A Simple Chaotic Flow with Hyperbolic Sinusoidal Function and Its Application to Voice Encryption
<p>(<b>a</b>) Bifurcation diagram, (<b>b</b>) Lyapunov exponents spectrum of dynamics (2), when changing <span class="html-italic">a</span> from 1.85 to 2.4, and <span class="html-italic">b</span> = <span class="html-italic">c</span> = 0.</p> "> Figure 2
<p>Strange chaos attractor for <span class="html-italic">a</span> = 2 and <span class="html-italic">b</span> = <span class="html-italic">c</span> = 0 in Scenario A.</p> "> Figure 3
<p>Limit cycle of period-1 for <span class="html-italic">b</span> = <span class="html-italic">c</span> = 0 and <span class="html-italic">a</span> = 2.35 in Scenario A.</p> "> Figure 4
<p>(<b>a</b>) Bifurcation diagram, (<b>b</b>) spectrum of Lyapunov exponents of (2), when changing <span class="html-italic">b</span> from 0 to 0.01, for <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">a</mi> <mo>=</mo> <mn mathvariant="bold">2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">c</mi> <mo>=</mo> <mn mathvariant="bold">0</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Strange chaotic attractors for <span class="html-italic">a</span> = 2, <span class="html-italic">b</span> = 0.005 and <span class="html-italic">c</span> = 0.</p> "> Figure 6
<p>Poincaré map of chaotic system (2) in the <span class="html-italic">x–y</span> plane, for <span class="html-italic">a</span> = 2, <span class="html-italic">b</span> = 0.005 and <span class="html-italic">c</span> = 0.</p> "> Figure 7
<p>(<b>a</b>) Bifurcation diagram, (<b>b</b>) Lyapunov exponents spectrum of (2) when changing <span class="html-italic">c</span> from 0 to 0.05, for <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">a</mi> <mo>=</mo> <mn mathvariant="bold">2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi mathvariant="bold-italic">b</mi> <mo>=</mo> <mn mathvariant="bold">0</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Strange attractors for <span class="html-italic">a</span> = 2, <span class="html-italic">b</span> = 0 and <span class="html-italic">c</span> = 0.02.</p> "> Figure 9
<p>Poincaré map of system (2) in the <span class="html-italic">x-y</span> plane, for <span class="html-italic">a</span> = 2, <span class="html-italic">b</span> = 0 and <span class="html-italic">c</span> = 0.02.</p> "> Figure 10
<p>Schematic of circuit simulation for the system with hyperbolic sinusoidal nonlinear function (2).</p> "> Figure 11
<p>PSpice chaotic attractors of system with hyperbolic sinusoidal nonlinearity in (<b>a</b>) <span class="html-italic">X</span>–<span class="html-italic">Y</span> plane, (<b>b)</b> <span class="html-italic">X</span>–<span class="html-italic">Z</span> plane, and (<b>c</b>) <span class="html-italic">Y</span>–<span class="html-italic">Z</span> plane (<span class="html-italic">x</span>: 2 V/Div, <span class="html-italic">y</span>: 2 V/Div).</p> "> Figure 11 Cont.
<p>PSpice chaotic attractors of system with hyperbolic sinusoidal nonlinearity in (<b>a</b>) <span class="html-italic">X</span>–<span class="html-italic">Y</span> plane, (<b>b)</b> <span class="html-italic">X</span>–<span class="html-italic">Z</span> plane, and (<b>c</b>) <span class="html-italic">Y</span>–<span class="html-italic">Z</span> plane (<span class="html-italic">x</span>: 2 V/Div, <span class="html-italic">y</span>: 2 V/Div).</p> "> Figure 12
<p>The block diagram of encryption process.</p> "> Figure 13
<p>The voice file (<b>a</b>) original; (<b>b</b>) encrypted; (<b>c</b>) decrypted.</p> "> Figure 14
<p>The spectrum analysis outcomes of original and encrypted voice files. (<b>a</b>) Original, (<b>b</b>) Encrypted.</p> ">
Abstract
:1. Introduction
2. Chaotic Flow with a Hyperbolic Sinusoidal Function
2.1. Scenario A: Line of Equilibria
2.2. Scenario B: No Equilibrium Point
2.3. Scenario C: Self-Excited Attractor
3. Circuit Design of the Proposed Chaotic Flow
4. Voice Encryption Algorithm Design and Its Analysis
4.1. RNG Algorithm Design and NIST 800-22 Test Results
4.2. Voice Encryption Algorithm Design and Its Application
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
Date Availability
Appendix A
Algorithm 1 RNG Design Algorithm Pseudo Code |
|
References
- Hua, Z.; Zhou, B.; Zhou, Y. Sine-Transform-Based Chaotic System With FPGA Implementation. IEEE Trans. Ind. Electron. 2018, 65, 2557–2566. [Google Scholar] [CrossRef]
- Thoai, V.P.; Kahkeshi, M.S.; Huynh, V.V.; Ouannas, A.; Pham, V.-T. A Nonlinear Five-Term System: Symmetry, Chaos, and Prediction. Symmetry 2020, 12, 865. [Google Scholar] [CrossRef]
- Chain, K.; Kuo, W.-C. A new digital signature scheme based on chaotic maps. Nonlinear Dyn. 2013, 74, 1003–1012. [Google Scholar] [CrossRef]
- Muthukumar, P.; Balasubramaniam, P.; Ratnavelu, K. Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int. J. Dyn. Control 2017, 5, 115–123. [Google Scholar] [CrossRef]
- Deng, Y.; Hu, H.; Liu, L. Feedback control of digital chaotic systems with application to pseudorandom number generator. Int. J. Mod. Phys. C 2015, 26, 1550022. [Google Scholar] [CrossRef]
- Castro-Ramírez, J.; Martínez-Guerra, R.; Cruz-Victoria, J.C. A new reduced-order observer for the synchronization of nonlinear chaotic systems: An application to secure communications. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 103128. [Google Scholar] [CrossRef]
- Wang, G.; Chen, D.; Lin, J.; Chen, X. The application of chaotic oscillators to weak signal detection. IEEE Trans. Ind. Electron. 1999, 46, 440–444. [Google Scholar] [CrossRef]
- Sakthivel, R.; Santra, S.; Anthoni, S.M.; Kuppili, V. Synchronisation and anti-synchronisation of chaotic systems with application to DC–DC boost converter. IET Gener. Transm. Distrib. 2017, 11, 959–967. [Google Scholar] [CrossRef]
- Chen, E.; Min, L.; Chen, G. Discrete Chaotic Systems with One-Line Equilibria and Their Application to Image Encryption. Int. J. Bifurc. Chaos 2017, 27, 1750046. [Google Scholar] [CrossRef]
- Glushkov, A.V.; Khetselius, O.; Brusentseva, S.V.; Zaichko, P.A.; Ternovsky, V.B. Studying interaction dynamics of chaotic systems within a non-linear prediction method: Application to neurophysiology. Adv. Neural Netw. Fuzzy Syst. Artif. Intell. 2014, 21, 69–75. [Google Scholar]
- Aguilar-López, R.; Martínez-Guerra, R.; Perez-Pinacho, C.A. Nonlinear observer for synchronization of chaotic systems with application to secure data transmission. Eur. Phys. J. Spec. Top. 2014, 223, 1541–1548. [Google Scholar] [CrossRef]
- Radwan, A.; Moaddy, K.; Salama, K.N.; Momani, S.; Hashim, I. Control and switching synchronization of fractional order chaotic systems using active control technique. J. Adv. Res. 2014, 5, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulkroune, A.; Bouzeriba, A.; Hamel, S.; Bouden, T. Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems. Complexity 2015, 21, 180–192. [Google Scholar] [CrossRef]
- Mobayen, S. Finite-time stabilization of a class of chaotic systems with matched and unmatched uncertainties: An LMI approach. Complexity 2016, 21, 14–19. [Google Scholar] [CrossRef]
- Ma, D.; Sun, Q.; Li, X. Synchronization of master-slave chaotic system with coupling time-varying delay based on sampled-data control. In Proceedings of the Control and Decision Conference (CCDC), 2015 27th Chinese, Qingdao, China, 23–25 May 2015; pp. 6545–6550. [Google Scholar]
- Xiong, W.; Huang, J. Finite-time control and synchronization for memristor-based chaotic system via impulsive adaptive strategy. Adv. Differ. Equ. 2016, 2016, 101. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Huang, T. Stabilization and synchronization of chaotic systems with mixed time-varying delays via intermittent control with non-fixed both control period and control width. Neurocomputing 2015, 154, 61–69. [Google Scholar] [CrossRef]
- Mobayen, S.; Baleanu, D.; Tchier, F. Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems. J. Vib. Control 2017, 23, 2912–2925. [Google Scholar] [CrossRef]
- Wei, Z. Dynamical behaviors of a chaotic system with no equilibria. Phys. Lett. A 2011, 376, 102–108. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Golpayegani, S. Elementary quadratic chaotic flows with no equilibria. Phys. Lett. A 2013, 377, 699–702. [Google Scholar] [CrossRef]
- Wang, X.; Chen, G. A chaotic system with only one stable equilibrium. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1264–1272. [Google Scholar] [CrossRef] [Green Version]
- Molaie, M.; Jafari, S.; Sprott, J.C.; Golpayegani, S. Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 2013, 23, 1350188. [Google Scholar] [CrossRef]
- Shilnikov, L.P. A case of the existence of a denumerable set of periodic motions. Sov. Math. 1965, 24, 163–166. [Google Scholar]
- Leonov, G.A.; Kuznetsov, N.V.; Kuznetsova, O.A.; Seledzhi, S.M.; Vagaitsev, V.I. Hidden oscillations in dynamical systems. Trans. Syst. Contr. 2011, 6, 54–67. [Google Scholar]
- Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I. Hidden attractor in smooth chua systems. Phys. D Nonlinear Phenom. 2012, 241, 1482–1486. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Volos, C.; Kingni, S.T.; Azar, A.T.; Pham, V.-T. Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity. Opt. Int. J. Light Electron Opt. 2017, 131, 1071–1078. [Google Scholar] [CrossRef]
- Pham, V.-T.; Volos, C.; Kingni, S.T.; Kapitaniak, T.; Jafari, S. Bistable Hidden Attractors in a Novel Chaotic System with Hyperbolic Sine Equilibrium. Circuitssyst. Signal Process. 2017, 37, 1028–1043. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Kuznetsov, S.; Mosekilde, E.; Stankevich, N. Co-existing hidden attractors in a radio-physical oscillator system. J. Phys. A Math. 2015, 48, 125101. [Google Scholar] [CrossRef]
- Zhusubaliyev, Z.T.; Mosekilde, E. Multistability and hidden attractors in a multilevel DC/DC converter. Math. Comput. Simul. 2015, 109, 32–45. [Google Scholar] [CrossRef]
- Kiseleva, M.A.; Kuznetsov, N.V.; Leonov, G.A. Hidden attractors in electromechanical systems with and without equilibria. IFAC Pap. 2016, 49, 51–55. [Google Scholar] [CrossRef]
- Zhusubaliyev, Z.T.; Mosekilde, E.; Rubanov, V.G.; Nabokov, R.A. Multistability and hidden attractors in a relay system with hysteresis. Phys. D Nonlinear Phenom. 2015, 306, 6–15. [Google Scholar] [CrossRef]
- Yu, M.; Sun, K.; Liu, W.; He, S. A hyperchaotic map with grid sinusoidal cavity. Chaossolitons Fractals 2018, 106, 107–117. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Lei, T.; Liu, Z.; Tao, C. A symmetric controllable hyperchaotic hidden attractor. Symmetry 2020, 12, 550. [Google Scholar] [CrossRef] [Green Version]
- Sadkhan, S.B.; Ali, H. A proposed speech scrambling based on hybrid chaotic key generators. In Proceedings of the 2016 Al-Sadeq IEEE International Conference on Multidisciplinary in IT and Communication Science and Applications (AIC-MITCSA), Al-Najaf, Iraq, 9–10 May 2016; pp. 1–6. [Google Scholar]
- Mobayen, S.; Vaidyanathan, S.; Sambas, A.; Kacar, S.; Çavuşoğlu, Ü. A novel chaotic system with boomerang-shaped equilibrium, its circuit implementation and application to sound encryption. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 1–12. [Google Scholar]
- Raheema, A.M.; Sadkhan, S.B.; Sattar, S.M.A. Design and implementation of speech encryption based on hybrid chaotic maps. In Proceedings of the 2018 IEEE International Conference on Engineering Technology and Their Applications (IICETA), Al-Najaf, Iraq, 8–9 May 2018; pp. 112–117. [Google Scholar]
- Nosrati, K.; Volos, C. Bifurcation Analysis and Chaotic Behaviors of Fractional-Order Singular Biological Systems. In Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–44. [Google Scholar]
- Wu, F.; Ma, J. The chaos dynamic of multiproduct Cournot duopoly game with managerial delegation. Discret. Dyn. Nat. Soc. 2014, 2014. [Google Scholar] [CrossRef]
- Barrera, J.; Flores, J.J.; Fuerte-Esquivel, C. Generating complete bifurcation diagrams using a dynamic environment particle swarm optimization algorithm. J. Artif. Evol. Appl. 2007, 2008. [Google Scholar] [CrossRef] [Green Version]
- Ouannas, A.; Khennaoui, A.A.; Wang, X.; Pham, V.-T.; Boulaaras, S.; Momani, S. Bifurcation and chaos in the fractional form of Hénon-Lozi type map. Eur. Phys. J. Spec. Top. 2020, 229, 2261–2273. [Google Scholar] [CrossRef]
- Zhu, X.; Du, W.-S. New chaotic systems with two closed curve equilibrium passing the same point: Chaotic behavior, bifurcations, and synchronization. Symmetry 2019, 11, 951. [Google Scholar] [CrossRef] [Green Version]
- Awrejcewicz, J.; Krysko, A.V.; Erofeev, N.P.; Dobriyan, V.; Barulina, M.A.; Krysko, V.A. Quantifying chaos by various computational methods. Part 1: Simple systems. Entropy 2018, 20, 175. [Google Scholar] [CrossRef] [Green Version]
- Kong, G.; Zhang, Y.; Khalaf, A.J.M.; Panahi, S.; Hussain, I. Parameter estimation in a new chaotic memristive system using ions motion optimization. Eur. Phys. J. Spec. Top. 2019, 228, 2133–2145. [Google Scholar] [CrossRef]
- Huang, W.; Kamenski, L.; Lang, J. Conditioning of implicit Runge–Kutta integration for finite element approximation of linear diffusion equations on anisotropic meshes. J. Comput. Appl. Math. 2019. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Bouali, S.; Buscarino, A.; Fortuna, L.; Frasca, M.; Gambuzza, L. Emulating complex business cycles by using an electronic analogue. Nonlinear Anal. Real World Appl. 2012, 13, 2459–2465. [Google Scholar] [CrossRef]
- Banerjee, T.; Biswas, D. Theory and experiment of a first-order chaotic delay dynamical system. Int. J. Bifurc. Chaos 2013, 23, 1330020. [Google Scholar] [CrossRef]
- Zhou, W.-J.; Wang, Z.-P.; Wu, M.-W.; Zheng, W.-H.; Weng, J.-F. Dynamics analysis and circuit implementation of a new three-dimensional chaotic system. Opt. Int. J. Light Electron Opt. 2015, 126, 765–768. [Google Scholar] [CrossRef]
- Lai, Q.; Wang, L. Chaos, bifurcation, coexisting attractors and circuit design of a three-dimensional continuous autonomous system. Opt. Int. J. Light Electron Opt. 2016, 127, 5400–5406. [Google Scholar] [CrossRef]
- Gokyildirim, A.; Uyaroglu, Y.; Pehlivan, I. A novel chaotic attractor and its weak signal detection application. Opt. Int. J. Light Electron Opt. 2016, 127, 7889–7895. [Google Scholar] [CrossRef]
- Hajipour, A.; Tavakoli, H. Analysis and circuit simulation of a novel nonlinear fractional incommensurate order financial system. Opt. Int. J. Light Electron Opt. 2016, 127, 10643–10652. [Google Scholar] [CrossRef]
- Wang, Y.; Wong, K.-W.; Liao, X.; Chen, G. A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 2011, 11, 514–522. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ü.; Kaçar, S.; Pehlivan, I.; Zengin, A. Secure image encryption algorithm design using a novel chaos based S-Box. Chaossolitons Fractals 2017, 95, 92–101. [Google Scholar] [CrossRef]
- Bakhache, B.; Ghazal, J.M.; El Assad, S. Improvement of the security of zigbee by a new chaotic algorithm. IEEE Syst. J. 2014, 8, 1024–1033. [Google Scholar] [CrossRef]
- Khan, M. A novel image encryption scheme based on multiple chaotic S-boxes. Nonlinear Dyn. 2015, 82, 527–533. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ü.; Zengin, A.; Pehlivan, I.; Kaçar, S. A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear Dyn. 2017, 87, 1081–1094. [Google Scholar] [CrossRef]
- Hua, Z.; Zhou, Y.; Pun, C.-M.; Chen, C.P. 2D Sine Logistic modulation map for image encryption. Inf. Sci. 2015, 297, 80–94. [Google Scholar] [CrossRef]
- Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Booz-Allen and Hamilton Inc Mclean Va: McLean, VA, USA, 2001. [Google Scholar]
NIST Statistical Tests | p-Value (x⊕y) | p-Value (x⊕z) | p-Value (y⊕z) | p-Value (x⊕y⊕z) | Results |
---|---|---|---|---|---|
Frequency (Monobit) Test | 0.32708 | 0.70840 | 0.07409 | 0.83679 | Passed |
Block-Frequency Test | 0.05028 | 0.44384 | 0.87530 | 0.24483 | Passed |
Cumulative-Sums Test | 0.49997 | 0.79399 | 0.12548 | 0.88754 | Passed |
Runs Test | 0.28235 | 0.05285 | 0.01530 | 0.34010 | Passed |
Longest-Run Test | 0.91108 | 0.88963 | 0.46730 | 0.057827 | Passed |
Binary Matrix Rank Test | 0.17994 | 0.15263 | 0.55596 | 0.39136 | Passed |
Discrete Fourier Transform Test | 0.17441 | 0.92688 | 0.52063 | 0.20211 | Passed |
Overlapping Templates Test | 0.63213 | 0.12006 | 0.96148 | 0.29966 | Passed |
Maurer’s Universal Statistical Test | 0.59708 | 0.81350 | 0.40059 | 0.48723 | Passed |
Approximate Entropy Test | 0.95048 | 0.38285 | 0.27585 | 0.52635 | Passed |
Random-Excursions Test (x = −4) | 0.82604 | 0.57997 | 0.40488 | 0.34822 | Passed |
Random-Excursions Variant Test (x = −4) | 0.74935 | 0.63538 | 0.19136 | 0.46211 | Passed |
Serial Test-1 | 0.53650 | 0.89087 | 0.74965 | 0.92028 | Passed |
Serial Test-2 | 0.13577 | 0.48589 | 0.27236 | 0.75602 | Passed |
Linear-Complexity Test | 0.72956 | 0.94527 | 0.31945 | 0.78612 | Passed |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobayen, S.; Volos, C.; Çavuşoğlu, Ü.; S. Kaçar, S. A Simple Chaotic Flow with Hyperbolic Sinusoidal Function and Its Application to Voice Encryption. Symmetry 2020, 12, 2047. https://doi.org/10.3390/sym12122047
Mobayen S, Volos C, Çavuşoğlu Ü, S. Kaçar S. A Simple Chaotic Flow with Hyperbolic Sinusoidal Function and Its Application to Voice Encryption. Symmetry. 2020; 12(12):2047. https://doi.org/10.3390/sym12122047
Chicago/Turabian StyleMobayen, Saleh, Christos Volos, Ünal Çavuşoğlu, and Sezgin S. Kaçar. 2020. "A Simple Chaotic Flow with Hyperbolic Sinusoidal Function and Its Application to Voice Encryption" Symmetry 12, no. 12: 2047. https://doi.org/10.3390/sym12122047
APA StyleMobayen, S., Volos, C., Çavuşoğlu, Ü., & S. Kaçar, S. (2020). A Simple Chaotic Flow with Hyperbolic Sinusoidal Function and Its Application to Voice Encryption. Symmetry, 12(12), 2047. https://doi.org/10.3390/sym12122047