scholar] [CrossRef]
- Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: London, UK, 1982. [Google Scholar]
- Baxter, R.J. Partition function for the eight-vertex lattice model. Ann. Phys. 1972, 70, 193–228. [Google Scholar] [CrossRef]
- Nichita, F.F. Mathematics and Poetry · Unification, Unity, Union. Union. Sci. 2020, 2, 72. [Google Scholar]
- Nichita, F.F. Unification Theories: Examples and Applications. Axioms 2018, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Badea, I.R.; Mocanu, C.E.; Nichita, F.F.; Păsărescu, O. Applications of Non-Standard Analysis in Topoi to Mathematical Neurosciences and Artificial Intelligence: Infons, Energons, Receptons (I). Mathematics 2021, 9, 2048. [Google Scholar] [CrossRef]
- Drinfeld, V.G. Quantum groups. In Proceedings of the International Congress of Mathematicians, Berkeley, CA, USA, 3–11 August 1986; American Mathematical Society: Berkeley, CA, USA, 1986. [Google Scholar]
- “Noncommutative and Non-Associative Structures, Braces and Applications”, Malta, 11–15 March 2018. Available online: https://sites.google.com/site/alcodaworkshop/ (accessed on 28 October 2021).
- Smoktunowicz, A.; Alicja Smoktunowicz, A. Set-theoretic solutions of the Yang–Baxter equation and new classes of R-matrices. Linear Algebra Its Appl. 2018, 546, 86–114. [Google Scholar] [CrossRef] [Green Version]
- Nichita, F.F. On Jordan Algebras and Unification Theories; Revue Roumaine de Mathematiques Pures et Appliquees, Romanian Academy: Bucharest, Romania, 2016; Volume 61, pp. 305–316. [Google Scholar]
- Caragiu, F.; Lemeni, A.; Trausan-Matu, S. Language in Mathematics, Science and Artificial Intelligence vs. Language in Theology; Dialog in Absolut/ieromonah Ghelasie Gheorghe: Bucharest, Romania, 2007; pp. 293–3007. [Google Scholar]
- Moise, L.D.; Cristea, R. Gheorghe Titeica – contemporary geometry / reverbertii si permanente ale geometriei in contemporaneitate. In Proceedings of the Conferinta Nationala de Invatamant Virtual, Editia a XI-a, Bucharest, Romania, 25–26 October 2013; pp. 150–156. [Google Scholar]
- Hobby, D.; Nichita, F.F. Solutions for the set-theoretical Yang–Baxter equation derived from relations. Acta Univ. Apulensis 2012, 30, 15–23. [Google Scholar]
- Tzitzeica, G. From Wikipedia, the Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Gheorghe_%C8%9Ai%C8%9Beica (accessed on 26 October 2021).
- Tzitzeica, G. Geometry Problems…and beyond Them; SIGMA: Bucharest, Romania, 2014. (In Romanian) [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nichita, F.F. On the Johnson–Tzitzeica Theorem, Graph Theory, and Yang–Baxter Equations. Symmetry 2021, 13, 2070. https://doi.org/10.3390/sym13112070
Nichita FF. On the Johnson–Tzitzeica Theorem, Graph Theory, and Yang–Baxter Equations. Symmetry. 2021; 13(11):2070. https://doi.org/10.3390/sym13112070
Chicago/Turabian StyleNichita, Florin F. 2021. "On the Johnson–Tzitzeica Theorem, Graph Theory, and Yang–Baxter Equations" Symmetry 13, no. 11: 2070. https://doi.org/10.3390/sym13112070