Products and Mechanistic Investigations on the Reactions of Hydrazines with Ozone in Gas-Phase
<p>Schematic diagram of the main experimental apparatus.</p> "> Figure 2
<p>Gas chromatogram of the ozonation products of hydrazine.</p> "> Figure 3
<p>Gas chromatogram of the ozonation products of methylhydrazine: (<b>a</b>) O<sub>3</sub>/MMH ≈ 1:1; (<b>b</b>) O<sub>3</sub>/MMH ≈ 10:1.</p> "> Figure 4
<p>The curves of change in relative conversion rate of the products in MMH + O<sub>3</sub> system (flushed with ozone continuously).</p> "> Figure 5
<p>Influence of radical trap on NDMA formation (O<sub>3</sub>/UDMH ratio ≈ 10:1).</p> "> Figure 6
<p>Gas chromatogram of the ozonation products of methylhydrazine: (<b>a</b>) O<sub>3</sub>/UDMH ≈ 1:1; (<b>b</b>) O<sub>3</sub>/UDMH ≈ 10:1.</p> "> Figure 7
<p>The curves of change in relative conversion rate of the products in MMH + O<sub>3</sub> system (flushed with ozone continuously).</p> "> Figure 8
<p>Influence of radical trap on the major products formation (O<sub>3</sub>/UDMH ratio 5:1).</p> "> Figure 9
<p>Frontier molecular orbital energies levels and the electronic distribution of hydrazines (HOMO) and ozone (LUMO) (energy unit is eV).</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. Reaction Chamber and GC-MS System
2.2. Materials
2.3. Products Analysis
3. Results and Discussion
3.1. The Reactions between HH with Ozone
3.2. The Reactions between MMH with Ozone
3.2.1. Products
3.2.2. The Variation of the Major Products Conversion Rates during Ozonation
3.2.3. Influence of Radical Trap (Propylene Alcohol) on NDMA Formation
3.3. The Reactions between UDMH with Ozone
3.3.1. Products
3.3.2. The Variation of the Major Products Conversion Rates during Ozonation
3.3.3. Influence of Radical Trap (Propylene Alcohol) on NDMA Formation
3.4. Mechanism of the Reactions between Hydrazines with Ozone
3.4.1. Frontier Molecular Orbitals
3.4.2. The Products Formation Mechanism Initialed by H-Abstraction of N-H Bond
3.4.3. The Products Formation Mechanism Initialed by H-Abstraction of C-H Bond
3.4.4. Influence of Radicals on NDMA Mechanism
4. Conclusions
Author Contributions
Acknowledgments
Funding
Conflicts of Interest
References
- Catoire, L.; Chaumeix, N.; Paillard, C. Journal of Propulsion and Power-20(1):87-PDF (AIAA). J. Propuls. Power 2004, 20, 87–92. [Google Scholar] [CrossRef]
- Collins, G.E.; Rosepehrsson, S.L. Fluorescent detection of hydrazine, monomethylhydrazine, and 1,1-dimethylhydrazine by derivatization with aromatic dicarbaldehydes. Analyst 1994, 119, 1907–1913. [Google Scholar] [CrossRef]
- Holtzclaw, J.R.; Rose, S.L.; Wyatt, J.R.; Rounbehler, D.P.; Fine, D.H. Simultaneous determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine in air by derivatization/gas chromatography. Anal. Chem. 1984, 56, 2952–2956. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, L.; Kenessov, B.N.; Batyrbekova, S.Y. A QSAR/QSTR study on the human health impact of the rocket fuel 1,1-dimethyl hydrazine and its transformation products Multicriteria hazard ranking based on partial order methodologies. Environ. Toxicol. Pharmacol. 2009, 27, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Lars, C.; Kenessov, B.N.; Ye, B.S. A QSAR/QSTR Study on the Environmental Health Impact by the Rocket Fuel 1,1-Dimethyl Hydrazine and its Transformation Products. Environ. Health Insights 2008, 1, 11. [Google Scholar]
- Hong, Y.; Kim, K.H.; Sang, B.I.; Kim, H. Simple quantification method for N-nitrosamines in atmospheric particulates based on facile pretreatment and GC-MS/MS. Environ. Pollut. 2017, 226, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Pitts, J.N., Jr.; Tuazon, E.C.; Carter, W.P.L.; Winer, A.M.; Harris, G.W. Atmospheric Chemistry of Hydrazines: Gas Phase Kinetics and Mechanistic Studies; California Univ Riverside Statewide Air Pollution Research Center: Riverside, CA, USA, 1980.
- Coleman, D.J.; Judeikis, H.S.; Lang, V. Gas-Phase Rate Constant Measurements for Reactions of Ozone with Hydrazines; Aerospace Corp el Segundo ca el Segundo Technical Operations: El Segundo, CA, USA, 1996. [Google Scholar]
- Tuazon, E.C.; Carter, W.P.L.; Winer, A.M.; Pitts, J.N. Reactions of hydrazines with ozone under simulated atmospheric conditions. Environ. Sci. Technol. 1981, 15, 823–828. [Google Scholar] [CrossRef]
- Marti, E.J.; Pisarenko, A.N.; Peller, J.R.; Dickenson, E.R. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds. Water Res. 2015, 72, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Lee, W.; Na, S.; Shin, J.; Lee, Y. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control. Water Res. 2016, 105, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Tanaka, H. Formation of N-nitrosamines by chloramination or ozonation of amines listed in Pollutant Release and Transfer Registers (PRTRs). Chemosphere 2014, 95, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.D.; Zhong, R. Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study. J. Hazard. Mater. 2017, 321, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, G.; Chen, J.; Wang, B.; Huang, J.; Deng, S. Unveiling formation mechanism of carcinogenic N-nitrosodimethylamine in ozonation of dimethylamine: A density functional theoretical investigation. J. Hazard. Mater. 2014, 279, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ge, P.; Chen, J.; Xie, H.; Luo, Y. The degradation mechanism of sulfamethoxazole under ozonation: A DFT study. Environ. Sci. Process Impacts 2017, 19, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Rodin, I.A.; Smirnov, R.S.; Smolenkov, A.D.; Shpigun, O.A. Transformation of unsymmetrical dimethylhydrazine in soils. Eurasian Soil Sci. 2012, 45, 386–391. [Google Scholar] [CrossRef]
- Smolenkov, A.D.; Smirnov, R.S.; Rodin, I.A.; Tataurova, O.G.; Shpigun, O.A. Effect of sample preparation conditions on the determination of the total concentrations of unsymmetrical dimethylhydrazine in soils. J. Anal. Chem. 2012, 67, 6–13. [Google Scholar] [CrossRef]
- Kenessov, B.; Alimzhanova, M.; Sailaukhanuly, Y.; Baimatova, N.; Abilev, M.; Batyrbekova, S.; Carlsen, L.; Tulegenov, A.; Nauryzbayev, M. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan. Sci. Total Environ. 2012, 427–428, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Rodin, I.A.; Anan’Eva, I.A.; Smolenkov, A.D.; Shpigun, O.A. Determination of the products of the oxidative transformation of unsymmetrical dimethylhydrazine in soils by liquid chromatography/mass spectrometry. J. Anal. Chem. 2010, 65, 1405–1410. [Google Scholar] [CrossRef]
- Ul’yanovskii, N.V.; Kosyakov, D.S.; Pokryshkin, S.A.; Bogolitsyn, K.G. Determination of transformation products of 1,1-dimethylhydrazine by gas chromatography–tandem mass spectrometry. J. Anal. Chem. 2015, 70, 1553–1560. [Google Scholar] [CrossRef]
- Kosyakov, D.S.; Ul’Yanovskii, N.V.; Pokryshkin, S.A.; Lakhmanov, D.E.; Shpigun, O.A. Rapid determination of 1,1-dimethylhydrazine transformation products in soil by accelerated solvent extraction coupled with gas chromatography–tandem mass spectrometry. Int. J. Environ. Anal. Chem. 2015, 95, 1321–1337. [Google Scholar] [CrossRef]
- Tuazon, E.C.; Carter, W.P.L.; Brown, R.V.; Atkinson, R.; Winer, A.M. Atmospheric Reaction Mechanisms of Amine Fuels; Atmospheric Reaction Mechanisms of Amine Fuels; California Univ Riverside Air Pollution Research Center: Riverside, CA, USA, 1982. [Google Scholar]
- Kosaka, K.; Fukui, K.; Kayanuma, Y.; Asami, M.; Akiba, M. N-Nitrosodimethylamine Formation from Hydrazine Compounds on Ozonation. Ozone Sci. Eng. 2014, 36, 215–220. [Google Scholar] [CrossRef]
- Wang, W.Y.; Kan, Y.H.; Wang, L.; Sun, S.L.; Qiu, Y.Q. Large Nonlinear Optical Responses of Dimers Bearing a Donor and Acceptor: Long, Intradimer Multicenter Bonding. J. Phys. Chem. C 2014, 118, 28746–28756. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Bultinck, P. The Hirshfeld-I method: Atoms in molecules and chemical bonding perspective. Acta Crystallogr. 2011, 67, C85–C86. [Google Scholar] [CrossRef]
- Lambert, C.E.; Shank, R.C. Role of formaldehyde hydrazone and catalase in hydrazine-induced methylation of DNA guanine. Carcinogenesis 1988, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.F.; Augusto, O. Formation of methyl radicals during the catalase-mediated oxidation of formaldehyde hydrazone. Carcinogenesis 1991, 12, 1351–1353. [Google Scholar] [CrossRef] [PubMed]
- Martínezavilés, M.; And, R.R.; Francisco, J.S. Atmospheric Oxidation Mechanism of Bromoethane. J. Phys. Chem. A 2007, 111, 11652. [Google Scholar] [CrossRef] [PubMed]
- Kagiya, T.; Yokoyama, N.; Takemoto, K. Radiation-Induced Degradation of Poly (Ethylene Oxide) in the Atmosphere of Chlorine Compounds (Special Issue on Physical, Chemical and Biological Effects of Gamma Radiation, XVI). Bull. Inst. Chem. Res. 1976, 54, 15–22. [Google Scholar]
- Carlier, P.; Hannachi, H.; Mouvier, G. The chemistry of carbonyl compounds in the atmosphere—A review. Atmos. Environ. 1986, 20, 2079–2099. [Google Scholar] [CrossRef]
- Sisler, H.H.; Mathur, M.A.; Jain, S.R.; Greengard, R. Studies of the chloramination of dimethylamine and 1,1-dimethylhydrazine. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20, 181–185. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, R. Density functional theory study on OH-initiated atmospheric oxidation of m-xylene. J. Phys. Chem. A 2008, 112, 4314–4323. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Law, C.K. Thermochemical and kinetic analysis of the thermal decomposition of monomethylhydrazine: An elementary reaction mechanism. J. Phys. Chem. A 2007, 111, 3748. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Catoire, L.; Law, C.K. Thermal decomposition of monomethylhydrazine: Shock tube experiments and kinetic modeling. Int. J. Chem. Kinetics 2009, 41, 176–186. [Google Scholar] [CrossRef]
- Nelander, B.; Engdahl, A.; Svensson, T. The HOOO radical. A matrix isolation study. Chem. Phys. Lett. 2000, 332, 403–408. [Google Scholar] [CrossRef]
- Varner, M.E.; Harding, M.E.; Vázquez, J.; Gauss, J.; Stanton, J.F. Dissociation energy of the HOOO radical. J. Phys. Chem. A 2009, 113, 11238–11241. [Google Scholar] [CrossRef] [PubMed]
Product | Peak/min | CAS | Pro. |
---|---|---|---|
N2 | 2.236 | 7727-37-9 | 60.4 |
H2O | 2.571 | 7732-18-5 | 98.2 |
N2O | 3.657 | 10024-97-2 | 30.8 |
N2H4 | 3.983 | 302-01-2 | 93.2 |
Product | Peak/min | CAS No. | Pro. |
---|---|---|---|
N2 | 2.241 | 7727-37-9 | 98.0 |
H2O | 2.740 | 7732-18-5 | 97.2 |
Dimethylamine (DMA) | 2.438 | 124-40-3 | 70.5 |
Formaldehyde dimethylhydrazone (FDMH) | 3.276 | 2035-89-4 | 91.4 |
Formaldehyde monomethylhydrazone (FMH) | 4.646 | 36214-48-9 | 30.5 |
Acetadehyde methydrazone (AMH) | 5.687 | 17167-73-6 | 35.5 |
N,N-tetramethyl-Methanediamine | 7.430 | 51-80-9 | 10.8 |
1,2-dimethyldiaziridine (DDZ) | 8.859 | 6794-95-2 | 20.1 |
N-nitrododimethylamine (NDMA) | 9.430 | 62-75-9 | 85.4 |
Dimethylformamide (DMF) | 10.092 | 68-12-2 | 76.6 |
1-methyl-2-piperidinone | 11.047 | 931-20-4 | 17.3 |
1-methyl-1,2,4-triazole (MT) | 11.638 | 6086-21-1 | 74.2 |
Acetaldehyde-N-formyl-N-methydrazone (AFMH) | 12.171 | 16568-02-8 | 55.1 |
2-Nitroethanol | 12.956 | 625-48-9 | 38.6 |
N-methyl-N-nitro-ethanamine | 13.060 | 10595-95-6 | 26.0 |
1,3-dimethyl-Imidazolidinone | 13.087 | 80-73-9 | 28.1 |
Product | Peak/min | CAS No. | Pro. |
---|---|---|---|
N2 | 2.241 | 7727-37-9 | 98.0 |
H2O | 2.740 | 7732-18-5 | 97.2 |
Dimethylamine (DMA) | 2.438 | 124-40-3 | 70.5 |
Formaldehyde dimethylhydrazone (FDMH) | 3.276 | 2035-89-4 | 91.4 |
Acetadehyde dimethylhydrazone (ADMH) | 4.363 | 7422-90-4 | 85.5 |
1,1,4,4-tetramethyl-1,2-tetrazene (TMT) | 6.888 | 6130-87-6 | 44.0 |
Dimethylamino-Acetonitrile | 8.013 | 924-64-7 | 97.4 |
N-nitrododimethylamine (NDMA) | 9.430 | 62-75-9 | 90.8 |
Dimethylformamide (DMF) | 10.092 | 68-12-2 | 60.8 |
1-methyl-1,2,4-triazole (MT) | 11.633 | 6086-21-1 | 74.2 |
N-formyl-N-methyl-Formamide | 12.890 | 18197-25-6 | 40.9 |
N-methyl-N-nitro-ethanamine | 13.060 | 10595-95-6 | 26.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Liu, X.; Xie, Z.; Wang, X.; Gao, X.; Yang, Y. Products and Mechanistic Investigations on the Reactions of Hydrazines with Ozone in Gas-Phase. Symmetry 2018, 10, 394. https://doi.org/10.3390/sym10090394
Huang D, Liu X, Xie Z, Wang X, Gao X, Yang Y. Products and Mechanistic Investigations on the Reactions of Hydrazines with Ozone in Gas-Phase. Symmetry. 2018; 10(9):394. https://doi.org/10.3390/sym10090394
Chicago/Turabian StyleHuang, Dan, Xiangxuan Liu, Zheng Xie, Xuanjun Wang, Xin Gao, and Yuxue Yang. 2018. "Products and Mechanistic Investigations on the Reactions of Hydrazines with Ozone in Gas-Phase" Symmetry 10, no. 9: 394. https://doi.org/10.3390/sym10090394
APA StyleHuang, D., Liu, X., Xie, Z., Wang, X., Gao, X., & Yang, Y. (2018). Products and Mechanistic Investigations on the Reactions of Hydrazines with Ozone in Gas-Phase. Symmetry, 10(9), 394. https://doi.org/10.3390/sym10090394