A Novel Global Sensitivity Measure Based on Probability Weighted Moments
<p>MaxEnt approximation combined with the PWMs of the Pareto quantile function.</p> "> Figure 2
<p>Measures based on PWMs under different orders for Example 2.</p> "> Figure 3
<p>(<b>a</b>) Roof truss structure and (<b>b</b>) distribution of loads and dimensions.</p> ">
Abstract
:1. Introduction
2. Review of Dominating Global Sensitivity Measure Systems
2.1. Variance-Based Global Sensitivity Measures
2.2. Moment-Independent Global Sensitivity Measures
3. Probability Weighted Moments
4. Global Sensitivity Measure Based on Probability Weighted Moments
5. Numerical Estimation for Global Sensitivity Measures
5.1. Double-Loop-Repeated-Set Numerical Estimators
5.2. Double-Loop-Single-Set Numerical Estimators
6. Examples and Discussion
6.1. Numerical Example 1: Linear Function with Normal Distribution Variables
6.2. Numerical Example 2: Linear Function with Exponential Distribution Variables
6.3. Numerical Example 3: Ishigami Function
6.4. Engineering Example: A Roof Truss Structure
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Saltelli, A.; Andres, M.; Campolongo, F. Global Sensitivity Analysis: The Primer; John Wiley & Sons Ltd.: Chichester, UK, 2008. [Google Scholar]
- Sobol, I.M. Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1993, 26, 407–414. [Google Scholar]
- Iman, R.L.; Hora, S.C. A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis. Risk Anal. 1990, 10, 401–406. [Google Scholar] [CrossRef]
- Homma, T.; Saltelli, A. Importance measures in global sensitivity analysis of nonlinear models. Reliab. Eng. Syst. Saf. 1996, 52, 1–17. [Google Scholar] [CrossRef]
- Saltelli, A.; Tarantola, S. On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal. J. Am. Stat. Assoc. 2002, 97, 702–709. [Google Scholar] [CrossRef]
- Hang, Y.; Liu, Y.; Xu, X.; Chen, Y.; Mo, S. Sensitivity Analysis Based on Markovian Integration by Parts Formula. Math. Comput. Appl. 2017, 22, 40. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Lu, Z.; Ling, C.; Zhou, S. Surrogate-assisted global sensitivity analysis: An overview. Struct. Multidiscip. Optim. 2020, 61, 1187–1213. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Zeng, S.K.; Guo, J.B.; Du, S. Global Reliability Sensitivity Analysis Based on Maximum Entropy and 2-Layer Polynomial Chaos Expansion. Entropy 2018, 20, 202. [Google Scholar] [CrossRef] [Green Version]
- Bhonsale, S.; López, C.A.M.; Van Impe, J. Global Sensitivity Analysis of a Spray Drying Process. Processes 2019, 7, 562. [Google Scholar] [CrossRef] [Green Version]
- Mellado, M.E.; Cisternas, L.A.; Lucay, F.A.; Gálvez, E.D. A Posteriori Analysis of Analytical Models for Heap Leaching Using Uncertainty and Global Sensitivity Analyses. Minerals 2018, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.-J.; Choi, Y.S. Sensitivity Analysis to Investigate the Reliability of the Grid-Based Rainfall-Runoff Model. Water 2018, 10, 1839. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Jia, Y.; Wang, C. Global Sensitivity Analysis for the Polymeric Microcapsules in Self-Healing Cementitious Composites. Polymers 2020, 12, 2990. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.A. Why risk is not variance: An expository note. Risk Anal. 2008, 28, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.A. “Why risk is not variance: An expository note” letter to editor. Risk Anal. Ysis 2010, 30, 327–328. [Google Scholar]
- Chun, M.-H.; Han, S.-J.; Tak, N.-I. An uncertainty importance measure using a distance metric for the change in a cumulative distribution function. Reliab. Eng. Syst. Saf. 2000, 70, 313–321. [Google Scholar] [CrossRef]
- Liu, H.B.; Chen, W.; Sudjianto, A. Relative entropy based method for global and regional sensitivity analysis in probabilistic design. In Proceedings of the ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt Lake City, UT, USA, 28 September–2 October 2004; pp. 983–992. [Google Scholar]
- Borgonovo, E. A new uncertainty importance measure. Reliab. Eng. Syst. Saf. 2007, 92, 771–784. [Google Scholar] [CrossRef]
- Cui, L.; Lu, Z.; Zhao, X. Moment-independent importance measure of basic random variable and its probability density evolution solution. Sci. China Ser. E Technol. Sci. 2010, 53, 1138–1145. [Google Scholar] [CrossRef]
- Kucherenko, S.; Rodriguez-Fernandez, M.; Pantelides, C.; Shah, N. Monte Carlo evaluation of derivative based global sensitivity measures. Reliab. Eng. Syst. Saf. 2009, 94, 1135–1148. [Google Scholar] [CrossRef]
- Sobol, I.M.; Kucherenko, S. Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul. 2009, 79, 3009–3017. [Google Scholar] [CrossRef]
- Fort, J.-C.; Klein, T.; Rachdi, N. New sensitivity analysis subordinated to a contrast. Commun. Stat. Theory Methods 2016, 45, 4349–4364. [Google Scholar] [CrossRef] [Green Version]
- Kala, Z. From Probabilistic to Quantile-Oriented Sensitivity Analysis: New Indices of Design Quantiles. Symmetry 2020, 12, 1720. [Google Scholar] [CrossRef]
- Baroni, G.; Francke, T. An effective strategy for combining variance- and distribution-based global sensitivity analysis. Environ. Model. Softw. 2020, 134, 104851. [Google Scholar] [CrossRef]
- Greenwood, J.A.; Landwehr, J.M.; Matalas, N.C.; Wallis, J.R. Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form. Water Resour. Res. 1979, 15, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Pandey, M.D. Estimation of minimum cross-entropy quantile function using fractional probability weighted moments. Probabilistic Eng. Mech. 2009, 24, 43–50. [Google Scholar] [CrossRef]
- Pandey, M.D. Direct estimation of quantile functions using the maximum entropy principle. Struct. Saf. 2000, 22, 61–79. [Google Scholar] [CrossRef]
- Liu, Q.; Homma, T. A New Importance Measure for Sensitivity Analysis. J. Nucl. Sci. Technol. 2010, 47, 53–61. [Google Scholar] [CrossRef]
- Haktanir, T.; Bozduman, A. A study on sensitivity of the probability-weighted moments method on the choice of the plotting position formula. J. Hydrol. 1995, 168, 265–281. [Google Scholar] [CrossRef]
- Sobol, I.M. On the distribution of points in a cube and the approximate evaluation of integrals. Comput. Comput. Math. Math. Phys. 1967, 7, 86–112. [Google Scholar] [CrossRef]
- Sobol, I.M. Uniformly distributed sequences with additional uniformity properties. USSR Comput. Math. Math. Phys. 1976, 16, 236–242. [Google Scholar] [CrossRef]
- Ishigami, T.; Homma, T. An importance quantification technique in uncertainty analysis for computer models. In ISUMA’90, First International Symposium on Uncertainty Modelling and Analysis; University of Maryland: College Park, MD, USA, 1990; pp. 398–403. [Google Scholar]
- Mei, G. Research on Structural Reliability by Nonlinear Stochastic Finite Element Method; Tsinghua University: Beijing, China, 2005. (In Chinese) [Google Scholar]
Same Value of All Variables | Different Values of All Variables | Parameters | |
---|---|---|---|
Case 1 | ,, | / | , , |
Case 2 | ,, | , , | |
Case 3 | ,, | / | , , |
Case 4 | , | , , | |
Case 5 | , | , , |
Measures | Si (STi) | ||
---|---|---|---|
Case 1 | [0.2500, 0.2500, 0.2500, 0.2500] | [0.1808, 0.1808, 0.1808, 0.1808] | [0.2500, 0.2500, 0.2500, 0.2500] |
Case 2 | [0.0333, 0.1333, 0.3000, 0.5334] | [0.0567, 0.1231, 0.2041, 0.3182] | [0.0021, 0.0361, 0.2019, 0.7599] |
Case 3 | [0.2500, 0.2500, 0.2500, 0.2500] | [0.1808, 0.1808, 0.1808, 0.1808] | [0.2500, 0.2500, 0.2500, 0.2500] |
Case 4 | [0.2500, 0.2500, 0.2500, 0.2500] | [0.1808, 0.1808, 0.1808, 0.1808] | [0.2500, 0.2500, 0.2500, 0.2500] |
Case 5 | [0.0333, 0.1333, 0.3000, 0.5334] | [0.0567, 0.1231, 0.2041, 0.3182] | [0.0021, 0.0361, 0.2019, 0.7599] |
Measures | Si/STi | |
---|---|---|
X1 | 0.2500 (1) | 0.1930 (1) |
X2 | 0.2500 (1) | 0.1930 (1) |
X3 | 0.2500 (1) | 0.1930 (1) |
X4 | 0.2500 (1) | 0.1930 (1) |
Measures | ||||
---|---|---|---|---|
k | 1 | 2 | 3 | 4 |
X1 | 0.2459 (4) | 0.3092 (2) | 0.3469 (2) | 0.3708 (2) |
X2 | 0.2559 (1) | 0.1931 (3) | 0.1556 (3) | 0.1319 (3) |
X3 | 0.2476 (3) | 0.3103 (1) | 0.3477 (1) | 0.3715 (1) |
X4 | 0.2505 (2) | 0.1874 (4) | 0.1497 (4) | 0.1258 (4) |
Sample size | 3000 |
Measures | Si | STi | |
---|---|---|---|
X1 | 0.3139 (2) | 0.5576 (1) | 0.2259 (2) |
X2 | 0.4424 (1) | 0.4424 (2) | 0.4086(1) |
X3 | 0 (3) | 0.2437 (3) | 0.1798 (3) |
Measures | ||||
---|---|---|---|---|
k | 1 | 2 | 3 | 4 |
X1 | 0.2109 (2) | 0.2126 (2) | 0.2410 (2) | 0.2771 (2) |
X2 | 0.7758 (1) | 0.7731 (1) | 0.7348 (1) | 0.6837 (1) |
X3 | 0.013l (3) | 0.0141 (3) | 0.0242 (3) | 0.0382 (3) |
Sample size | 3000 |
Variable X | Mean | Coefficient of Variance |
---|---|---|
q (N·m−1) | 20,000 | 0.07 |
l (m) | 12 | 0.01 |
As (m2) | 9.82 × 10−4 | 0.06 |
Ac (m2) | 0.04 | 0.12 |
Es (MPa) | 2 × 1011 | 0.06 |
Ec (MPa) | 3 × 1010 | 0.06 |
Measures | Si | STi | |
---|---|---|---|
q | 0.4581 (1) | 0.4608 (1) | 0.2831 (1) |
l | 0.0374 (5) | 0.0378 (5) | 0.0613 (5) |
As | 0.1710 (2) | 0.1725 (2) | 0.1427 (3) |
Ac | 0.1287 (4) | 0.1298 (4) | 0.1185 (4) |
Es | 0.1709 (3) | 0.1724 (3) | 0.1428 (2) |
Ec | 0.0300 (6) | 0.0306 (6) | 0.0541 (6) |
Sample size | 3 × 105 |
Measure | ||||
---|---|---|---|---|
k | 1 | 2 | 3 | 4 |
q | 0.7657 (1) | 0.7780 (1) | 0.7859 (1) | 0.7913 (1) |
L | 0.0039 (5) | 0.0037 (5) | 0.0035 (5) | 0.0036 (5) |
As | 0.0891 (3) | 0.0847 (3) | 0.0817 (3) | 0.0795 (3) |
Ac | 0.0491 (4) | 0.0454 (4) | 0.0433 (4) | 0.0418 (4) |
Es | 0.0898 (2) | 0.0858 (2) | 0.0831 (2) | 0.0812 (2) |
Ec | 0.0024 (6) | 0.0025 (6) | 0.0025 (6) | 0.0026 (6) |
Sample size | 4000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Wang, L. A Novel Global Sensitivity Measure Based on Probability Weighted Moments. Symmetry 2021, 13, 90. https://doi.org/10.3390/sym13010090
Song S, Wang L. A Novel Global Sensitivity Measure Based on Probability Weighted Moments. Symmetry. 2021; 13(1):90. https://doi.org/10.3390/sym13010090
Chicago/Turabian StyleSong, Shufang, and Lu Wang. 2021. "A Novel Global Sensitivity Measure Based on Probability Weighted Moments" Symmetry 13, no. 1: 90. https://doi.org/10.3390/sym13010090
APA StyleSong, S., & Wang, L. (2021). A Novel Global Sensitivity Measure Based on Probability Weighted Moments. Symmetry, 13(1), 90. https://doi.org/10.3390/sym13010090