Anomaly Detection Based on Mining Six Local Data Features and BP Neural Network
<p>Fourteen classical key performance indicators (KPIs). (<b>a</b>): Periodic time series; (<b>b</b>): Periodic and continuous fluctuation time series; (<b>c</b>): Unstable time series; (<b>d</b>): Unstable time series; (<b>e</b>): Stable time series; (<b>f</b>): Unstable time series; (<b>g</b>): Unstable time series; (<b>h</b>): Stable time series; (<b>i</b>): Unstable time series; (<b>j</b>): Continuous fluctuation time series; (<b>k</b>): Unstable time series; (<b>l</b>): Periodic and continuous fluctuation time series; (<b>m</b>): Stable time series; (<b>n</b>): Continuous fluctuation time series.</p> "> Figure 1 Cont.
<p>Fourteen classical key performance indicators (KPIs). (<b>a</b>): Periodic time series; (<b>b</b>): Periodic and continuous fluctuation time series; (<b>c</b>): Unstable time series; (<b>d</b>): Unstable time series; (<b>e</b>): Stable time series; (<b>f</b>): Unstable time series; (<b>g</b>): Unstable time series; (<b>h</b>): Stable time series; (<b>i</b>): Unstable time series; (<b>j</b>): Continuous fluctuation time series; (<b>k</b>): Unstable time series; (<b>l</b>): Periodic and continuous fluctuation time series; (<b>m</b>): Stable time series; (<b>n</b>): Continuous fluctuation time series.</p> "> Figure 2
<p>(<b>a</b>): The flowchart of the proposed approach for KPIs time series; (<b>b</b>): the semantic drawing of six local data feature space.</p> "> Figure 3
<p>Schematic illustration of the feature <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </semantics></math>.</p> "> Figure 4
<p>Schematic illustration of the feature <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi>F</mi> <mi>i</mi> <mrow> <mo stretchy="false">(</mo> <mn>3</mn> <mo stretchy="false">)</mo> </mrow> </msubsup> </mrow> </semantics></math>.</p> "> Figure 5
<p>Six features mined of the KPIs. (<b>a</b>) Six features mined of the KPI1; (<b>b</b>) Six features mined of the KPI2; (<b>c</b>) Six features mined of the KPI3; (<b>d</b>) Six features mined of the KPI4; (<b>e</b>) Six features mined of the KPI5; (<b>f</b>) Six features mined of the KPI6; (<b>g</b>) Six features mined of the KPI7; (<b>h</b>) Six features mined of the KPI8; (<b>i</b>) Six features mined of the KPI9; (<b>j</b>) Six features mined of the KPI10; (<b>k</b>) Six features mined of the KPI11; (<b>l</b>) Six features mined of the KPI112; (<b>m</b>) Six features mined of the KPI13; (<b>n</b>) Six features mined of the KPI14.</p> "> Figure 5 Cont.
<p>Six features mined of the KPIs. (<b>a</b>) Six features mined of the KPI1; (<b>b</b>) Six features mined of the KPI2; (<b>c</b>) Six features mined of the KPI3; (<b>d</b>) Six features mined of the KPI4; (<b>e</b>) Six features mined of the KPI5; (<b>f</b>) Six features mined of the KPI6; (<b>g</b>) Six features mined of the KPI7; (<b>h</b>) Six features mined of the KPI8; (<b>i</b>) Six features mined of the KPI9; (<b>j</b>) Six features mined of the KPI10; (<b>k</b>) Six features mined of the KPI11; (<b>l</b>) Six features mined of the KPI112; (<b>m</b>) Six features mined of the KPI13; (<b>n</b>) Six features mined of the KPI14.</p> "> Figure 5 Cont.
<p>Six features mined of the KPIs. (<b>a</b>) Six features mined of the KPI1; (<b>b</b>) Six features mined of the KPI2; (<b>c</b>) Six features mined of the KPI3; (<b>d</b>) Six features mined of the KPI4; (<b>e</b>) Six features mined of the KPI5; (<b>f</b>) Six features mined of the KPI6; (<b>g</b>) Six features mined of the KPI7; (<b>h</b>) Six features mined of the KPI8; (<b>i</b>) Six features mined of the KPI9; (<b>j</b>) Six features mined of the KPI10; (<b>k</b>) Six features mined of the KPI11; (<b>l</b>) Six features mined of the KPI112; (<b>m</b>) Six features mined of the KPI13; (<b>n</b>) Six features mined of the KPI14.</p> "> Figure 5 Cont.
<p>Six features mined of the KPIs. (<b>a</b>) Six features mined of the KPI1; (<b>b</b>) Six features mined of the KPI2; (<b>c</b>) Six features mined of the KPI3; (<b>d</b>) Six features mined of the KPI4; (<b>e</b>) Six features mined of the KPI5; (<b>f</b>) Six features mined of the KPI6; (<b>g</b>) Six features mined of the KPI7; (<b>h</b>) Six features mined of the KPI8; (<b>i</b>) Six features mined of the KPI9; (<b>j</b>) Six features mined of the KPI10; (<b>k</b>) Six features mined of the KPI11; (<b>l</b>) Six features mined of the KPI112; (<b>m</b>) Six features mined of the KPI13; (<b>n</b>) Six features mined of the KPI14.</p> "> Figure 6
<p>F<sub>1</sub>-scores of different topology structures of BP network for each of 14 KPIs.</p> "> Figure 7
<p>Anomaly detection results using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>a</b>): Anomaly detection results of KPI1 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>): Anomaly detection results of KPI2 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>): Anomaly detection results of KPI3 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>d</b>): Anomaly detection results of KPI4 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>e</b>): Anomaly detection results of KPI5 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>f</b>): Anomaly detection results of KPI6 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>g</b>): Anomaly detection results of KPI7 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>h</b>): Anomaly detection results of KPI8 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>i</b>): Anomaly detection results of KPI9 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>j</b>): Anomaly detection results of KPI10 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>k</b>): Anomaly detection results of KPI11 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>l</b>): Anomaly detection results of KPI12 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>m</b>): Anomaly detection results of KPI13 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>n</b>): Anomaly detection results of KPI14 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 7 Cont.
<p>Anomaly detection results using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>a</b>): Anomaly detection results of KPI1 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>): Anomaly detection results of KPI2 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>): Anomaly detection results of KPI3 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>d</b>): Anomaly detection results of KPI4 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>e</b>): Anomaly detection results of KPI5 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>f</b>): Anomaly detection results of KPI6 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>g</b>): Anomaly detection results of KPI7 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>h</b>): Anomaly detection results of KPI8 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>i</b>): Anomaly detection results of KPI9 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>j</b>): Anomaly detection results of KPI10 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>k</b>): Anomaly detection results of KPI11 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>l</b>): Anomaly detection results of KPI12 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>m</b>): Anomaly detection results of KPI13 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>n</b>): Anomaly detection results of KPI14 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 7 Cont.
<p>Anomaly detection results using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>. (<b>a</b>): Anomaly detection results of KPI1 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>b</b>): Anomaly detection results of KPI2 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>c</b>): Anomaly detection results of KPI3 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>d</b>): Anomaly detection results of KPI4 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>e</b>): Anomaly detection results of KPI5 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>f</b>): Anomaly detection results of KPI6 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>g</b>): Anomaly detection results of KPI7 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>h</b>): Anomaly detection results of KPI8 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>i</b>): Anomaly detection results of KPI9 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>j</b>): Anomaly detection results of KPI10 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>k</b>): Anomaly detection results of KPI11 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>l</b>): Anomaly detection results of KPI12 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>m</b>): Anomaly detection results of KPI13 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>; (<b>n</b>): Anomaly detection results of KPI14 using the structure of <math display="inline"><semantics> <mrow> <mn>6</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>10</mn> <mo>→</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. BP Neural Network Method
2.2. Features Mining Method
2.2.1. Normalization by Max–Min Method
2.2.2. The Definition of Six Local Data Features
2.3. Algorithm Description
- Step 1: normalize the values of KPIs series data;
- Step 2: separate the KPI into training dataset and verifying dataset;
- Step 3: calculate the value of six local data features according to Equations (14) and (15);
- Step 4: input features vector and target vector into BP algorithm;
- Step 5: BP neural network outputs the detecting results.
2.4. Evaluation Method of Model Performance
3. Results
3.1. Explore Different Topology Structures of BP Network
3.2. Results Presentation
4. Discussion
4.1. Traditional Statistics Data Features and BP Network
4.2. Explore Different Machine Learning Models
4.3. Performance Analysis of Different Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pérez-Álvarez, J.M.; Maté, A.; Gómez-López, M.T.; Trujillob, J. Tactical Business-Process-Decision Support based on KPIs Monitoring and Validation. Comput. Ind. 2018, 102, 23–39. [Google Scholar] [CrossRef]
- Yang, J.; Wan, W.; Yu, P.S. Mining Asynchronous Periodic Patterns in Time Series Data. IEEE Trans. Knowl. Data Eng. 2003, 15, 613–628. [Google Scholar] [CrossRef]
- Kruczek, P.; Wyłomańska, A.; Teuerle, M.; Gajda, J. The modified Yule-Walker method for α-stable time series models. Phys. A Stat. Mech. Appl. 2017, 469, 588–603. [Google Scholar] [CrossRef]
- Grillenzoni, C. Forecasting unstable and nonstationary time series. Int. J. Forecast. 1998, 14, 469–482. [Google Scholar] [CrossRef]
- Pierini, J.; Telesca, L. Fluctuation analysis of monthly rainfall time series. Fluct. Noise Lett. 2010, 20, 219–228. [Google Scholar] [CrossRef]
- Ahmed, M.; Mahmood, A.N.; Islam, M.R. A survey of anomaly detection techniques in financial domain. Future Gener. Comput. Syst. 2016, 55, 278–288. [Google Scholar] [CrossRef]
- Hong, J.H.; Liu, C.C.; Govindarasu, M. Integrated Anomaly Detection for Cyber Security of the Substations. IEEE Trans. Smart Grid 2014, 5, 1643–1653. [Google Scholar] [CrossRef]
- Hu, W.J.; Liao, Y.; Vemuri, V.R. Robust support vector machines for anomaly detection in computer security. In Proceedings of the International Conference Machine Learning & Applications-ICMLA, Los Angeles, CA, USA, 23–24 July 2003. [Google Scholar]
- Kabir, E.; Hu, J.; Wang, H.; Zhuo, G. A novel statistical technique for intrusion detection systems. Future Gener. Comput. Syst. 2018, 79, 303–318. [Google Scholar] [CrossRef]
- Kruegel, C.; Mutz, D.; Robertson, W.; Valeur, F. Bayesian event classification for intrusion detection. In Proceedings of the 19th Annual Computer Security Applications Conference, Las Vegas, NV, USA, 8–12 December 2003. [Google Scholar]
- Hawkins, S.; He, H.; Williams, G.; Baxter, R. Outlier detection using replicator neural networks. In Data Warehousing and Knowledge Discovery, Proceedings of the International Conference on Data Warehousing and Knowledge Discovery, Aix-en-Provence, France, 4–6 September 2002; Lecture Notes in Computer Science; Kambayashi, Y., Winiwarter, W., Arikawa, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2454, pp. 170–180. [Google Scholar]
- Shyu, M.L.; Chen, S.C.; Kanoksri, S.; Chang, L.W. A novel anomaly detection scheme based on principal component classifier. In IEEE Foundations and New Directions of Data Mining Workshop; Miami Univ Coral Gables Fl Dept of Electrical and Computer Engineering: Coral Gables, FL, USA, 2003; pp. 171–179. [Google Scholar]
- Zhang, T.; Yue, D.; Gu, Y.; Wang, Y.; Yu, G. Adaptive correlation analysis in stream time series with sliding windows. Comput. Math. Appl. 2008, 57, 937–948. [Google Scholar] [CrossRef]
- Ding, Z.; Fei, M. An anomaly detection approach based on isolation forest algorithm for streaming data using sliding window. IFAC Proc. 2013, 46, 12–17. [Google Scholar] [CrossRef]
- Ren, H.; Ye, Z.; Li, Z. Anomaly detection based on a dynamic Markov model. Inf. Sci. 2017, 411, 52–65. [Google Scholar] [CrossRef]
- Chou, J.S.; Ngo, N.T. Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns. Appl. Energy 2016, 177, 751–770. [Google Scholar] [CrossRef]
- Hu, M.; Ji, Z.W.; Yan, K.; Guo, Y.; Feng, X.W.; Gong, J.H.; Zhao, X. Detecting Anomalies in Time Series Data via a Meta-Feature Based Approach. IEEE Access 2018, 6, 27760–27776. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Y.; Xu, H.; Sun, Y.; Pei, D.; Luo, J.; Jing, X.; Feng, M. Opprentice: Towards practical and automatic anomaly detection through machine learning. In Proceedings of the Internet Measurement Conference AMC, Tokyo, Japan, 28–30 October 2015. [Google Scholar]
- Kumar, P.H.; Patil, S.B.; Sandya, H.B. Feature extraction, classification and forecasting of time series signal using fuzzy and garch techniques. In Proceedings of the National Conference on Challenges in Research & Technology in the Coming Decades National Conference on Challenges in Research & Technology in the Coming Decades (CRT 2013) IET, Ujire, India, 27–28 September 2013. [Google Scholar]
- Amraee, S.; Vafaei, A.; Jamshidi, K.; Adibi, P. Abnormal event detection in crowded scenes using one-class SVM. Signal Image Video Proc. 2018, 12, 1115–1123. [Google Scholar] [CrossRef]
- Li, Z.C.; Zhitang, L.; Bin, L. Anomaly detection system based on principal component analysis and support vector machine. Wuhan Univ. J. Nat. Sci. 2006, 11, 1769–1772. [Google Scholar]
- Dong, X.F.; Lian, Y.; Liu, Y.J. Small and multi-peak nonlinear time series forecasting using a hybrid back propagation neural network. Inf. Sci. 2018, 424, 39–54. [Google Scholar] [CrossRef]
- Maren, A.J.; Harston, C.T.; Pap, R.M. Handbook of Neural Computing Applications; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Hagan, M.T.; Beale, M.H.; Demuth, H.B. Neural Network Design; PWS Pub: Boston, MA, USA, 1996. [Google Scholar]
- Livieris, I. Improving the Classification Efficiency of an ANN Utilizing a New Training Methodology. Informatics 2018, 6, 1. [Google Scholar] [CrossRef]
- Livieris, I.; Pintelas, P.E. A Survey on Algorithms for Training Artificial Neural Networks; Technical Report TR08-01; Department of Math, University of Patras: Patras, Greece, 2008. [Google Scholar]
- Livieris, I.; Kiriakidou, N.; Kanavos, A.; Tampakas, V.; Pintelas, P. On Ensemble SSL Algorithms for Credit Scoring Problem. Informatics 2018, 5, 40. [Google Scholar] [CrossRef]
- Powers, D. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
KPI1 | KPI2 | KPI3 | KPI4 | KPI5 | KPI6 | KPI7 | |
Description | Periodic series | Periodic and fluctuation | Unstable series | Unstable series | Stable series | Unstable series | Unstable series |
KPI8 | KPI9 | KPI10 | KPI11 | KPI12 | KPI13 | KPI14 | |
Description | Stable series | Unstable series | Continuous fluctuation series | Unstable series | Periodic and fluctuation series | Stable series | Continuous fluctuation series |
Actual Value | |||
---|---|---|---|
Predication Value | Anomaly | Normal | |
Anomaly | TP | FP | |
Normal | FN | TN |
6 → 6 → 6 → 6 → 1 | 6 → 8 → 8 → 8 → 1 | 6 → 10 → 10 → 10 → 1 | 6 → 10 → 10 → 10 → 10 → 1 | 6 → 10 → 10 → 10 → 10 → 10 → 1 | |
---|---|---|---|---|---|
(%) | 96.50 | 96.59 | 96.80 | 97.68 | 94.76 |
(%) | 85.58 | 84.41 | 89.33 | 85.64 | 88.64 |
(%) | 89.66 | 88.93 | 92.92 | 90.33 | 91.60 |
KPI1 | KPI2 | KPI3 | KPI4 | KPI5 | KPI6 | KPI7 | KPI8 | KPI9 | KPI10 | KPI11 | KPI12 | KPI13 | KPI14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision (%) | 86.25 | 99.50 | 100 | 95.25 | 99.75 | 88.25 | 94.87 | 99.88 | 99.38 | 99.55 | 97.38 | 97.25 | 98.00 | 99.90 |
Recall (%) | 61.41 | 88.89 | 100 | 95.25 | 71.43 | 97.69 | 97.00 | 99.55 | 84.00 | 98.62 | 71.83 | 85.71 | 99.32 | 99.85 |
F1-score (%) | 71.74 | 93.90 | 100 | 95.25 | 83.25 | 92.73 | 95.92 | 99.71 | 91.04 | 99.08 | 82.67 | 91.12 | 98.65 | 99.88 |
KPI1 | KPI2 | KPI3 | KPI4 | KPI5 | KPI6 | KPI7 | KPI8 | KPI9 | KPI10 | KPI11 | KPI12 | KPI13 | KPI14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision (%) | 66.12 | 54.55 | 100 | 100 | 50.00 | 90.57 | 97.90 | 100 | 90.0 | 98.29 | 95.92 | 37.50 | 99.33 | 99.93 |
Recall (%) | 64.36 | 66.67 | 100 | 95.75 | 66.67 | 97.46 | 96.11 | 97.80 | 72.0 | 98.80 | 66.20 | 85.71 | 98.67 | 99.78 |
F1-score (%) | 65.23 | 60.00 | 100 | 97.83 | 57.14 | 93.89 | 97.00 | 98.89 | 80.0 | 98.55 | 78.33 | 52.17 | 99.00 | 99.85 |
KPI1 | KPI2 | KPI3 | KPI4 | KPI5 | KPI6 | KPI7 | KPI8 | KPI9 | KPI10 | KPI11 | KPI12 | KPI13 | KPI14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision (%) | 69.94 | 0 | 100 | 100 | 100 | 97.96 | 96.80 | 100 | 100 | 100 | 100 | 96.00 | 100 | 100 |
Recall (%) | 61.96 | 0 | 100 | 95.50 | 14.29 | 98.46 | 97.69 | 99.55 | 84.00 | 98.27 | 70.42 | 100 | 98.63 | 98.73 |
F1-score (%) | 65.71 | NaN | 100 | 97.70 | 25.00 | 98.21 | 97.24 | 99.78 | 91.30 | 99.13 | 82.64 | 97.96 | 99.31 | 99.36 |
KPI1 | KPI2 | KPI3 | KPI4 | KPI5 | KPI6 | KPI7 | KPI8 | KPI9 | KPI10 | KPI11 | KPI12 | KPI13 | KPI14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Precision (%) | 46.91 | 100 | 100 | 100 | 100 | 74.03 | 85.60 | 99.55 | 100 | 100 | 100 | 100 | 100 | 100 |
Recall (%) | 61.96 | 66.67 | 99.88 | 92.50 | 14.28 | 97.95 | 96.07 | 99.55 | 80.00 | 98.10 | 67.61 | 42.86 | 98.63 | 97.53 |
F1-score (%) | 53.40 | 80.00 | 99.94 | 96.10 | 25.00 | 84.33 | 90.53 | 99.55 | 88.89 | 99.04 | 80.67 | 60.00 | 98.63 | 98.75 |
Our Method | Method in Literature [19] | SVM Method | SVM + PCA Method | |
---|---|---|---|---|
(%) | 96.80 | 84.29 | 96.98 | 93.29 |
(%) | 89.33 | 86.14 | 85.93 | 79.54 |
(%) | 92.92 | 85.20 | 91.12 | 85.87 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, Y.; Li, X.; Wang, X.; Guo, X. Anomaly Detection Based on Mining Six Local Data Features and BP Neural Network. Symmetry 2019, 11, 571. https://doi.org/10.3390/sym11040571
Zhang Y, Zhu Y, Li X, Wang X, Guo X. Anomaly Detection Based on Mining Six Local Data Features and BP Neural Network. Symmetry. 2019; 11(4):571. https://doi.org/10.3390/sym11040571
Chicago/Turabian StyleZhang, Yu, Yuanpeng Zhu, Xuqiao Li, Xiaole Wang, and Xutong Guo. 2019. "Anomaly Detection Based on Mining Six Local Data Features and BP Neural Network" Symmetry 11, no. 4: 571. https://doi.org/10.3390/sym11040571
APA StyleZhang, Y., Zhu, Y., Li, X., Wang, X., & Guo, X. (2019). Anomaly Detection Based on Mining Six Local Data Features and BP Neural Network. Symmetry, 11(4), 571. https://doi.org/10.3390/sym11040571