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Abstract: The F(R, G) theory of gravity, where R is the Ricci scalar and G is the Gauss-Bonnet
invariant, is studied in the context of existence the Noether symmetries. The Noether symmetries of the
point-like Lagrangian of F(R, G) gravity for the spatially flat Friedmann-Lemaitre-Robertson-Walker
cosmological model is investigated. With the help of several explicit forms of the F(R, G) function
it is shown how the construction of a cosmological solution is carried out via the classical Noether
symmetry approach that includes a functional boundary term. After choosing the form of the F(R, G)

function such as the case (i) : F(R, G) = f0Rn + g0Gm and the case (ii) : F(R, G) = f0RnGm, where n
and m are real numbers, we explicitly compute the Noether symmetries in the vacuum and the
non-vacuum cases if symmetries exist. The first integrals for the obtained Noether symmetries allow
to find out exact solutions for the cosmological scale factor in the cases (i) and (ii). We find several new
specific cosmological scale factors in the presence of the first integrals. It is shown that the existence of
the Noether symmetries with a functional boundary term is a criterion to select some suitable forms
of F(R, G). In the non-vacuum case, we also obtain some extra Noether symmetries admitting the
equation of state parameters w ≡ p/ρ such as w = −1,−2/3, 0, 1 etc.

Keywords: Noether symmetry approach; FLRW spacetime; action integral; variational principle;
first integral; modified theories of gravity; Gauss-Bonnet cosmology

1. Introduction

Recent observational data indicate that the current expansion of the universe is accelerating [1–8],
not only expanding. Then this acceleration is explained by the existence of a dark energy, which
could result from a cosmological constant Λ as the simplest candidate with the equation of state
parameter wΛ = −1, or may also be explained in the context of modified gravity models. The nature
and origin of the dark energy has not been persuasively explained yet. In addition to the cosmological
constant, there are different kinds of candidates for dark energy such as quintessence or phantom in
the literature, and it is not even clear what type of candidates to the dark energy occur in the present
universe. Therefore, there have been a number of attempts [9–15] to modify gravity to explain the
origin of dark energy.

A possible modification of the standard general relativistic gravitational Lagrangian includes
a wider number of curvature invariants R, RijRij and Rijkl Rijkl among others. In the so-called
Gauss-Bonnet (GB) gravity theories the gravitational Lagrangian consists of a F(R, G) function,
where the GB invariant G is defined as G = R2 − 4RijRij + Rijkl Rijkl . Considering the GB invariant G
in dynamical equations one can recover all the curvature budget coming from the Riemann tensor.
Due to of the fact that the GB invariant comes out from defining quantum fields in curved spacetimes,
it should be important to take it in the context of the extended theories of gravity. It is shown in
[13] that the quintessence paradigm can be recovered in the framework of F(R, G) theories of gravity.
The F(R, G) gravity theories are generalizations f (R) and f (G) theory of gravities which are offered
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by higher order gravities, and use combinations of higher order curvature invariants constructed from
the Ricci and Gauss-Bonnet scalars. In [14], some classes of F(R, G) gravity have been studied with
respect to the successful realization of the dark energy and of the inflationary era. We refer to readers
the latest review [15] on developments of modified gravity in cosmology, emphasizing on inflation,
bouncing cosmology and late-time acceleration era.

If a Lagrangian L for a given dynamical system admits any symmetry, this property should
strongly be related with Noether symmetries that describe physical features of differential equations
possessing a Lagrangian L in terms of first integrals admitted by them [16,17]. This can actually be
seen in two ways. Firstly, one can consider a strict Noether symmetry approach [18–21] which yields
£XL = 0, where £X is the Lie derivative operator along X. On the other side, one could use the classical
Noether symmetry approach with a functional term [22–25] which is a generalization of the strict Noether
symmetry approach in the sense that the Noether symmetry equation includes a divergence of a
functional boundary term. The classical Noether symmetry approach was originally established by
Emmy Noether [26] and it gives a connection between a Noether symmetry and the existence of a
first integral expressed in a simple form. Not only the classical Noether symmetries but also the strict
ones are useful in a variety of problems arising from physics and applied mathematics. Both types
of symmetries lead to the first integrals. Which type of symmetry works, i.e., gives any conserved
quantity, in the first instance this is what is important. The classical Noether symmetries are directly
related with the conserved quantities (first integrals) or conservation laws [17]. The strict Noether
symmetry approach represents how Noether’s theorem and cyclic variables are related. It is known
that the conserved quantities are also related to the existence of cyclic variables into the dynamics
by the strict Noether symmetry. However, it is usually required a clever choice of cyclic variables
because of that the equations for the change of coordinates have not a unique solution which is also
not well defined on the whole space, and thus it is not unique to find those of the cyclic variables
(see References [27] for details). Furthermore, we refer to the interested readers the recent review on
symmetries in differential equations [28].

The cosmological principle assume that the universe is homogeneous and isotropic
in large scale structure and the geometrical model that satisfies these properties is
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. In [19], it has been discussed the strict
Noether symmetry approach for spatially flat FLRW spacetime in GB cosmology, where it was pointed
out that the existence of Noether symmetries is capable of selecting suitable F(R, G) models to integrate
dynamics by the identification of suitable cyclic variables. After this work, the classical Noether
symmetries of flat FLRW spacetime have been computed by [25], where the authors were used Noether
symmetries as a geometric criterion to select the form of F(R, G) function. Due to the richness of the
classical Noether symmetry approach, we deduced throughout this study that it is better to use the
classical Noether symmetry approach to find Noether symmetries in F(R, G) gravity as in [25], rather
that the approach used in [19]. If there exists any Noether symmetry with a selection of physically
interesting forms of F(R, G) function, then this allows us to write out the constants of motion which
reduce dynamics. Furthermore, the reduced dynamics results exactly solvable cosmological model by
a straightforward way. In fact, choosing an appropriate F(R, G) Lagrangian, it is possible to find out
conserved Noether currents which will be useful to solve dynamics. This approach is very powerful
due to the fact that it allows us to find a closed system of equations, where we do not need to impose
the particular form of F(R, G) which is selected by the classical Noether symmetry itself. To this aim,
it is possible to consider flat FLRW background metric and demonstrate that it is possible to find exact
solutions via the Noether Symmetry Approach. In this study we again underline the generality of
Noether’s Theorem in its original form by considering the standard cosmological model.

This paper is organized as follows. In the following section, we will present an analysis of
the classical Noether symmetry approach including a boundary function for the point-like F(R, G)

Lagrangian according to the spatially flat FLRW background. In Section 3, we will apply the classical
Noether theorem to the F(R, G) Lagrangian obtained in Section 2 for the flat FLRW model. In Section 4,
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we classify the Noether symmetries with respect to some specific forms of F(R, G), and search the
cosmological solutions of F(R, G) gravity by considering both the vacuum and the non-vacuum cases.
Finally, in Section 5, we will provide a summary of the main results obtained in the paper.

2. F(R, G) Gravity

In this section we briefly present the general formalism of F(R, G) gravity. The action for F(R, G)

gravity is given by

S =
∫

d4x
√
−g
[

1
2κ2 F(R, G) + Lm

]
, (1)

where κ2 = 8πGN , GN is the Newton constant and Lm represents the matter Lagrangian. Variation of
the action (1) with respect to the metric tensor gij we obtain the modified field equations

FRGij = κ2Tm
ij +

1
2

gij(F− RFR) +∇i∇jFR − gij�FR

+ FG

(
− 2RRij + 4RikRk

j − 2R klm
i Rjklm + 4gkl gmnRikjmRln

)
+ 2

(
∇i∇jFG

)
R− 2gij (�FG) R + 4 (�FG) Rij − 4 (∇k∇iFG) R k

j − 4
(
∇k∇jFG

)
R k

i

+ 4gij (∇k∇l FG) Rkl − 4 (∇l∇nFG) gkl gmnRikjm,

(2)

where we have defined the following expressions

FR ≡
∂F(R, G)

∂R
, FG ≡

∂F(R, G)

∂G
. (3)

In the above field equations, ∇i is the covariant derivative operator associate with gij, � ≡ gij∇i∇j is
the covariant d’Alembertian operator, and Tm

ij describes the ordinary matter. It is clear from the field
Equation (2) that the form of F(R, G) determine the dynamical behaviour of the theory.

In this study, we consider the spatially flat FLRW metric

ds2 = −dt2 + a(t)2
(

dx2 + dy2 + dz2
)

(4)

where a(t) is the scale factor of the Universe. Then, the Hubble parameter H is usually defined by
H ≡ ȧ/a, and R and G become

R = 6
(

ä
a
+

ȧ2

a2

)
= 6(Ḣ + 2H2), G = 24

ȧ2 ä
a3 = 24H2

(
Ḣ + H2

)
, (5)

where the overdot denotes a derivative with respect to the time coordinate, t. For a perfect fluid matter
with comoving observer ui = δ0

i , the energy momentum tensor is Tij = (ρ + p)uiuj + pgij, where ρ is
the energy density and p is the isotropic pressure measured by the observer ui. Let us assume that the
matter fluid will be given under the form of a perfect fluid with the equation of state p = wρ satisfying
the standard continuity equation ρ̇ + 3(1 + w)ρȧ/a = 0 which yields a solution ρ = ρm0a−3(1+w),
where ρm0 is the energy density of the present universe, and w is a constant parameter. Thus, in the
flat FLRW background with a perfect fluid matter, the field Equation (2) for the F(R, G) gravity are
given by

3FR
ȧ2

a2 = κ2ρ +
1
2
(RFR + GFG − F)− 3ḞR

ȧ
a
− 12ḞG

ȧ3

a3 , (6)

FR

(
2ä
a
+

ȧ2

a2

)
= −κ2 p +

1
2
(RFR + GFG − F)− 2ḞR

ȧ
a
− F̈R − 4

ȧ
a

(
ȧ
a

F̈G +
2ä
a

ḞG

)
. (7)
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In terms of the Hubble parameter H, the gravitational field Equations (6) and (7) for F(R, G)

gravity have the following form

H2 =
κ2

3
ρe f f , 2Ḣ + 3H2 = −κ2 pe f f , (8)

where ρe f f and pe f f are respectively the effective energy density and pressure of the universe, which
are defined as

ρe f f ≡
1

FR

{
ρ +

1
2κ2

[
RFR + GFG − F− 6HḞR − 24H3 ḞG

]}
, (9)

pe f f ≡
1

FR

{
p +

1
2κ2

[
F− RFR − GFG + 4HḞR + 2F̈R + 16H(Ḣ + H2)ḞG + 8H2 F̈G

]}
. (10)

Here we observe from (8) that ρe f f + pe f f = − 2
κ2 Ḣ.

3. Noether Symmetry Approach

Recently the strict Noether symmetries of GB cosmology for the flat FLRW spacetime have been
calculated, and choosing some functional form of the F(R, G), the Noether symmetries related to these
functional forms have been achieved [19]. Afterwards, the classical Noether symmetries have also
been calculated by [25]. Both of these studies were performed in the vacuum case. In this work, after
reviewing the vacuum case, we aim to generalize these studies to the non-vacuum case using the
classical Noether symmetry approach described below.

The Noether symmetry generator for any point-like Lagrangian L is

X = ξ(t, a, R, G)
∂

∂t
+ η1(t, a, R, G)

∂

∂a
+ η2(t, a, R, G)

∂

∂R
+ η3(t, a, R, G)

∂

∂G
, (11)

if there exists a function K(t, a, R, G) and the Noether symmetry condition

X[1]L+ L(Dtξ) = DtK (12)

is satisfied, where Dt =
∂
∂t + q̇i ∂

∂qi is the total derivative operator and X[1] is the first prolongation of
Noether symmetry generator X, i.e.

X[1] = X + η̇i
(

t, qi, q̇i
) ∂

∂qi (13)

where η̇i(t, qk, q̇k) = Dtη
i − q̇iDtξ, qi = {a, R, G} are the generalized coordinates in the

three-dimensional configuration space Q ≡ {qi, i = 1, 2, 3} of the Lagrangian, whose tangent space is
TQ ≡ {qi, q̇i}. The energy functional EL or the Hamiltonian of the Lagrangian L is defined by

EL = q̇i ∂L
∂q̇i −L. (14)

Using above definition of energy functional, the corresponding Noether flow I, which is a constant
called the first integral of motion, has the expression

I = −ξEL + ηi ∂L
∂q̇i − K, (15)

which is a conserved quantity. The Noether flow (15) satisfies the conservation relation Dt I = 0.
It is obviously seen from a general point of view that R and G are functions of a, ȧ and ä, which

yields non-canonical dynamics. The Lagrange multipliers plays a main role so as to get a canonical
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point-like Lagrangian [29]. Using this key future in [19], it has been accomplished that the point-like
Lagrangian for F(R, G) gravity becomes canonical with suitable Lagrange multipliers, where both R
and G behave like effective scalar fields. We left the details for finding a canonical point-like Lagrangian
by Lagrange multipliers method to the Reference [19]. For the spatially flat FLRW spacetime (4), the
Lagrangian for the action of F(R, G) gravity (1) has the form

L = −6FRaȧ2 − 6a2 ȧḞR − 8ḞG ȧ3 + a3(F− RFR − GFG)− 2κ2ρm0a−3w, (16)

where ḞR = FRRṘ + FRGĠ and ḞG = FGRṘ + FGGĠ. By variation of the above Lagrangian with respect
to the configuration space variables a, R and G, we find respectively that

FR

(
2ä
a
+

ȧ2

a2

)
+

2ȧ
a

ḞR + F̈R −
4ȧ
a

(
2ä
a

ḞG +
ȧ
a

F̈G

)
+

1
2
(RFR + GFG − F) = κ2 p, (17)

6FRR

(
ä
a
+

ȧ2

a2 −
R
6

)
− FGR

(
24

ȧ2 ä
a3 − G

)
= 0, (18)

6FGR

(
ä
a
+

ȧ2

a2 −
R
6

)
− FGG

(
24

ȧ2 ä
a3 − G

)
= 0, (19)

in which the Equation (17) is equivalent to the field Equation (7). Then we note that R and G coincides
with the definitions of the Ricci scalar and Gauss-Bonnet invariant given by (5), respectively. Now, we
calculate the energy functional EL for the Lagrangian density (16) which has the form

EL = 2a3
[

3FR
ȧ2

a2 + 3
ȧ
a

ḞR + 12
ȧ3

a3 ḞG −
1
2
(RFR + GFG − F)− κ2ρ

]
. (20)

It is explicitly seen that the energy function EL vanishes due to the (0, 0)-field Equation (6).
Let us consider the Noether symmetry conditions (12) for the point-like Lagrangian (16) to seek

the dependent variables ξ, η1, η2, η3 which will be solved in order that the Lagrangian (16) would admit
any Noether symmetry (11). For the flat FLRW spacetime (4), the Noether symmetry conditions (12)
yield 27 partial differential equations as the following

FGRξ,a = 0, FGGξ,a = 0, FGRξ,R = 0, FRRξ,R = 0, FGRξ,G = 0, FGGξ,G = 0,

FRRη1
,R = 0, FGRη1

,R = 0, FGRη1
,G = 0, FGGη1

,G = 0, FGGξ,R + FGRξ,G = 0,

FGRξ,R + FRRξ,G = 0, FGRη1
,R + FRRη1

,G = 0, FGGη1
,R + FGRη1

,G = 0, FGRη2
,a + FGGη3

,a = 0,

6a
(

2FRη1
,t + aFRRη2

,t + aFGRη3
,t

)
+ Vξ,a + K,a = 0, 6a2FRRη1

,t + Vξ,R + K,R = 0,

6a2FGRη1
,t + Vξ,G + K,G = 0, 4

(
FGRη2

,t + FGGη3
,t

)
− 3aFRξ,a = 0,

4FGRη1
,t − a (FRξ,R + aFRRξ,a) = 0, 4FGGη1

,t − a (FRξ,G + aFGRξ,a) = 0,

FGRRη2 + FGGRη3 + FGGη3
,R + FGR

(
3η1

,a + η2
,R − 3ξ,t

)
= 0, (21)

FGGRη2 + FGGGη3 + FGRη2
,G + FGG

(
3η1

,a + η3
,G − 3ξ,t

)
= 0,

FR

(
η1

a
+ 2η1

,a − ξ,t

)
+ FRRη2 + FGRη3 + a

(
FRRη2

,a + FGRη3
,a

)
= 0,

FRR

(
2

η1

a
+ η1

,a + η2
,R − ξ,t

)
+

2
a

FRη1
,R + FRRRη2 + FRRGη3 + FGRη3

,R = 0,

FGR

(
2

η1

a
+ η1

,a + η3
,G − ξ,t

)
+

2
a

FRη1
,G + FRRGη2 + FGGRη3 + FRRη2

,G = 0,

V,aη1 + V,Rη2 + V,Gη3 + Vξ,t + K,t = 0,
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where V is defined as V(a, R, G) = a3(RFR + GFG − F) + 2κ2ρm0a−3w, which can be considered as
an effective potential for the F(R, G) gravity. Here , R and G act as two different scalar fields whose
regimes can lead different phases of the cosmological evolution.

We note here that η1 = 0, η2 = 0, η3 = 0, K = const. and ξ = const. are trivial solutions for the
Noether symmetry Equation (21). This result implies that any form of F(R, G) function admits the
trivial Noether symmetry X1 = ∂/∂t, i.e., energy conservation, whose Noether first integral or the
Hamiltonian of the system vanishes, I = −EL = 0. In the following section, we consider the form
of F(R, G) to find the corresponding Noether symmetries and solutions to the corresponding first
integrals for each of the vacuum an the non-vacuum cases.

4. Noether Symmetries and Cosmological Solutions

Using the symmetry condition (12) to the point-like Lagrangian (16), which will fix the form of
F(R, G), several different cases were classified in [25] according to whether the derivative FRG vanishes
or not. If FRG = 0, it means F(R, G) = f (R) + g(G), which is considered as the case (i) below, taking
f (R) = f0Rn and g(G) = g0Gm. Otherwise, if FRG 6= 0, we will take the form of F(R, G) function as
the case (ii), i.e., F(R, G) = f0RnGm, where n and m are real numbers.

4.1. Vacuum Case

In this case, we assume the vacuum where Lm = 0, i.e., ρm0 = 0.
Case (i): F(R, G) = f (R) + g(G). For this case, we choose the functional forms f (R) = f0Rn and

g(G) = g0Gm. Then we examine the following subcases where the powers n and m are fixed to some
values, which are compatible with the Noether symmetries.

• n = m = 1: Then, the Noether symmetry Equation (21) imply that

ξ = c1 + c2t + c3
t2

2
, η1 =

a
3
(c2 + c3t) +

c4t + c5√
a

, η2, η3 arbitrary, (22)

K = −4
3

f0c3a3 − 8 f0c4a
3
2 . (23)

This solution to Equation (21) was given in [25] by (55) together with non-trivial function (23).
Thus, the Noether symmetry generators from the solution (22) together with (23) take the
following forms:

X1 =
∂

∂t
, X2 =

1√
a

∂

∂a
, X3 = 3t

∂

∂t
+ a

∂

∂a
with K = 0, (24)

X4 =
3t2

2
∂

∂t
+ ta

∂

∂a
with K = −4 f0a3; X5 =

t√
a

∂

∂a
with K = −8 f0a

3
2 , (25)

which give the non-vanishing commutators

[X1, X3] = 3X1, [X1, X4] = X3, [X1, X5] = X2, (26)

[X2, X3] =
3
2

X2, [X2, X4] = X5, [X3, X4] = 3X4, [X3, X5] =
3
2

X5. (27)

The first integrals of the above vector fields are the Hamiltonian, I1 = −EL = 0, and the quantities

I2 = −12 f0
√

aȧ, I3 = −12a2 ȧ, I4 = −4 f0a2 (3tȧ− a) , I5 = −4 f0
√

a (3tȧ− 2a) . (28)

Here we note that it is only found one Noether symmetry in Reference [19] which is X2 given
in (24), and the remaining ones are not appeared in this reference. It follows from EL = 0 that
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ȧ = 0, that is, a(t) = a0 = constant, which is the Minkowski spacetime recovered in vacuum and
so I2 = I3 = 0, I4 = 4 f0a3

0 and I5 = 8 f0a3/2
0 by (28).

• n arbitrary (with n 6= 0, 1, 3
2 , 7

8 ), m = 1: For this case, it follows from (21) that there are two
Noether symmetries,

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ (2n− 1)a

∂

∂a
− 6R

∂

∂R
, (29)

which gives the non-vanishing Lie algebra [X1, X2] = 3X1. The first integrals are I1 = −EL = 0,
that means

ȧ2

a2 + (n− 1)
ȧṘ
aR
− (n− 1)

6n
R = 0, (30)

by using (20), and

I2 = 6 f0na3Rn−1
[

2(n− 2)
ȧ
a
− (n− 1)(2n− 1)

Ṙ
R

]
, (31)

for X1 and X2, respectively. Then, solving the first integral (31) in terms of a, one gets

a(t) = R
(n−1)(2n−1)

2(n−2)

[
a0 +

I2

4 f0n(n− 2)

∫
R

(n−1)(8n−7)
2(2−n) dt

] 1
3

, (32)

where a0 is an integration constant, and n 6= 2. Substituting R given in (5) to the Equation (30), it
follows from the integration of resulting equation with respect to t that

a−
1

n−1 ȧ = a1Rn, (33)

which is a constraint equation for a, and it gives

ȧ
a
= a1R2, (34)

for n = 2, where a1 is a constant of integration. Thus, the curvature scalar R given by (5) together
with the relation (34) becomes

Ṙ + a1R3 =
1

12a1
, (35)

which is Abel’s differential equation of first kind, and has the following solution

R(t) = 4a2
1(a1t− a2)

[
1 +

4a2
1(a1t− a2)

∆(t)

]
+ ∆(t), (36)

where a2 is an integration constant, and ∆(t) is defined as

∆(t) = a2/3
1

[
64a4

1(a1t− a2)
3 − 3 + 3

√
2
√

3− 64a2
1(a1t− a2)3

] 1
3

.

The first integral (31) for n = 2 yields I2 = −36 f0a3Ṙ, and then the Equation (35) gives rise to the
scale factor as

a(t) =

[
a1 I2

3 f0(12a2
1R(t)3 − 1)

] 1
3

. (37)

• n = 3
2 , m = 1: This case admits extra Noether symmetries as pointed out in Reference [30] .

The existence of the extra Noether symmetries put even further first integrals which raise the
possibility to find an exact solution. The Noether symmetries obtained from (21) are X1 and
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X2 =
1
a

∂

∂a
− 2R

a2
∂

∂R
, X3 = 3t

∂

∂t
+ 2a

∂

∂a
− 6R

∂

∂R
, X4 = tX2 with K = −9 f0a

√
R, (38)

with the non-vanishing Lie brackets

[X1, X3] = 3X1, [X1, X4] = X2, [X2, X3] = 4X2, [X3, X4] = −X4. (39)

The corresponding Noether constants are I1 = −EL = 0, which give

ȧ2

a2 +
ȧṘ

2aR
− R

18
= 0, (40)

and

I2 = −9 f0a
√

R
(

ȧ
a
+

Ṙ
2R

)
, I3 = −9 f0a3

√
R
(

ȧ
a
+

Ṙ
R

)
, I4 = I2t + 9 f0a

√
R. (41)

Using above first integrals, we find the scale factor and the Ricci scalar as follows:

a(t) =
1

6 Ī2

√
( Ī2t− Ī4)4 + 18 Ī2 Ī3, R(t) =

36 Ī2
2 ( Ī2t− Ī4)

2

( Ī2t− Ī4)4 + 18 Ī2 Ī3
, (42)

where it is defined Ī2 = −9 f0 I2, Ī3 = −9 f0 I3 and Ī4 = −9 f0 I4.
• n = 7

8 , m = 1: In addition to X1, this case includes extra two Noether symmetries [30]

X2 = 4t
∂

∂t
+ a

∂

∂a
− 8R

∂

∂R
, X3 = 2t2 ∂

∂t
+ ta

∂

∂a
− 8tR

∂

∂R
with K = −21

4
f0a3 R−

1
8 . (43)

Then the non-zero Lie brackets are

[X1, X2] = 4X1, [X1, X3] = X2, [X2, X3] = 4X3. (44)

Thus the first integrals of this case are I1 = −EL = 0, which yield

ȧ2

a2 −
ȧṘ

8aR
+

R
42

= 0, (45)

and

I2 =
21
4

f0R−
1
8

(
−3a2 ȧ + a3 Ṙ

8R

)
, I3 = I2t +

21
4

f0a3R−
1
8 . (46)

Substituting the Ricci scalar R given in (5) to the Equation (45), and integrating the resulting
equation, one gets

a8 ȧ = a0R
7
8 , (47)

where a0 is a constant of integration. Defining Ī2 = −4I2/(21 f0) and Ī3 = −4I3/(21 f0), the first
integrals (46) become

Ī2 =
(

a3R−
1
8

)·
, Ī3 = Ī2t− a3R−

1
8 , (48)

which give

a(t) =
[

R
1
8 ( Ī2t− Ī3)

] 1
3 . (49)

Putting the latter form of scale factor into (47), after integration for R, one finds

R(t) =
( Ī2t− Ī3)

4[
2a0
Ī2

+ R0( Ī2t− Ī3)6
]2 , (50)
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then the scale factor becomes

a(t) =
√

Ī2t− Ī3

[
2a0

Ī2
+ R0( Ī2t− Ī3)

6
]− 1

12
, (51)

where R0 is an integration constant.
• n = 1

2 , m = 1
4 : Here there exist two Noether symmetries,

X1 =
∂

∂t
, X2 = t

∂

∂t
− 2R

∂

∂R
− 4G

∂

∂G
, (52)

with the non-vanishing Lie algebra [X1, X2] = X1. Then the first integrals related with these
Noether symmetries are I1 = −EL = 0, which yield

ȧ2

a2 −
ȧṘ

2aR
+

R
6
+

g0

4 f0

√
RG

1
4

(
1− 6ȧ3Ġ

a3G2

)
= 0, (53)

and

I2 = −6
(

f0

2
R−

1
2 a2 ȧ + g0G−

3
4 ȧ3
)

. (54)

The Noether symmetries (52) have also been obtained in [25] with the symmetry vector (41). In
order to determine the invariant functions of the Noether symmetry X2 given in (52), after solving
the Lagrange system [28]

dt
t
=

dR
−2R

=
dG
−4G

, (55)

one find the solutions for R(t) and G(t) as

R(t) =
R0

t2 , G(t) =
G0

t4 . (56)

Here we get a power-law solution a(t) = a0t2, where the Equations (53) and (54) yield

g0 = −4 f0G
3
4

6
√

R0

(R0 + 36)
(G0 + 192)

, I2 =
6 f0a3

0√
R0

[
16(R0 + 36)
3(G0 + 192)

− 1
]

. (57)

For the obtained R and G in (56), if we take into account the definitions of R and G given by (5),
then we get the values of constants as R0 = 36 and G0 = 192. Thus, the relation (57) becomes
g0 = −(4/3)1/4 f0 and I2 = 0.

• n = 1, m = 1
2 : In this case, there are also two Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ a

∂

∂a
− 12G

∂

∂G
, (58)

which give rise to the first integrals I1 = −EL = 0, which can be written by using (20) as follows

ȧ2

a2 +
g0

f0

√
G
(

1
12
− ȧ3Ġ

a3G2

)
= 0, (59)

and

I2 = 6
[
−2 f0a2 ȧ +

g0√
G

aȧ2
(

Ġ
G
− 4

ȧ
a

)]
. (60)

Here we have to point out that the Noether symmetries (58) are of the form (41) in [25]. By solving
the Lagrange system for X2

dt
3t

=
da
a

=
dG
−12G

, (61)
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the invariant functions can be obtained as

a(t) = a0t
1
3 , G(t) =

G0

t4 . (62)

Then, substituting these into the Equations (59) and (60), we can find the constraint relations

g0 = −12 f0
√
|G0|

9G0 + 16
, I2 = 4 f0a3

0

[
32

3(9G0 + 16)
− 1
]

. (63)

Here the definition of G in terms of a(t) by (5) gives rise to the value G0 = −16/27, which means
g0 = −

√
3 f0/2 and I2 = 0 after substituting G0 into (63).

Case (ii): F(R, G) = f0 f (R)g(G). Here we will consider the functional forms f (R) = Rn and
g(G) = Gm. These types of functional forms are appeared in some references such as [9,19,25,31,32].

• n, m arbitrary: This theory admits the following Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ (4m + 2n− 1)a

∂

∂a
− 6R

∂

∂R
− 12G

∂

∂G
, (64)

and the corresponding first integrals are

ȧ2

a2 +
ȧ
a

[
(n− 1)

Ṙ
R
+ m

Ġ
G

]
+

12mR
G

ȧ3

a3

[
Ṙ
R
+

(m− 1)
n

Ġ
G

]
− (n + m− 1)

R
6n

= 0, (65)

I2 =6 f0RnGma3
{

2(2m + n− 2)
ȧ
a

( n
R
+

4mȧ2

Ga2

)
− (4m + 2n− 1)

(
n
R

[
(n− 1)

Ṙ
R
+ m

Ġ
G

]
+

4mȧ2

Ga2

[
n

Ṙ
R
+ (m− 1)

Ġ
G

])}
.

(66)

These are very general statements and one can find any solution choosing the arbitrary powers n
and m. The invariant functions for the vector field X2 can be determined by solving the associated
Lagrange system

dt
3t

=
da

(4m + 2n− 1)a
=

dR
−6R

=
dG
−12G

, (67)

which yields

a(t) = a0t
4m+2n−1

3 , R(t) =
R0

t2 , G(t) =
G0

t4 . (68)

Now one can find the constants R0 and G0 in terms of powers of a(t) as R0 = 2(4m+ 2n − 1)(8m+

4n − 5)/3 and G0 = 16(4m + 2n − 1)3(2m + n − 2)/27 by considering (5). Thus, using the
obtained quantities by (68) in (65) and (66), we find the constraints

(10m + 2n− 1)(4m + 2n− 1)(8m + 4n− 5) = 0, I2 = 6(2m + n) f0a3
0Rn

0 Gm
0 . (69)

• m = 1− n: This case is considered in the reference [19] as a simplest non-trivial case with the
selection of n = 2. In general, the solution of Noether symmetry equations (21) becomes

ξ = c1 + c2t, η1 = c2(3− 2n)
a
3

, η2 = η2(t, a, R, G), η3 =
G
R
(−2c2R + η2), K = c3, (70)

where ci’s (i = 1, 2, 3) are constant parameters, and η2 is an arbitrary function of t, a, R and G. This
arbitrariness means that there are infinitely many Noether symmetries and it gives us to decide a
selection of consistent solution for the scale factor a. Therefore, we choose η2 = −2c2R to get a
consistent power-law solution for the scale factor a, using the associated Lagrange system. It has
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to be mentioned here that this type of selection is not necessary for non power-law solutions. We
proceed considering η2 = −2c2R at (70), which yields that there are two Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ (3− 2n)a

∂

∂a
− 6R

∂

∂R
− 12G

∂

∂G
. (71)

The first integrals of the above vector fields are

ȧ
a
+ (n− 1)

(
1− 4Rȧ2

Ga2

)(
Ṙ
R
− Ġ

G

)
= 0, (72)

and

I2 = −6 f0n
(

R
G

)n−1
a2 ȧ
{

4n− 3 + 24(n− 1)
Rȧ2

Ga2

}
. (73)

By choosing the variable ζ = R
G , the first integrals (72) and (73) take the form

ȧ
a
+ (n− 1)

(
1
ζ
− 4

ȧ2

a2

)
ζ̇ = 0, 6 f0nζn−1a2 ȧ

(
4n− 3 + 24(n− 1)ζ

ȧ2

a2

)
+ I2 = 0. (74)

For the selection of n = 2, it is seen that the first equation of (74) is similar to the Equation (38)
of the Reference [19]. After solving the associated Lagrange system for the vector field X2 given
in (71), we have

a(t) = a0t
3−2n

3 , R(t) =
R0

t2 , G(t) =
G0

t4 , (75)

Using the definitions of R and G in (5), the constants R0 and G0 are found as R0 = (16n2 −
36n + 18)/3 and G0 = 16n(2n− 3)3/27.

As a simple selection for the component η2, we choose η2 = 0 in (70). Then there are again two
Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ (3− 2n)a

∂

∂a
− 6G

∂

∂G
. (76)

The Noether constants for these vector fields are I1 = −EL = 0, which yield the same relation
with (72), and

I2 = 6 f0na3
(

R
G

)n−1 {
(2n− 3)

[
2ȧ
a
+ (n− 1)

(
1− 4Rȧ2

Ga2

)(
Ṙ
R
− Ġ

G

)]
+2(1− n)

ȧ
a

(
3− 4Rȧ2

Ga2

)}
, (77)

which becomes

I2 = 6 f0n
(

R
G

)n−1
a2 ȧ
{

2n− 3 + 2(1− n)
(

3− 4Rȧ2

Ga2

)}
, (78)

by using (72). It is easily seen that the Noether symmetry X2 in (76) does not have a consistent
solution for a power-law form of the scale factor a. The reason of this inconsistency is follows
from analysing of the associated Lagrange system for X2 in such a way that it gives the scale factor
a(t) as in (75), but G(t) = G0t−2 which contradicts the form of G(t) ∼ t−4 from the definition (5).

4.2. Non-Vacuum Case

In this section, we assume that the matter has a constant equation of state (EoS) parameter w ≡ p/ρ

with the perfect fluid matter. We mention that Equations (9) and (10) imply that the contribution
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of the F(R, G) gravity can formally be included in the effective energy density and pressure of the
universe. For the GR with F(R, G) = R, ρe f f = ρ and pe f f = p, and so the Equations (9) and (10) are
the FLRW equations.

Case (i): F(R, G) = f (R) + g(G).
For this case, we again choose f (R) = f0Rn, g(G) = g0Gm, and determine the Noether

symmetries in the presence of matter.

• n = m = 1: This gives the usual GR theory. For some value of the constant EoS parameter,
we would like to give the Noether symmetries in the following. First of all, for w = −1 (the
cosmological constant), the present value of the energy density becomes ρm0 = 4 f0/(3κ2α2), and
there exist five Noether symmetries

X1 =
∂

∂t
, X2 =

e
t
α

√
a

∂

∂a
with K = −8 f0

α
a

3
2 e

t
α , X3 =

e−
t
α

√
a

∂

∂a
with K =

8 f0

α
a

3
2 e−

t
α ,

X4 = e
2t
α

∂

∂t
+

2
3α

e
2t
α a

∂

∂a
with K = −16 f0

3α2 a3e
2t
α , (79)

X5 = e−
2t
α

∂

∂t
− 2

3α
e−

2t
α a

∂

∂a
with K = −16 f0

3α2 a3e−
2t
α ,

with the non-vanishing commutators

[X1, X2] =
1
α

X2, [X1, X3] = −
1
α

X3, [X1, X4] =
2
α

X4,

[X1, X5] = −
2
α

X5, [X2, X5] = −
2
α

X3, [X3, X4] =
2
α

X2, [X4, X5] = −
4
α

X1, (80)

where α is a constant. Then the first integrals are I1 = −EL = 0, that gives κ2ρm0 = 3 f0 ȧ2/a2, and
the quantities

Ī2 = e
t
α
√

a
(
−3ȧ +

2
α

a
)

, Ī3 = −e−
t
α
√

a
(

3ȧ +
2
α

a
)

,

Ī4 =
2

3α
e

2t
α

(
−3a2 ȧ +

2
α

a3
)

, Ī5 = − 2
3α

e−
2t
α

(
3a2 ȧ +

2
α

a3
)

, (81)

where we have defined I2 = 4 f0 Ī2, I3 = 4 f0 Ī3, I4 = 4 f0 Ī4 and I5 = 4 f0 Ī5. After solving these first
integrals for a, we find that the Noether constants become Ī3 = 0, Ī5 = 0, Ī4 = Ī2

2 /6, and the scale
factor is

a(t) = a0 exp
(
− 2t

3α

)
, (82)

where a0 = (α/4)2/3. This is the well-known de Sitter solution.

In the case of w = −1/2, we also find five Noether symmetries

X1 =
∂

∂t
, X2 =

1√
a

∂

∂a
with K = −48 f0t, X3 =

t√
a

∂

∂a
with K = −8 f0a

3
2 − 24 f0t2,

X4 = t
∂

∂t
+

(
a
3
+

3t2
√

a

)
∂

∂a
with K = −48 f0ta

3
2 − 48 f0t3, (83)

X5 =
t2

2
∂

∂t
+ t
(

a
3
+

t2
√

a

)
∂

∂a
with K = −24 f0t2a

3
2 − 4 f0a3 − 12 f0t4.
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Thus the non-vanishing Lie brackets of the above vector fields are

[X1, X3] = X2, [X1, X4] = X1 + 6X3, [X1, X5] = X4,

[X2, X4] =
1
2

X2, [X2, X5] =
1
2

X3, [X3, X4] = −
1
2

X3, [X4, X5] = X5. (84)

Under the change of the Noether constants I2 → 12 f0 I2, I3 → 12 f0 I3, I4 → 12 f0 I4, I5 → 12 f0 I5 for
the Noether symmetries (83), the first integrals for X1, ..., X5 become

3 f0
ȧ2
√

a
= κ2ρm0,

I2 = −
√

aȧ + 4t, I3 = −t
√

aȧ +
2
3

a
3
2 + 2t2,

I4 =
a2

3
ȧ− 3t2√aȧ + 4ta

3
2 + 4t3, I5 = − t

3
a2 ȧ− t3√aȧ + 2t2a

3
2 +

a3

9
+ t4, (85)

Taking into account these first integrals, we find that

a(t) = a0 (4t− I2)
4
3 , (86)

ρm0 =
16 f0

κ2 , I3 =
I2
2
8

, I4 =
I3
2

16
, I5 =

I2
3
4

, (87)

where a0 = (3/16)2/3.

For w = 0 (the dust), the dynamical system admits the following five Noether symmetries

X1 =
∂

∂t
, X2 =

1√
a

∂

∂a
, X3 =

t√
a

∂

∂a
with K = −8 f0a

3
2 ,

X4 = t
∂

∂t
+

a
3

∂

∂a
with K = −κ2ρm0t, (88)

X5 =
t2

2
∂

∂t
+

ta
3

∂

∂a
with K = −4 f0

3
a3 − κ2ρm0t2,

and then the non-vanishing commutators are

[X1, X3] = X2, [X1, X4] = X1, [X1, X5] = X4,

[X2, X4] =
1
2

X2, [X2, X5] =
1
2

X3, [X3, X4] = −
1
2

X3, [X4, X5] = X5. (89)

The corresponding first integrals of the Noether symmetries (88) are

I1 = −EL = 0, I2 = −12 f0
√

aȧ, I3 = I2t + 8 f0a
3
2 , (90)

I4 = −4 f0a2 ȧ + 2κ2ρm0t, I5 = 4 f0

(
−ta2 ȧ +

1
3

a3
)
+ κ2ρm0t2. (91)

Using the above first integrals one can find the scale factor and the constraints on Noether
constants as follows

a(t) = a0 (I3 − I2t)
2
3 , (92)

ρm0 =
I2
2

48 f0κ2 , I4 =
I2 I3

24 f0
, I5 =

I2
3

48 f0
, (93)

where a0 = (8 f0)
−2/3.
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Finally, for w = 1 (stiff matter), we find three Noether symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ a

∂

∂a
, X3 =

3
2

t2 ∂

∂t
+ ta

∂

∂a
with K = −4 f0a3, (94)

which yields the non-vanishing Lie algebra: [X1, X2] = 3X1, [X1, X3] = X2, [X2, X3] = 3X3.
The Noether constants for X1, X2 and X3 are

I1 = 0 ⇒ 3 f0a4 ȧ2 = κ2ρm0, I2 = −12 f0a2 ȧ, I3 = I2t + 4 f0a3, (95)

having the solution

a(t) = a0 (I3 − I2t)
1
3 , ρm0 =

I2
2

48 f0κ2 , (96)

where a0 = (4 f0)
−1/3.

• n arbitrary (with n 6= 0, 3
2 , 7

8 ), m = 1: In this case we have the same Noether symmetries X1, X2

given by (29) in the vacuum case. For this case we are led to the constant EoS parameter w as

w =
1

2n− 1
. (97)

Using this EoS parameter, the first integral for X1 gives

ȧ2

a2 + (n− 1)
ȧṘ
aR
− (n− 1)

6n
R =

κ2ρm0

3 f0n
a−

6n
2n−1 R1−n. (98)

The scale factor for this case has the same form with (32), which is not a power-law form, and
the Equations (31) and (98) are the constraint equations to be considered. It is interesting to see
from (97) that n = 0 if w = −1 (the cosmological constant) which is excluded in this case, n = 1 if
w = 1 (the stiff matter), and n = 2 if w = 1/3 (the relativistic matter), etc. Therefore, this case
includes some important values of the EoS parameter.

This model admits power-law solution of the form a(t) = a0t(2n−1)/3, and the Ricci scalar and
the GB invariant become R(t) = R0t−2 and G(t) = G0t−4, where the constants R0 and G0 follow
from (5) as R0 = 2(2n− 1)(4n− 5)/3 and G0 = 16(n− 2)(2n− 1)3/27. Meanwhile, the constraint
relations (31) and (98) for this power-law scale factor give

ρm0 =
f0

3κ2 (5− 4n)(2n− 1)2Rn−1
0 a

6n
2n−1
0 , I2 = 4n(4n− 5)(2n− 1) f0a3

0Rn−1
0 , (99)

where n 6= 1
2 , 5

4 due to ρm0 6= 0. The power-law solution of this case works for n = 2, i.e., w = 1/3,
and it gives negative energy density as ρm0 = −54 f0a4

0/κ2.

• n = 3
2 , m = 1: We will firstly consider the case w = −2/3 which requires that ρm0 = α/2κ2, α is a

constant. For this case, there are three Noether symmetries X1, X2 with K = −2αt, and X3 = tX2

with K = −9 f0a
√

R− αt2, where X2 is the same as given in (38). Thus the constants of motion for
the vector fields X1, X2 and X3 are, respectively,

ȧ2

a2 +
ȧṘ

2aR
− R

18
=

α

9 f0a
√

R
, (100)

and

I2 = −9 f0a
√

R
(

ȧ
a
+

Ṙ
2R

)
+ 2αt, I3 = I2t− αt2 + 9 f0a

√
R. (101)
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Using above Noether constants, the scale factor for the case w = −2/3 yields

a(t) =
1

9 f0
√

R
(I3 − I2t + αt2). (102)

For w = 0, the Noether symmetries are identical to vector fields given in (38), but X3 has a non-zero
function K = −6κ2ρm0. Redefining the Noether constants such as I2 = −9 f0 Ī2, I3 = −9 f0 Ī3 and
I4 = −9 f0 Ī4, after some algebra, we find the scale factor

a(t) =
1

6 Ī2

√
( Ī2t− Ī4)4 +

16
f0

κ2ρm0( Ī2t− Ī4) + 18 Ī2 Ī3 +
12
f0

κ2ρm0 Ī4, (103)

and the Ricci scalar

R(t) =
36 Ī2

2 ( Ī2t− Ī4)
2

a(t)2 . (104)

• n = 7
8 , m = 1: If w = 4/3, there are three Noether symmetries, in which X2 and X3 are the same

as (43). The first integral I1 = −EL = 0 due to X1 becomes

ȧ2

a2 −
ȧṘ

8aR
+

R
42

=
8

21 f0
κ2ρm0a−7R

1
8 . (105)

The scale factor for this case has the same form as (49), but now it is difficult to gain the explicit
form of a(t) using (105).

For the dust matter (w = 0), there are three Noether symmetries which are the same form as (43),
but the function K is non-trivial such that K = −8κ2ρm0t for X2 and K = − 21

4 f0a3R−1/8− 4κ2ρm0t2

for X3. Thus the first integrals for X1, X2 and X3 are given by, respectively,

I1 = −EL = 0 ⇔ ȧ2

a2 −
ȧṘ

8aR
+

R
42

=
8κ2ρm0R

1
8

21 f0a3 , (106)

and

I2 =
21
4

f0R−
1
8

(
−3a2 ȧ + a3 Ṙ

8R

)
+ 8κ2ρm0t, I3 = I2t +

21
4

f0a3R−
1
8 + 4κ2ρm0t2. (107)

After redefining I2 = − 21
4 f0 Ī2 and I3 = − 21

4 f0 Ī3, the second relation in (107) implies the
scale factor

a(t) = R
1

24

(
αt2 + Ī2t− Ī3

) 1
3 , (108)

where α ≡ 16κ2ρm0
21 f0

.

• n = 1
2 , m = 1

4 : In addition to X1 = ∂/∂t, the condition for existing extra Noether symmetry is that
the EoS parameter should be w = 0. Thus, an additional Noether symmetry is obtained as follows

X2 = t
∂

∂t
− 2R

∂

∂R
− 4G

∂

∂G
with K = −2κ2ρm0t. (109)

Then the Noether constants for these vector fields yield

H2 − Ṙ
2R

H +
R
6
+

g0

4 f0

√
RG

1
4

(
1− 6H3 Ġ

G2

)
=

2κ2ρm0
√

R
3 f0a3 , (110)
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and
I2 = −3a3

(
f0R−

1
2 H + 2g0G−

3
4 H3

)
+ 2κ2ρm0t, (111)

which can be written as

H3 +
f0

2g0

(
G3

R2

) 1
4

H − (2κ2ρm0t− I2)

6g0a3 G
3
4 = 0. (112)

This is a cubic equation for H.
• n = 1, m = 1

2 : For w = 0, it is found the Noether symmetries X1 and X2 which are the same
as (58), but X2 has the non-trivial function K = −6κ2ρm0t. Then the Noether constants for X1 and
X2 take the following forms

H2 +
g0

f0

√
G
(

1
12
− H3 Ġ

G2

)
=

κ2ρm0

3a3 , (113)

and

I2 = 6a3
[
−2 f0H +

g0H2
√

G

(
Ġ
G
− 4H

)
+

κ2ρm0t
a3

]
. (114)

For w = 1, there are two Noether symmetries that are the same as (58), where K = 0 for both
of symmetries. Therefore, the first integral for X2 is the same as (60), and the first integral for
X1 becomes

H2 +
g0

f0

√
G
(

1
12
− H3 Ġ

G2

)
=

κ2ρm0

3a6 . (115)

Case (ii): F(R, G) = f0 f (R)g(G). The functional forms f (R) = Rn and g(G) = Gm are also
assumed in this section.

• n, m arbitrary: For this case, there exist two Noether symmetries which are the same as (64), and
the EoS parameter becomes

w =
1

4m + 2n− 1
. (116)

The first integral for X2 is the same as (66), and it has the following form

H2 +
[
(n− 1) Ṙ

R + m Ġ
G

]
H + 12mR

G

[
Ṙ
R + (m−1)

n
Ġ
G

]
H3 − (n + m− 1) R

6n = κ2ρm0a
6(2n+m)
4m+2n−1

3 f0nRn−1Gm , (117)

for X1. Note that the Equation (116) includes important EoS parameters, for example w = −1 if
n = −2m; w = −1/3 if n = −(2m + 1); w = 1/3 if n = 2(1−m) and w = 1 if n = 2, m = −1/2.
In the case of dust matter (w = 0), we have two Noether symmetries given by (64), but where the
function K for X2 is K = −6κ2ρm0t. Therefore, the first integrals for X1 and X2 are, respectively,

H2 +
[
(n− 1) Ṙ

R + m Ġ
G

]
H + 12mR

G

[
Ṙ
R + (m−1)

n
Ġ
G

]
H3 − (n + m− 1) R

6n = κ2ρm0R1−n

3 f0na3Gm , (118)

I2 = 6 f0RnGma3
{

2(n + 2m− 2)H
(

n
R
+

4mH2

G

)
−(4m + 2n− 1)

(
n
R

[
(n− 1)

Ṙ
R
+ m

Ġ
G

]
+

4mH2

G

[
n

Ṙ
R
+ (m− 1)

Ġ
G

])}
+ 6κ2ρm0t. (119)
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• m = 1− n: In this case, the EoS parameter takes the form w = 1
3−2n , and this model admits two

Noether symmetries, which are the same as (71). The first integral due to X1 yields

H2 + (n− 1)H
(

1− 4R
G

H2
)(

Ṙ
R
− Ġ

G

)
=

κ2ρm0

3 f0n

(
R
G

)n−1
a

6(n−1)
3−2n , (120)

and the first integral for X2 becomes

I2 = 6 f0n
(

R
G

)n−1
a3H

2n− 3 + 2(1− n)
(

3− 4R
G

H2
)
+

κ2ρm0

3 f0n

(
R
G

)1−n a
6(n−1)
3−2n

H2

 , (121)

using (120).

5. Conclusions

In this work, we have considered both the vacuum and the non-vacuum theories of F(R, G)

gravity admitting Noether symmetries. First of all, we have obtained the dynamical field equations for
those of gravity theories, which also come from the Lagrangian of F(R, G) gravity in the background
of spatially flat FLRW spacetime such that it gives rise to the dynamical field equations varying
with respect to the configuration space variables. Afterwards we have used the point-like F(R, G)

Lagrangian (16) to write out the Noether symmetry equations, and solve them to get the Noether
symmetries in both the vacuum and the non-vacuum cases. It has been appeared very rich cosmological
structures from the Noether symmetries for the several functional form of the F(R, G) functions in
each of the cases.

The main results of this study can be summarized in the following. First of all, we can verify
that all the F(R, G) models studied here admit trivial first integral, namely EL = 0, as they should.
Secondly, it is obtained the previous results choosing the F(R, G) function, for example, the case (i)
in the vacuum recovers the results of [30] on the Noether symmetries for n = 3

2 , 7
8 . Using the first

integrals directly, we found the analytical solutions (42) and (51) for n = 3
2 and n = 7

8 , respectively.
These cases are also generalized to the non-vacuum and it is found analytical solutions (103) for n = 3

2
related with the EoS parameter w = −2/3, and (108) for n = 7

8 with the EoS parameter w = 4/3. For
other values of n, the scale factor a(t) is analytically calculated by (32) in the vacuum section of this
study. In each of the cases (i) and (ii) for the vacuum and the non-vacuum, we found the first integrals
of Noether symmetries which can be used to provide analytical solutions. As it is pointed out in [25],
we also note that the classical Noether symmetry approach with a boundary term K constrains the
F(R, G) gravity as a selection criterion that can distinguish the F(R, G) models to utilize the existence
of non-trivial Noether symmetries. In this study, we found the maximum number of symmetries as
five at the non-vacuum case, but it is four at the vacuum case [28].

This work not only plays complementary role to the previous two studies [19,25], but also includes
the the non-vacuum case and it is explicitly found some scale factors in the vacuum case. It might
be interesting to perform an analysis of the cosmological parameters for the obtained cosmological
models in both of the cases. This will be an argument of future work.
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