Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter
<p>The proposed schematic phase structure for density regimes: <math display="inline"><semantics> <msub> <mi>n</mi> <mn>0</mn> </msub> </semantics></math> stands for equilibrium nuclear matter density, <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math> for onset density of half-skyrmions, <math display="inline"><semantics> <msub> <mi>n</mi> <mi>DLFP</mi> </msub> </semantics></math> for dilaton limit fixed point, <math display="inline"><semantics> <msub> <mi>n</mi> <mi>IRFP</mi> </msub> </semantics></math> for IR fixed point and <math display="inline"><semantics> <msub> <mi>n</mi> <mi>VM</mi> </msub> </semantics></math> for vector manifestation fixed point.</p> "> Figure 2
<p>The ratio <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>〈</mo> <mi>χ</mi> <mo>〉</mo> </mrow> <mo>*</mo> </msup> <mo>/</mo> <msub> <mrow> <mo>〈</mo> <mi>χ</mi> <mo>〉</mo> </mrow> <mn>0</mn> </msub> </mrow> </semantics></math> where <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>〈</mo> <mi>χ</mi> <mo>〉</mo> </mrow> <mo>*</mo> </msup> <mo>∝</mo> <msubsup> <mi>f</mi> <mi>χ</mi> <mo>*</mo> </msubsup> </mrow> </semantics></math> as a function of density <span class="html-italic">n</span> for varying “induced density dependence” (DD<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>i</mi> <mi>n</mi> <mi>d</mi> <mi>u</mi> <mi>c</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </semantics></math>)—distinct from IDD (intrinsic density dependence) inherited from QCD—of <math display="inline"><semantics> <msubsup> <mi>g</mi> <mrow> <mi>V</mi> <mi>ω</mi> </mrow> <mo>*</mo> </msubsup> </semantics></math> which is parameterized as <math display="inline"><semantics> <mrow> <msubsup> <mi>g</mi> <mrow> <mi>V</mi> <mi>ω</mi> </mrow> <mo>*</mo> </msubsup> <mo>−</mo> <mn>1</mn> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mi>g</mi> <mrow> <mi>V</mi> <mi>ω</mi> </mrow> </msub> <mo>−</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>y</mi> <mfrac> <mi>n</mi> <msub> <mi>n</mi> <mn>0</mn> </msub> </mfrac> <mo stretchy="false">)</mo> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. The density at which the ratio <math display="inline"><semantics> <mrow> <msup> <mrow> <mo>〈</mo> <mi>χ</mi> <mo>〉</mo> </mrow> <mo>*</mo> </msup> <mo>/</mo> <msub> <mrow> <mo>〈</mo> <mi>χ</mi> <mo>〉</mo> </mrow> <mn>0</mn> </msub> </mrow> </semantics></math> becomes constant is not given by the theory but comes out to be <math display="inline"><semantics> <mrow> <mo>∼</mo> <mn>3</mn> <msub> <mi>n</mi> <mn>0</mn> </msub> </mrow> </semantics></math> in compact-star phenomenology. This density can be identified with <math display="inline"><semantics> <msub> <mi>n</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics></math>, the density at which skyrmion matter transitions to half-skyrmion matter.</p> ">
Abstract
:1. Introduction
2. The Problem: Dichotomy
3. GnEFT Lagrangian
3.1. Scale-Invariant Hidden Local Symmetric (sHLS) Lagrangian
3.2. “Genuine Dilaton” Scenario (GDS)
Unhiding Hidden Scale Symmetry in Nuclei
4. Baryonic Matter without
4.1. Dilaton Limit Fixed Point (DLFP)
4.2. Interplay between and
4.3. The Trace Anomaly and Pseudo-Conformal Symmetry
5. Baryonic Matter with
5.1. From sHLS to the Ring
5.2. Going from the Ring to the Pionic Sheet
6. Ubiquitous Sheet Structure of Baryonic Matter
6.1. Crystal Skyrmions
6.2. Density Functional Theory (DFT)
6.3. Hadron—Quark Continuity a.k.a. Duality
6.4. Hadron—Quark Continuity or Deconfinement
6.5. Emergence of Hidden Scale Symmetry in Nuclear Matter
7. Comments and Further Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammer, H.-W.; König, S.; van Kolck, U. Nuclear effective field theory: Status and perspectives. Rev. Mod. Phys. 2020, 92, 025004. [Google Scholar] [CrossRef]
- Holt, J.W.; Rho, M.; Weise, W. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter. Phys. Rept. 2016, 621, 2. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. What is quantum field theory, and what did we think it is? arXiv 1997, arXiv:hep-th/9702027. [Google Scholar]
- Shankar, R. Renormalization group approach to interacting fermions. Rev. Mod. Phys. 1994, 66, 129. [Google Scholar] [CrossRef] [Green Version]
- Polchinski, J. Effective field theory and the Fermi surface. arXiv 1992, arXiv:hep-th/9210046. [Google Scholar]
- Holt, J.W.; Kaiser, N.; Weise, W. Chiral Fermi liquid approach to neutron matter. Phys. Rev. C 2013, 87, 014338. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.W.; Brown, G.E.; Holt, J.D.; Kuo, T.T.S. Nuclear matter with Brown-Rho-scaled Fermi liquid interactions. Nucl. Phys. A 2007, 785, 322. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.L.; Rho, M. Towards the hadron-quark continuity via a topology change in compact stars. Prog. Part. Nucl. Phys. 2020, 113, 103791. [Google Scholar] [CrossRef]
- Bando, M.; Kugo, T.; Uehara, S.; Yamawaki, K.; Yanagida, T. Is ρ meson a dynamical gauge boson of hidden local symmetry? Phys. Rev. Lett. 1985, 54, 1215. [Google Scholar] [CrossRef]
- Suzuki, M. Inevitable emergence of composite gauge bosons. Phys. Rev. D 2017, 96, 065010. [Google Scholar] [CrossRef] [Green Version]
- Crewther, R.J. Genuine dilatons in gauge theories. Universe 2020, 6, 96. [Google Scholar] [CrossRef]
- Crewther, R.J.; Tunstall, L.C. ΔI = 1/2 rule for kaon decays derived from QCD infrared fixed point. Phys. Rev. D 2015, 91, 034016. [Google Scholar] [CrossRef] [Green Version]
- Skyrme, T.H.R. A unified field theory of mesons and baryons. Nucl. Phys. 1962, 315, 556. [Google Scholar] [CrossRef]
- Komargodski, Z. Baryons as quantum Hall droplets. arXiv 2018, arXiv:1812.09253. [Google Scholar]
- Karasik, A. Skyrmions, quantum Hall droplets, and one current to rule them all. SciPost Phys. 2020, 9, 8. [Google Scholar] [CrossRef]
- Karasik, A. Vector dominance, one flavored baryons, and QCD domain walls from the “hidden” Wess-Zumino term. SciPost Phys. 2021, 10, 138. [Google Scholar] [CrossRef]
- Nadkarni, S.; Nielsen, H.B.; Zahed, I. Bosonization relations as bag boundary conditions. Nucl. Phys. B 1985, 253, 308. [Google Scholar] [CrossRef]
- Ma, Y.L.; Nowak, M.A.; Rho, M.; Zahed, I. Baryon as a quantum Hall droplet and the hadron-quark duality. Phys. Rev. Lett. 2019, 123, 172301. [Google Scholar] [CrossRef] [Green Version]
- Callan, C.G., Jr.; Harvey, J.A. Anomalies and fermion zero modes on strings and domain Walls. Nucl. Phys. B 1985, 250, 427. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Mapping topology to nuclear dilaton-HLS effective field theory for dense baryonic matter. arXiv 2021, arXiv:2103.01860. [Google Scholar]
- Goldstone, J.; Jaffe, R.L. The baryon number in chiral bag models. Phys. Rev. Lett. 1983, 51, 1518. [Google Scholar] [CrossRef] [Green Version]
- Harada, M.; Yamawaki, K. Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition. Phys. Rep. 2003, 381, 1–233. [Google Scholar] [CrossRef] [Green Version]
- Shaposhnikov, M.; Zenhausern, D. Quantum scale invariance, cosmological constant and hierarchy problem. Phys. Lett. B 2009, 671, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Kan, N.; Kitano, R.; Yankielowicz, S.; Yokokura, R. From 3d dualities to hadron physics. Phys. Rev. D 2020, 102, 125034. [Google Scholar] [CrossRef]
- Komargodski, Z. Vector mesons and an interpretation of Seiberg duality. J. High Energy Phys. 2011, 2011, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.; Barnard, J. Seiberg duality versus hidden local symmetry. J. High Energy Phys. 2012, 2012, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Kitano, R.; Nakamura, M.; Yokoi, N. Making confining strings out of mesons. Phys. Rev. D 2012, 86, 014510. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.L.; Rho, M. Quenched gA in nuclei and emergent scale symmetry in baryonic matter. Phys. Rev. Lett. 2020, 125, 142501. [Google Scholar] [CrossRef]
- Rho, M. Multifarious roles of hidden chiral-scale symmetry: “Quenching” gA in nuclei. Symmetry 2021, 13, 1388. [Google Scholar] [CrossRef]
- Li, Y.L.; Ma, Y.L.; Rho, M. Chiral-scale effective theory including a dilatonic meson. Phys. Rev. D 2017, 95, 114011. [Google Scholar] [CrossRef] [Green Version]
- Appelquist, T.; Ingoldby, J.; Piai, M. Nearly conformal composite Higgs model. Phys. Rev. Lett. 2021, 126, 191804. [Google Scholar] [CrossRef]
- Beane, S.R.; van Kolck, U. The dilated chiral quark model. Phys. Lett. B 1994, 328, 137. [Google Scholar] [CrossRef] [Green Version]
- Gell-Mann, M.; Lévy, M. The axial vector current in beta decay. Nuovo Cim. 1960, 16, 705. [Google Scholar] [CrossRef]
- Yamawaki, K. Hidden local symmetry and beyond. Int. J. Mod. Phys. E 2017, 26, 1740032. [Google Scholar] [CrossRef] [Green Version]
- Harada, M.; Lee, H.K.; Ma, Y.L.; Rho, M. Inhomogeneous quark condensate in compressed Skyrmion matter. Phys. Rev. D 2015, 91, 096011. [Google Scholar] [CrossRef] [Green Version]
- Buballa, M.; Carignano, S. Inhomogeneous chiral symmetry breaking in dense neutron-star matter. Eur. Phys. J. A 2016, 52, 57. [Google Scholar] [CrossRef] [Green Version]
- Mueller, E.J. Pseudogaps in strongly interacting Fermi gases. Rep. Prog. Phys. 2017, 80, 104401. [Google Scholar] [CrossRef] [Green Version]
- Harada, M.; Sasaki, C.; Takemoto, S. Enhancement of quark number susceptibility with an alternative pattern of chiral symmetry breaking in dense matter. Phys. Rev. D 2010, 81, 016009. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chudnovskiy, A.L.; Gorsky, A.; Kamenev, A. SYK superconductivity: Quantum Kuramoto and generalized Richardson models. Phys. Rev. Res. 2020, 2, 033025. [Google Scholar] [CrossRef]
- Sasaki, C.; Lee, H.K.; Paeng, W.G.; Rho, M. Conformal anomaly and the vector coupling in dense matter. Phys. Rev. D 2011, 84, 034011. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.L.; Harada, M.; Lee, H.K.; Oh, Y.; Park, B.Y.; Rho, M. Dense baryonic matter in the hidden local symmetry approach: Half-skyrmions and nucleon mass. Phys. Rev. D 2013, 88, 014016. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.B.; Rho, M.; Wirzba, A.; Zahed, I. Color anomaly in a hybrid bag model. Phys. Lett. B 1991, 269, 389. [Google Scholar] [CrossRef]
- Lee, H.J.; Min, D.P.; Park, B.Y.; Rho, M.; Vento, V. The proton spin in the chiral bag model: Casimir contribution and Cheshire cat principle. Nucl. Phys. A 1999, 657, 75. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.K.; Caplan, M.E.; Horowitz, C.J.; Huber, G.; Schneider, A.S. ’Parking-garage’ structures in nuclear astrophysics and cellular biophysics. Phys. Rev. C 2016, 94, 055801. [Google Scholar] [CrossRef] [Green Version]
- Park, B.Y.; Paeng, W.G.; Vento, V. The Inhomogeneous phase of dense skyrmion matter. Nucl. Phys. A 2019, 989, 231. [Google Scholar] [CrossRef] [Green Version]
- Canfora, F. Ordered arrays of baryonic tubes in the Skyrme model in (3 + 1) dimensions at finite density. Eur. Phys. C 2018, 78, 929. [Google Scholar] [CrossRef]
- Canfora, F.; Lagos, M.; Vera, A. Crystals of superconducting baryonic tubes in the low energy limit of QCD at finite density. Eur. Phys. J. C 2020, 80, 697. [Google Scholar] [CrossRef]
- Hu, Y.; Jain, J.K. Kohn-Sham theory of the fractional quantum Hall effect. Phys. Rev. Lett. 2019, 123, 176802. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Kimm, K.; Zou, L.; Cho, Y.M. Re-interpretation of Skyrme theory: New topological structures. arXiv 2017, arXiv:1704.05975. [Google Scholar]
- Gudnason, S.B.; Nitta, M. Fractional skyrmions and their molecules. Phys. Rev. D 2015, 91, 085040. [Google Scholar] [CrossRef] [Green Version]
- Sulejmanpasic, T.; Shao, H.; Sandvik, A.; Unsal, M. Confinement in the bulk, deconfinement on the wall: Infrared equivalence between compactified QCD and quantum magnets. Phys. Rev. Lett. 2017, 119, 091601. [Google Scholar] [CrossRef] [Green Version]
- Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 2020, 16, 907–910. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. The sound speed and core of massive compact stars: A manifestation of hadron-quark duality. arXiv 2021, arXiv:2104.13822. [Google Scholar]
- Schäfer, T.; Wilczek, F. Continuity of quark and hadron matter. Phys. Rev. Lett. 1999, 82, 3956. [Google Scholar] [CrossRef]
- Cherman, A.; Jacobson, T.; Sen, S.; Yaffe, L.G. Higgs-confinement phase transitions with fundamental representation matter. arXiv 2020, arXiv:2007.08539. [Google Scholar]
- Rho, M.; Ma, Y.L. Manifestation of hidden symmetries in baryonic matter: From finite nuclei to neutron stars. Mod. Phys. Lett. A 2021, 36, 2130012. [Google Scholar] [CrossRef]
- Hong, D.K.; Rho, M.; Yee, H.U.; Yi, P. Dynamics of baryons from string theory and vector dominance. J. High Energy Phys. 2007, 2007, 063. [Google Scholar] [CrossRef]
- Kitano, R.; Matsudo, R. Vector mesons on the wall. J. High Energy Phys. 2021, 2021, 1–27. [Google Scholar] [CrossRef]
- Brown, G.E.; Harada, M.; Holt, J.W.; Rho, M.; Sasaki, C. Hidden local field theory and dileptons in relativistic heavy ion collisions. Prog. Theor. Phys. 2009, 121, 1209–1236. [Google Scholar] [CrossRef] [Green Version]
- Braun-Munzinger, P.; Koch, V.; Schäfer, T.; Stachel, J. Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rep. 2016, 621, 76–126. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, T.; Baym, G. From nuclear to unnuclear physics. arXiv 2021, arXiv:2109.06924. [Google Scholar]
- Georgi, H. Unparticle physics. Phys. Rev. Lett. 2007, 98, 221601. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-L.; Rho, M. Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter. Symmetry 2021, 13, 1888. https://doi.org/10.3390/sym13101888
Ma Y-L, Rho M. Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter. Symmetry. 2021; 13(10):1888. https://doi.org/10.3390/sym13101888
Chicago/Turabian StyleMa, Yong-Liang, and Mannque Rho. 2021. "Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter" Symmetry 13, no. 10: 1888. https://doi.org/10.3390/sym13101888