
Academic Editor: Jie Yang

Received: 7 January 2025

Revised: 11 February 2025

Accepted: 19 February 2025

Published: 22 February 2025

Citation: Shen, F.; Liu, H.; Xu, C.;

Ouyang, L.; Zhang, J.; Chen, Y.; He, Y.

VGGNet and Attention Mechanism-

Based Image Quality Assessment

Algorithm in Symmetry Edge

Intelligence Systems. Symmetry 2025,

17, 331. https://doi.org/10.3390/

sym17030331

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

VGGNet and Attention Mechanism-Based Image Quality
Assessment Algorithm in Symmetry Edge Intelligence Systems
Fanfan Shen 1, Haipeng Liu 1, Chao Xu 1,*, Lei Ouyang 2, Jun Zhang 3, Yong Chen 1 and Yanxiang He 4

1 School of Computer Science, Nanjing Audit University, Nanjing 211815, China; ffshen@nau.edu.cn (F.S.)
2 North Information Control Research Academy Group Company Limited, Nanjing 221000, China
3 College of Software, East China University of Science and Technology, Nanchang 330013, China
4 School of Computer Science, Wuhan University, Wuhan 430072, China
* Correspondence: xuchao@nau.edu.cn

Abstract: With the rapid development of Internet of Things (IoT) technology, the number of
devices connected to the network is exploding. How to improve the performance of edge
devices has become an important challenge. Research on quality evaluation algorithms
for brain tumor images remains scarce within symmetry edge intelligence systems. Addi-
tionally, the data volume in brain tumor datasets is frequently inadequate to support the
training of neural network models. Most existing non-reference image quality assessment
methods are based on natural statistical laws or construct a single-network model without
considering visual perception characteristics, resulting in significant differences between
the final evaluation results and subjective perception. To address these issues, we propose
the AM-VGG-IQA (Attention Module Visual Geometry Group Image Quality Assessment)
algorithm and extend the brain tumor MRI dataset. Visual saliency features with attention
mechanism modules are integrated into AM-VGG-IQA. The integration of visual saliency
features brings the evaluation outcomes of the model more in line with human percep-
tion. Meanwhile, the attention mechanism module cuts down on network parameters and
expedites the training speed. For the brain tumor MRI dataset, our model achieves 85%
accuracy, enabling it to effectively accomplish the task of evaluating brain tumor images in
edge intelligence systems. Additionally, we carry out cross-dataset experiments. It is worth
noting that, under varying training and testing ratios, the performance of AM-VGG-IQA
remains relatively stable, which effectively demonstrates its remarkable robustness for
edge applications.

Keywords: image quality assessment; attention mechanism; visual perception characteristics;
medical images; symmetry edge systems

1. Introduction
Symmetry edge intelligence systems have emerged as a pivotal research area, bridging

the gap between artificial intelligence algorithms and resource-constrained edge devices.
Multiple symmetry edge nodes will collaboratively process data and enhance the system’s
performance. The era of edge intelligence has witnessed a massive influx of visual data
from cameras embedded in smartphones, surveillance systems, autonomous vehicles,
and industrial sensors. Image quality evaluation algorithms are essential for discerning
the visual fidelity of these images, which directly impacts subsequent decision-making
processes at the edge. Traditional image quality assessment (IQA) methods, initially
developed for offline scenarios, are now being adapted and optimized to meet the resource-
constrained and real-time requirements of symmetry edge devices.
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Brain tumors are abnormal growths of brain cells in the midbrain, including primary
brain tumors and brain metastases, and are considered a life-threatening disease. The best
treatment method is complete surgical resection, but due to the non-resectable nature of
normal brain tissue and the widespread infiltration of malignant tumors into the intracra-
nial area, it is extremely difficult to undertake extensive and complete surgical resection.
Therefore, how to reduce brain tissue damage, protect the central function of the brain,
and maximize the elimination of tumors is still the current research direction and goal
of oncologists. According to the relevant data, brain tumors account for over 85% of all
primary central nervous system tumors worldwide, accounting for approximately 2% to
3% of cancer-related deaths, posing a huge threat to human health [1]. Therefore, early
diagnosis and treatment of the brain tumors are particularly important. Magnetic resonance
imaging (MRI) is a non-invasive imaging technique that can clearly display soft tissue
lesions and is widely used in the diagnosis and treatment of brain tumor diseases. MRI
image quality evaluation is an important step in clinical diagnosis and treatment planning,
which can provide a basis for quantitative image analysis, auxiliary diagnosis, and surgical
planning [2]. At present, most of the quality evaluation of brain tumor images still relies
on manual analysis by doctors, which is time-consuming, laborious, and influenced by
personal experience. Therefore, developing an accurate and reliable automatic brain tumor
image quality evaluation algorithm is of great clinical significance.

In order to alleviate the storage and transmission challenges of massive data in symme-
try edge intelligence systems, in addition to improving the network transmission speed and
storage device capacity, we can also start from the image itself, filter out low-quality images
through image quality evaluation, reduce the number of images from the source, and
avoid unnecessary resource waste. In addition to reducing network and storage pressure,
image quality assessment is also widely used in the decision-making field. An excellent
quality evaluation model can not only reduce the workload of decision-makers, but also
reduce the likelihood of decision-making errors. It can be seen that a reliable and versatile
image quality assessment method has broad application prospects [3]. For example, in
the military field, by evaluating the quality of satellite and infrared imaging, commanders
can more confidently decide on operational plans and material allocation strategies. In
the field of video live-streaming, guides can analyze the live-streaming effect in a timely
manner through image quality assessment, and then adjust the live-streaming strategy and
resource allocation. Especially in the medical field, a reliable image quality assessment
method can not only provide specific quality scores for reference, greatly reducing doctors’
workload, but also batch-label the distortion categories and levels of images, reducing
the possibility of doctors making mistakes in diagnosing diseases [4]. By determining the
distortion category and level in advance, experienced doctors can eliminate the interference
of these distortions and distinguish the artifacts caused by distortion from the actual lesion
area, achieving the effect of improving the accuracy of disease diagnosis [5].

It can be seen that image quality assessment has been increasingly widely applied
in recent years, and this technology is becoming increasingly important in the medical
field. However, there are some issues that need to be addressed. During the imaging
process, images are inevitably affected by artifacts and noise, resulting in multimodality,
non-uniformity, and blurriness [6–8]. Therefore, it is necessary to evaluate the quality
of medical images to determine whether these images are correct and how trustworthy
they are. By evaluating the quality of medical images, doctors can observe images from
multiple directions and angles, thereby conducting more targeted quantitative analysis
of lesion areas and improving the accuracy of disease diagnosis. In the process of image
enhancement such as artifact removal and denoising in medical images, the main consider-
ation is to improve the display effect of the image as much as possible without affecting
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its credibility [9]. In addition, there are medical image reconstruction and other image
processing processes that cannot be separated from the assessment of medical image quality,
which is an important way to test the accuracy and credibility of images.

In the usage scenarios of medical images, the subjective judgment of doctors is often
the most direct and accurate, but the drawbacks of long time consumption, high cost, and
poor real-time applicability make subjective assessment difficult to achieve [10]. Therefore,
objective medical image quality assessment has received attention. Many researchers have
studied imaging instruments and imaging processes, but there is little research on how
to objectively evaluate the quality of medical images after image processing [11]. Thus
far, there is still no unified and recognized method. Traditional image quality evaluation
involves obtaining a quality score through humans or machines, and then comparing the
quality score with the original score label. However, medical image quality evaluation often
involves obtaining the distortion type and level of the image through humans or machines,
and then comparing them with the real label. The International Commission on Radiation
Units and Measurements (ICRU) discussed the importance and basic methods of medical
image quality assessment in Report No. 54 of 1996 [12]. At present, the peak signal-to-noise
ratio (PSNR) is mainly used in medical image processing systems for the objective assess-
ment of medical image quality [13]. This method is efficient in terms of speed; however, it
overlooks the correlation between pixels, which can lead to significant deviations between
the assessment results and human visual perception. Consequently, identifying more
appropriate quality assessment criteria for medical images holds substantial importance
for evaluating and optimizing medical image processing workflows.

Considering the above research needs, our research content is as follows: Using MRI
images of brain tumors as the research object, this article first performs distortion process-
ing on the original image, including various distortion categories and levels. Then, the
sharpened quality score image is extracted from the distorted image, and the distorted
image is combined with the quality score image. The distortion category and level are
labeled as inputs for model training, Finally, the Visual Geometry Group Network (VG-
GNet) model in the convolutional neural network is adjusted and the attention mechanism
module CBAM (Convolutional Block Attention Module) is added. After training, the final
quality assessment model is obtained. Compared with traditional methods and similar
methods, the distortion categories and levels obtained by our model have high consistency
with real data and can make more accurate quality judgments on brain tumor images. In
summary, our contributions of this paper are summarized as follows.

• We propose a non-reference image quality assessment model based on VGGNet that
integrates the characteristics of the human visual system: AM-VGG-IQA. We add the
attention mechanism module CBAM to the VGGNet model and extract the visual
saliency images of distorted images. The distorted images are fused with the corre-
sponding visual saliency images as the training dataset. From the final training results,
the accuracy of the model in predicting distortion types and levels has been improved.

• We simulate potential issues that may arise in real-world application scenarios and
further augment the brain tumor MRI dataset. In practical medical image applications,
various factors, including lighting conditions, machine hardware performance, and
transmission fluctuations, can introduce image distortion. To address this, we perform
a series of processing operations on the original brain tumor dataset. By doing so,
we generate distorted images with diverse types and varying degrees of distortion,
effectively resolving the issue of insufficient dataset size for deep learning training.

• The experimental results convincingly illustrate that the proposed AM-VGG-IQA sig-
nificantly enhances the classification and prediction accuracy with respect to distortion
types and levels across TID2008 and TID2013, as well as the expanded brain tumor
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MRI datasets. Simultaneously, it demonstrates a remarkable ability to evaluate the
quality of brain tumor images within symmetry edge intelligence systems.

The remainder of this paper is organized as follows. Section 2 introduces the relevant
work. Section 3 provides a detailed introduction of the proposed AM-VGG-IQA algorithm.
Section 4 describes the experimental setup and evaluation results. Finally, the conclusion is
presented in Section 5.

2. Related Work
Image quality assessment can be divided into subjective image quality assessment

and objective image quality assessment. Among them, subjective image quality assessment
can be divided into the mean opinion score (MOS) and differential mean opinion score
(DMOS) types [14]. Since most users of image quality assessment are humans, the results
obtained by subjectively scoring are often the most in line with human perception. It is
precisely for this reason that manually scored data are often used to verify the accuracy
of objective quality assessment models [15]. However, such methods require a significant
amount of manpower and resources and require evaluators to learn a standardized scoring
standard before participating in the scoring work [16]. As evaluators are human, there is a
possibility of making mistakes during the assessment process. In summary, it is difficult to
adapt to the fast-paced requirements of today’s society.

Therefore, objective image quality assessment has gradually developed in recent
years. According to the different reference content and scope, it can be divided into full
reference, reduced reference, and no reference [17]. This type of method simulates the
scoring process of humans through algorithms, completely entrusting the task of quality
assessment to machines. With the rapid development of computing power in recent years,
image quality assessment algorithms based on deep learning have seen rapid develop-
ment [18]. The trained models can quickly and accurately provide quality scores, which
meets the development needs of various industries.

2.1. Subjective Image Quality Assessment

According to the recommendations and standards issued by the Video Quality Expert
Group established by the International Telecommunication Union, subjective image quality
assessment can be roughly divided into three categories: single single-stimulus grading,
dual dual-stimulus grading, and paired comparative judgment. Among them, single single-
stimulus rating refers to presenting the test image on the screen for a certain period of time,
and the evaluator gives a rating of “excellent”, “good”, “medium”, “poor”, or “inferior”
to the image quality [19]. If the evaluator feels that this assessment result is too vague,
they can provide specific scores for the corresponding score range. The difference between
dual dual-stimulus rating and single single-stimulus rating is that the former provides both
reference and test images, and the evaluator gives corresponding quality scores based on the
assessment criteria of the latter [20]. Paired comparison judgment involves presenting two
images of the same scene to the evaluator, who then assesses and categorizes them as either
low quality or high quality, while also quantifying the perceived difference between the two.

The mean opinion score (MOS) and differential mean opinion score (DMOS) are
the two most commonly used measurement methods for subjective image quality as-
sessment [21]. The larger the MOS value or the smaller the DMOS value, the higher the
perceived image quality. Although the evaluation results of such methods align closely with
human subjective perception, their limitations are significant and cannot be overlooked.
Firstly, these methods rely on manual assessment, which is time-consuming, labor-intensive,
and unsuitable for real-time applications. Secondly, the evaluation process is susceptible
to numerous interfering factors, such as the personal preferences and mental state of the
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evaluators, the accuracy and brightness of the display equipment, and variations in the
testing environment. Lastly, cultural and regional differences can influence the assess-
ment outcomes, making the results highly context-specific. Given these advantages and
disadvantages, such methods are currently primarily employed for constructing various
image databases.

2.2. Full Reference Image Quality Assessment

As the name suggests, this type of method can refer to all the information of the
original image during use. The core idea of the method is to calculate the similarity or
difference between the reference image and the test image. It can be mainly divided into
methods based on the HVS model, methods based on image structure, and methods based
on various statistical information and information theory [22]. Among these methods,
the most classic are the mean square error (MSE) and peak signal-to-noise ratio (PSNR).
Their primary advantage lies in their fast computational speed. However, they suffer
from a significant drawback: they ignore the correlation between pixels. As a result,
in certain scenarios, the assessment results often deviate substantially from the human
perceptual experience.

2.3. Reduced Reference Image Quality Assessment

In some scenarios where the full information of reference images cannot be obtained
but high real-time requirements are required, such as video live-streaming and video calls,
semi-reference image quality assessment is often adopted in the industry. This type of
method can only obtain the image features of a limited reference image, and the algorithm
uses these features to calculate the similarity between the distorted image and the reference
image [23]. Due to the high dependence of these methods on image features, there is a
great deal of uncertainty. If the obtained image features cannot be helpful in the appli-
cation scenario, or even have misleading effects, the consequences can be unimaginable.
Therefore, this type of method is relatively niche, with limited application scenarios and
high requirements for the experience of evaluators and the adaptability of assessment
algorithms [24].

2.4. No Reference Image Quality Assessment

The assessment of image quality without reference does not require the use of any
information from the reference image, so this type of method is currently the most promis-
ing for development and application, because in some scenarios, obtaining the original
image is difficult or even impossible. However, precisely because only distorted images
are processed, the design difficulty of such methods is also the greatest. According to the
different principles of establishing models, non-reference methods can be divided into two
categories: knowledge-driven and data-driven.

Knowledge-driven methods are mostly traditional, with the main idea of relying
on prior knowledge from human visual systems or natural scene statistics to manually
extract the required image features, form feature vectors, and then train on the dataset
to obtain the mapping relationship between feature vectors and quality scores. This type
of method relies more on the background knowledge and accumulated experience of
algorithm designers. Typical methods include that of Moorthy et al. [25], extracting NSS
(natural scene statistics) features in wavelet transform and proposing a two-stage image
quality prediction method based on Support Vector Machine (SVM) and Support Vector
Regression (SVR). Firstly, the distortion type of the image is predicted through SVM, and
secondly, the corresponding quality score is obtained through SVR mapping. Saad et al. [26]
proposed an image integrity index based on Discrete Cosine Transform (DCT) statistical
information. Firstly, the image was subjected to DCT transformation, and the kurtosis
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and anisotropic entropy of the coefficient histogram were calculated as features. Finally, a
multivariate Gaussian distribution was used to establish a mapping relationship between
features and quality scores. Wang et al. [27] proposed a natural statistical feature method
based on the relative order of brightness, extracting features such as kurtosis, variance,
entropy, and differential entropy to train an image quality regression model. Wu et al. [28]
proposed using directional similarity patterns to describe the correlation between local
pixels, and then trained the regression model through SVR.

Data-driven methods are currently a hot topic in the field of image quality assessment.
With the rapid development of computing power, the practicality and superiority of these
methods have been demonstrated. Among them, the most popular method is end-to-end
learning and training of image quality based on deep learning or convolutional neural
networks. Kang et al. [29] proposed a convolutional neural network (CNN)-based method
that achieved results comparable to mainstream full reference methods at the time. Bosse
et al. [30] were inspired by the structure of the visual cortex in the brain and designed a
network model consisting of 10 convolutional layers and 2 fully connected layers. The
model’s feature expression ability was improved, and the prediction accuracy of quality
scores was also improved. Ma et al. [31] proposed an end-to-end image quality assessment
model based on multitasking. His contribution was to provide a new solution to the
problem of insufficient training data. He first performed distortion processing on the
reference image to obtain distorted images with five degrees of distortion. Coupled with
the reference image itself, there were five image types, transforming the problem into a
five classification problem. He also used GDN (generalized divisive normalization) as the
activation function in the model, effectively reducing the number of network parameters.
Su et al. [32] proposed an adaptive hypernetwork structure that divides image quality
assessment into three stages: understanding image content, perceptual rule learning, and
quality prediction.

2.5. The Problems with the Above Methods

Traditional algorithms have been proven effective in practical usage scenarios through-
out history, but with the richness of application scenarios and the sharp increase in sample
size, the accuracy of algorithm evaluation begins to gradually decline, making it difficult to
handle these complex scenarios. Meanwhile, traditional algorithms often only extract low-
level features of images and cannot classify and generate high-level semantic information;
thus, they cannot adapt to new tasks.

Deep learning-based algorithms can perfectly cope with massive data scenarios, but
in the early stages, a large number of samples are required for training, and the samples
must meet the application scenarios of the algorithm and contain corresponding type labels.
Meanwhile, convolutional neural networks can simulate the workflow of the brain, but
when analyzing image quality, they lack consideration for human eye perception. Therefore,
the evaluation results of previous deep learning-based algorithms often have a certain gap
with human eye perception.

In summary, there has been significant progress in the assessment of image quality
without reference. However, these methods still face some problems and there is a lot of
room for improvement:

(1) The number of samples required for training is too small, and the types covered by
the dataset are also too few.

(2) Methods are needed to simulate the observation process of the human eye in the
model to make the assessment results more in line with human eye perception.

(3) Methods are needed to improve the universality of the model to reduce its usage
threshold and improve its practicality.
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3. The Proposed AM-VGG-IQA
At present, there is limited research on image quality assessment in the medical field.

Our algorithm takes brain tumors as the research object and proposes a network model based
on VGGNet and the attention mechanism module CBAM, later referred to as AM-VGG-IQA.

As shown in Figure 1, our method can be divided into three main stages: image
distortion processing, sharpness image fractional image fusion, and model training. Firstly,
there is image distortion processing, with the main purpose of expanding the dataset and
simulating the problems faced when using images in real-world scenarios. Secondly, there
is fractional image fusion for sharpening images, with the main purpose of making tumor
lesion areas and edges more prominent and improving recognition accuracy. Finally, there
is training, where corresponding changes are made to the input image and output results,
and attention mechanisms are added to the model. While accelerating training speed,
it also improves the accuracy of prediction. Figure 2 shows the specific process of the
AM-VGG-IQA algorithm. Next, we will elaborate on this process in detail.
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3.1. Image Distortion Processing

Training the deep learning model requires a large number of training samples. The
magnetic resonance imaging dataset of brain tumors we use contains a total of 5712 original
images of four tumor types. Considering the particularity of medical images and the
complexity of the model’s tasks, we also need to expand the dataset to ensure the robustness
of the model. In the actual application scenarios of medical images, we often encounter
problems such as insufficient light or overexposure, machine hardware problems, network
transmission fluctuations, etc. After the full investigation and study of true distorted
medical images, we summarize the common distortion types into the following seven
types: Gaussian blur, Gaussian noise, haze effect, JPEG compression, salt and pepper noise,
overexposure, and underexposure, which are close to the true distortion effects and cover
the types of distortion in most cases.

Due to the inability to collect a large number of realistic distorted images that meet
the training requirements of the model, we have decided to use algorithms to synthesize
distorted images. To cover all possible scenarios as much as possible, we will also adjust
the specific parameters in the algorithm to achieve different levels of distortion effects.
Among them, the first five distortion types each have five distortion levels, and the last
two distortion types each have two distortion levels. We use “distortion type, distortion
level” as the labels for the image, and a total of 29 labels are obtained. After completing
the algorithm processing, we obtain 165648 distorted images, as shown in Figure 3. It is
definitely unrealistic to use subjective image quality assessment methods to score images,
and using other objective image quality assessment methods may result in controversial
results. But we have a clear understanding of the type and level of image distortion, so we
use a unique heat vector (corresponding to the distortion type and level of 1; all others are
0) as the image label, so that we can refer to the distortion type and level of the image in a
unified form. At this point, we have solved the two major problems of insufficient database
quantity and missing image training labels.
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3.2. VGGNet Network Model

VGGNet is a convolutional neural network developed by the Computer Vision Group
of Oxford University and Google DeepMind Laboratory. It is characterized by simple struc-
ture and excellent performance. The simple and clear structure does not mean that there
are few layers in the network. On the contrary, the original VGGNet has 11-19 layers, which
belongs to the ultra deep convolutional network. This means that all convolution kernels
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are 3*3 in size, and the model building process is relatively regular. By repeatedly stacking
the 3*3 convolution core and the 2*2 pooled core, VGGNet’s network depth continues to
deepen, but this does not bring an explosive increase in the number of parameters, because
most parameters are concentrated in the final full connection layer. The increase in the
depth of the convolution layer, on the contrary, gives the model a stronger feature learning
ability. The uniform use of 3*3 convolution kernels also greatly reduces the number of
parameters in the network. The concatenation of two 3*3 convolution kernels is equivalent
to a 5*5 convolution kernel, and the concatenation of three 3*3 convolution kernels is
equivalent to a 7*7 convolution kernel. However, the number of parameters of three 3*3
convolution kernels is only half that of a 7*7 convolution kernel. Therefore, this strategy
reduces the number of parameters while expanding the receptive field of the convolution
layer, giving the model a better learning ability.

When training the model, it is required to input 224*224 images, so cutting is required.
In order to strengthen the model, we also flipped the image randomly. When necessary, the
data should also be regularized to reduce the complexity of the model in case of overfitting.
By studying the operating mechanism of the human brain, it is found that the activation
sequence of neurons in the human brain is relatively scattered and sparse when processing
information coding, and the linear rectification unit ReLU can exactly imitate the working
principle of this mechanism, so we uniformly use ReLU as the activation function of the
convolution layer in the model. At the same time, we also set the step size to 1, so as
to reduce the number of network parameters and make the process more conducive to
extracting local image features. In the training process, the argmax function is selected to
calculate the most likely distortion type and level. The general network structure is shown
in Table 1.

Table 1. Improved convolutional network model structure based on VGGNet.

Layer Conv1_1 Conv1_2 Maxpool1 Conv2_1

Kernel 64 64 / 128

Output 224,224,64 224,224,64 112,112,64 112,112,128

Layer Conv2_2 Maxpool2 Conv3_1 Conv3_2

Kernel 128 / 256 256

Output 112,112,128 56,56,128 56,56,256 56,56,256

Layer Conv3_3 Maxpool3 Conv4_1 Conv4_2

Kernel 256 / 512 512

Output 56,56,256 28,28,256 28,28,512 28,28,512

Layer Conv4_3 Maxpool4 Conv5_1 Conv5_2

Kernel 512 / 512 512

Output 28,28,512 14,14,512 14,14,512 14,14,512

Layer Conc5_3 Maxpool5 FC1 FC2

Kernel 512 / / /

Output 14,14,512 7,7,512 512*7*7,4096 4096,4096

Layer FC3 Argmax / /

Kernel / / / /

Output 29 1 / /
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3.3. Attention Mechanism Module CBAM

CBAM (Convolutional Block Attention Module) was proposed in 2018, and its main
working principle is similar to the human visual system. After scanning the global image,
it focuses its attention on the area of interest, invests more attention in this area, reduces
attention to other areas, and even directly ignores irrelevant information. This mechanism
can help humans to quickly screen out useful information from a large amount of infor-
mation. Similarly, this mechanism can also help network models to prioritize resource
allocation to important tasks when computing power is limited, solving the problem of
information overload. A large amount of practice has proven that within a certain range,
the more parameters a model has, the stronger its expressive power. However, it also means
that the computational load is greater. Therefore, the addition of the attention mechanism
module not only preserves the model’s strong learning ability, but also greatly reduces the
computational load required by the model, improving the efficiency of model training. In
addition, attention mechanism modules are mostly integrated as separate modules that can
be added to the model conveniently.

The simplified model diagram of CBAM is shown in Figure 4, which consists of two
sub modules: CAM (channel attention module) and SAM (spatial attention module), which
perform channel and spatial processing, respectively.
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The working principle of the channel attention module is shown in Figure 5. The input
feature map passes through two parallel MaxPool layers and AvgPool layers, changes the
feature map from C*H*W to C*1*1, and then passes through the Shared MLP module. In
this module, it first compresses the number of channels to 1/r (reduction) times the original
number of channels, then expands to the original number of channels, and obtains two
activated results through the ReLU activation function. Adding the two output results
element by element, it then obtains the output result of the channel.
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Laplace transform, which enhances the high-frequency information of the image, 
making the edge contours and texture details of the image body more prominent. At the 
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The attention is obtained through a sigmoid activation function. Then, the output
result is multiplied by the original image to return to the size of C*H*W.

The working principle of the spatial attention module is shown in Figure 6. The input
image feature map processed by the channel attention module passes through the MaxPool
layer and AvgPool layer, and then uses a standard convolution layer for connection and
convolution. Then, the sigmoid activation function is used to obtain the weight value of
each feature point of the feature map, and finally the weight is added to the feature layer
by multiplication.
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3.4. Visual Saliency Fusion

In previous image quality assessment algorithms or models, the mainstream idea was
to extract the required image features and process and evaluate these features to obtain
the final quality score. These methods do not integrate the characteristics or working
principles of the human visual system; thus, in some scenarios, the results obtained may
have significant deviations from the results perceived by the human eye. In response to
this deficiency, we incorporated visual saliency maps into the image, so that the model
possesses the characteristics of the human visual system.

Among numerous visual saliency detection methods, we have comprehensively con-
sidered algorithm complexity and implementation difficulty. The final visual saliency
calculation method we use is an edge detection algorithm based on sharpening enhance-
ment. This algorithm first enhances the sharpening effect of the image to highlight the
edge lines of the image. This feature is beneficial for our experimental subjects to quickly
locate the lesion area of tumors and accelerate the model’s learning of key information
such as tumor shape, texture, color, etc. The algorithm uses the Laplace transform, which
enhances the high-frequency information of the image, making the edge contours and
texture details of the image body more prominent. At the same time, the low-frequency
information of the image is suppressed, removing low-frequency information from the
image. The reason why low-frequency information can be removed without affecting the
accuracy of the algorithm is that the image subject in brain tumor MRI images is presented
as high-frequency information, while low-frequency information is mainly distributed in
the background part of the image, with little correlation with the image subject. Therefore,
it can be safely removed to improve the efficiency of the algorithm. After obtaining the
visual saliency image corresponding to the distorted image, we need to fuse the two. The
method used here is to multiply the two, as shown in Formula (1), to obtain a quality
feature map that integrates visual saliency information.

FM = DM × VSM (1)

As shown in Formula (1), FM represents the quality feature map that integrates dis-
torted images and visual saliency images, DM represents distorted images, VSM represents
corresponding visual saliency images, and FM serves as input for subsequent model
training and testing. For DM × VSM, the generated results can be understood as saliency-
weighted distortion information. This means that in areas with high saliency, the distortion
information will be amplified, while in areas with low saliency, the distortion information
will be suppressed.

4. Experiments
To fully verify the performance of the algorithm, this experiment introduces the brain

tumor MRI dataset, the TID2008 dataset, and the TID2013 dataset, which can not only
verify the practicability of the algorithm in the field of brain tumor images, but also test
the universality of the algorithm. First, the necessity of several elements or steps in the
algorithm is verified through the control variates. Secondly, the Structural Similarity Index
Measure (SSIM), PSNR, Natural Image Quality Evaluator (NIQE), Blind/Referenceless
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Image Spatial Quality Evaluator (BRISQUE), Blind Image Quality Assessment Based on
Convolutional Neural Networks (BIECON), and Cascade Hierarchical Deep Convolutional
Network (CaHDC) algorithms are introduced for comparative tests. The performance of
the algorithms in all aspects is reflected through the correlation indicators SROCC, KROCC,
and PLCC. Finally, the generalization performance of the algorithms is tested through
cross-dataset experiments.

4.1. Experimental Environment and Parameter Settings

(1) Experimental environment
The environmental configuration of this experiment is shown in Table 2.

Table 2. Experimental environment.

Environment Statement

Hardware platform Intel Core i7 CPU and GeForceRTX3090
Software platform Electerm and Windows 10

IDE PyCharm2021.2.1
Dataset TID2008 and Tid2013 and Brain Tumor MRI

Source code of AM-VGG-IQA https://github.com/rookiets/AM-VGG-IQA.git
(accessed on 26 June 2023)

(2) Experimental parameter settings
In the process of image distortion processing, there are many parameters involved,

with the aim of obtaining images with different degrees of distortion under different types
of distortion. Taking the model in the comparative experiment as an example, we have
listed some important model parameters during the training process, as shown in Table 3.

Table 3. Experimental parameter settings.

Parameter Settings

Train and test ratio 4:1
Loss function MSE

Optimizer Adam
Regularization L2 regularization method
Learning rate 0.0002

The reason for choosing MSE as the loss function is that its function curve is smooth,
continuous, and differentiable everywhere, making it easy to use a gradient descent al-
gorithm, which is a commonly used loss function. Moreover, as the error decreases, the
gradient also decreases, which is beneficial for convergence. Even with a fixed learning rate,
it can converge quickly to the minimum value. The reason for choosing the Adam optimizer
is that it can adaptively adjust the learning rate of each parameter, thereby improving the
convergence speed and generalization ability of the model. In addition, the computational
complexity of the Adam optimizer is relatively small, which can improve the training
speed of the model. The reason for choosing the L2 regularization parameter is that it can
prevent overfitting—L2 regularization can reduce the complexity of the model, thereby
improving generalization ability and reducing the occurrence of overfitting problems; it
can aid in feature selection—L2 regularization can penalize weights to make the weights
of some unimportant features approach zero, which can automatically perform feature
selection, thereby simplifying the model; and it can solve the problem of collinearity—
when there is collinearity (i.e., linear correlation) between features, L2 regularization can
reduce the impact of this collinearity by reducing the weight of related features. As for

https://github.com/rookiets/AM-VGG-IQA.git
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setting the learning rate to 0.0002, it takes into account both training speed and model
overfitting issues.

4.2. Dataset Preparation and Processing

In Section 3, we introduced the brain tumor MRI dataset, introduced the distortion
processing of the images in the dataset, and explained how to generate the tags for training.
Due to the fact that the initial input data and final output results of most classic image
quality assessment algorithms are specific quality scores, this dataset is not suitable for
horizontal comparison between AM-VGG-IQA and other algorithms. It is only used for
early training of the VGG model.

To verify the comprehensive performance of the algorithm, we introduced other image
quality assessment algorithms using the classic datasets TID2008 and TID2013, which
contain 17 distortion types, 1700 distorted images, and 256,428 MOS values. The latter
is an enhanced version of the former, which includes 24 distortion types, 3000 distorted
images, and 524,340 MOS values. These two databases contain a variety of distortion types
and cover a wide range of image types, making them suitable for measuring the overall
performance of algorithms. The databases and key information used in the experiment are
shown in Table 4. The data preprocessing methods and model training environments are
consistent with the existing models.

Table 4. Dataset basic information.

Dataset Num Type_Num Label

Brain tumor 165,648 7 Distortion type and level
TID2008 1700 17 MOS
TID2013 3000 24 MOS

4.3. Evaluation Criterion

The performance assessment of image quality assessment algorithms is to examine
the correlation between the objective scores calculated by the algorithm on images with
different types and degrees of distortion. In the magnetic resonance image dataset of brain
tumors, the image label is the distortion type and distortion level corresponding to the
image. Therefore, when training the VGG network in the early stage, the inspection content
is the accuracy of judging the distortion type and distortion level. Due to the fact that the
calculation methods measure the correlation between real data and predicted data, we can
use the same methods and indicators to test and compare on three databases.

In the experiment, the classic indicators used in statistics to describe data correlation
were used:

(1) Spearman’s rank correlation coefficient (SROCC);
(2) Kendall rank order correlation coefficient (KROCC);
(3) Pearson linear correlation coefficient (PLCC).
The Spearman coefficient and Kendall coefficient are mainly used to evaluate the

hierarchical correlation between two groups of data, and can also be used to reflect the
monotonicity of the algorithm; The Pearson linear correlation coefficient is used to measure
the accuracy of model predictions.

The proposed model is utilized to compute the distortion type, distortion level, or
quality score for the distorted images in the dataset. Subsequently, the correlation co-
efficients between the distortion labels (or scores) and the real labels (or MOS values)
are calculated. Higher absolute values of SROCC, KROCC, and PLCC indicate superior
algorithm performance.
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4.4. Prediction Accuracy of AM-VGG-IQA

In our model, in addition to distorting the images in the dataset, we also calculated the
visual saliency images corresponding to the distorted images and fused them. At the same
time, we also added an attention mechanism module to the VGG model. To sum up, it can
be summarized into two aspects: attention mechanism module and visual saliency fusion.
Next, we will verify the necessity of these two steps through a series of experiments.

(1) Attention mechanism module
An attention mechanism is a way of thinking that imitates the human visual or

auditory system. In the traditional neural network model, all input data are regarded as
equally important. The addition of attention mechanism allows neural networks to apply
different weights to input information at different positions and parts when processing
sequence data, thereby improving the performance, robustness, and generalization ability
of the model.

When we are looking at an image or listening to an audio clip, we do not allocate our
attention equally to all information, but instead selectively focus on key information based
on our own interests. Similarly, the attention mechanism will allocate different weights
based on different parts of the input, focusing computational power on important areas to
improve the performance of the model. In the working process of attention mechanism,
input data are divided into two parts: query vector and key-value pair. The query vector
represents the objects that need attention, while the key-value pair maps to various parts of
input data. By calculating the similarity between the key-value pair and the query vector,
different weights can be assigned to each part to determine the key information that needs
attention. The common methods of similarity calculation include dot product, additive, and
multilayer perceptron. After obtaining the weights of each part, a more accurate weighting
sum can be performed.

Due to the uncertainty of the compatibility between the modules and our model, in
order to select the most suitable attention mechanism for this model, we selected three
attention mechanism modules: CBAM (Convolutional Block Attention Module), BAM (Bot-
tleneck Attention Module), and DANet (Dual Attention Net), and added them to the model
for experimental comparison. Among them, CBAM applies a combination of channel atten-
tion module and spatial attention module to process the input feature layers in the channel
attention module and spatial attention module, respectively. Its working principle has been
roughly introduced in the previous model introduction chapter. BAM can be integrated
with any feedforward convolutional neural network, which infers an attention map along
both channel and spatial paths to emphasize important elements. Placing the module at the
bottleneck of the model significantly reduces the computational and parameter overhead,
and it can be jointly trained with any feedforward model in an end-to-end manner. Unlike
the previous two modules, the DANet module consists of a positional attention mechanism
and a channel attention mechanism. The positional attention mechanism is responsible
for capturing the spatial dependencies of feature maps at any two positions, and similar
features are related to each other regardless of distance. The channel attention mechanism
is responsible for integrating relevant features between all channel mappings to selectively
emphasize the existence of interdependent channel mappings.

In order to test the effectiveness of the module, we conducted a horizontal comparative
experiment. The dataset used is a distorted brain tumor MRI dataset. The training purpose
is to predict the distortion type and level of the distorted image. There are a total of four
models participating in the comparison, and the differences between them are shown in
Table 5.
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Table 5. Differences in models.

Model A VGGNet
Model B VGGNet+CBAM
Model C VGGNet+BAM
Model D VGGNet+DANet

Since the task of this model is to predict the type and level of distortion in distorted
images, we use accuracy as a measure. The training process of the four models is shown in
Figure 7.
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From Figure 7, we can see that the accuracy of models B, C, and D with the added
attention mechanism module is higher than that of model A without the added attention
mechanism module. Specifically, compared to Model A, Model B with the addition of
the CBAM module increased its prediction accuracy from 78.10% to 82.67%, an increase
of 4.57%. Model C with the addition of the BAM module increased by 3.5% compared
to Model A, and Model D with the addition of the DANet module increased by 1.8%
compared to Model A. This shows that the attention mechanism module can not only
reduce the number of network parameters and accelerate training speed, but also improve
the performance of the model. Among them, Model D with the DANet module performs
best in the early training period, which is reflected in the fastest improvement in model
accuracy. This is because the DANet module location attention mechanism will focus more
quickly on the lesion area of brain tumor, and the structure and lines of this area are often
the most complex and obvious. Therefore, through the calculation and comparison of this
area, it is possible to determine the type and level of distortion in an image with faster
speed and higher accuracy. In addition, the final performance of Model B is the best among
the four models, so in subsequent experiments, all models that added attention mechanism
modules were added with CBAM modules.

(2) Visual saliency fusion
In Section 3, we mentioned adding visual saliency fusion processing to the model.

The specific operation is to obtain the visual saliency image of the image through an
edge detection algorithm based on sharpening enhancement, and fuse the image with the
corresponding distorted image to obtain new training data. Therefore, in order to verify the
effectiveness of this step, we need to conduct comparative experiments with the original
distorted image. In this experiment, the models used were the original model A without
the CBAM module and the new model B with the CBAM module added. Based on whether
the image had undergone visual saliency fusion, we divided the dataset used for training
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into dataset A and dataset B. Dataset A contains the original distorted image, while dataset
B contains the distorted image fused with visual saliency images. Finally, we generated
four solutions, with specific details shown in Table 6.

Table 6. Differences in schemes.

Scheme Model Dataset

VGGNet+MRI VGGNet Brain tumor MRI dataset

VGGNet+MRI-VSF VGGNet Brain tumor MRI dataset
with visual saliency fusion

VGGNet-CBAM+MRI VGGNet+CBAM Brain tumor MRI dataset

VGGNet-CBAM+MRI-VSF VGGNet+CBAM Brain tumor MRI dataset
with visual saliency fusion

After the accuracy stabilized, we selected three rounds of experimental results to
enhance the stability of the results. They were divided into three groups, and their com-
parison is shown in Figure 8. For each group, there are four schemes, the first and second
schemes are based on the VGGNet model, and the third and fourth scheme are based on the
VGGNet+CBAM model. For the comparison, the second and fourth schemes have visual
saliency fusion. We can see that Model B (VGGNet+CBAM) with the addition of the CBAM
module performs better than Model A (VGGNet), indicating the improvement effect of
the attention mechanism module on the model. Taking Group 3 as an example, Scheme 2
(VGGNet model with VSF) shows a 3.5% improvement in accuracy compared to Scheme 1
(VGGNet model without VSF), while Scheme 4 (VGGNet+CBAM model with VSF) shows a
2.7% improvement in accuracy compared to Scheme 3 (VGGNet+CBAM model with VSF),
we can see that the dataset processed by visual saliency fusion has improved its perfor-
mance in model training. Compared to Scheme 1, Scheme 4 has improved its accuracy by
at least 8.7%, indicating that the combination of the CBAM module added model and the
visual saliency fusion processed dataset achieved the best results.
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final choice. Next, we will conduct a series of comparative experiments to compare the
performance of this model with other classic and excellent models.

4.5. Performance Comparison with Other Image Quality Assessment Methods

(1) Experimental Subjects and Objectives
To verify the performance of AM-VGG-IQA, we need to compare it horizontally with

some classic algorithms. In this experiment, we introduced three types of image quality
assessment algorithms: traditional full reference methods: SSIM and PSNR; non-reference
methods based on natural image features: NIQE and BRISQUE; and deep learning-based
non-reference methods: BIECON and CaHDC. The purpose of comparing with the first
type of method is to examine how AM-VGG-IQA performs compared to the full reference
method. The second and third types of methods are both non-reference methods. The
former is based on natural image features, while the latter is based on deep learning. By
comparing with these methods, we can understand whether deep learning has improved
the reliability of image quality assessment. AM-VGG-IQA is of the same type as the third
class of method, so we can visually demonstrate the performance of AM-VGG-IQA by
comparing it with the third class of method.

(2) Parameter Settings for Datasets and VGGN Models
In algorithms that require training to obtain or adjust model parameters, we randomly

divide the dataset into training and testing sets in a 4:1 ratio, while performing unified
cropping and random horizontal flipping on the images. In the early stage, we used the
brain tumor MRI dataset to train our model and learn the relevant features of a brain MRI.
Considering that the model learns too few image types, this is not conducive to comparing
it with other algorithms in the later stage. Therefore, before conducting a horizontal
comparison, we separately trained our model using the TID2013 dataset to finetune the
parameters in the network. At the same time, we changed the output of the model from the
distortion type and distortion level to the specific quality score, and we selected MSE (mean
square error) as the loss function in the global quality regression stage. Since the network
model has many parameters, in order to prevent overfitting in the training process, we
adopted the L2 regularization method; that is, the L2 norm of the weight vector was added
to the loss function. This can reduce the impact of fluctuations in quality independent
parameters. This model uses the Adam optimization algorithm to update the weights of
the neural network, with an initial learning rate set to 0.0002.

(3) Performance Comparison in Image Quality Assessment Experiments
In order to verify the comprehensive performance of the algorithm, we selected two

datasets, namely TID2008 and TID2013. By comparing the performance of the algorithm on
the TID2008 and TID2013 datasets, we can know the universality of AM-VGG-IQA in other
image types or other application scenarios. This is also a part of algorithm performance.

As shown in Tables 7 and 8, the best results under each assessment criterion are
highlighted in bold font. In the training tests of the TID2008 and TID2013 datasets, the
performance of SROCC and PLCC of AM-VGG-IQA was the best among all algorithms,
which means that the hierarchical correlation between the quality score judged by the
algorithm and the actual score is the best, and the accuracy of model prediction is also
the best. This is thanks to our model using the VGGNET network, which has been pre
trained on large-scale ImageNet datasets for image classification tasks and extracts relevant
features of real-world distorted images. In addition, AM-VGG-IQA also used distorted
brain tumor MRI images to modify the pre-trained VGGNET network. At the same time, we
also performed visual saliency fusion on distorted images and added attention mechanism
modules to the model, all of which provided assistance in improving the performance of
the model. Finally, we also used TID2013 to finetune the network parameters and change
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the output of the network. Therefore, the AM-VGG-IQA network model can achieve
good results on the TID2008 and TID2013 datasets, which verifies the universality of
AM-VGG-IQA.

Table 7. Performance comparison on the TID2008 dataset.

Dataset TID2008

Index SROCC KROCC PLCC
SSIM 0.893 0.914 0.906
PSNR 0.905 0.919 0.897
NIQE 0.656 0.732 0.726

BRISQUE 0.910 0.904 0.917
CaHDC 0.895 0.920 0.905

AM-VGG-IQA 0.913 0.894 0.926

Table 8. Performance comparison on the TID2013 dataset.

Dataset TID2013

Index SROCC KROCC PLCC
SSIM 0.856 0.807 0.867
PSNR 0.889 0.848 0.847
NIQE 0.593 0.695 0.677

BRISQUE 0.872 0.885 0.903
CaHDC 0.862 0.839 0.878

AM-VGG-IQA 0.893 0.872 0.912

Next, in order to verify the robustness of AM-VGG-IQA, we will compare the perfor-
mance changes in the algorithm under three different schemes by changing the ratio of the
training and testing sets. The dataset used is still TID2013, and the assessment criteria are
the SROCC values. The training and testing ratio in the previous experiment was 4:1. In
the following experiment, we added a control group with training and testing ratios of 1:1
and 1:4. The test results are shown in Table 7.

From Table 9, it can be seen that AM-VGG-IQA achieved good results in training and
testing ratios of 4:1, 1:1, or 1:4, with no significant fluctuations in SROCC values, which
proves that AM-VGG-IQA has a better robustness.

Table 9. Comparison of SROCC on the TID2013 dataset.

Proportion of training and testing 4:1 1:1 1:4

AM-VGG-IQA’s SROCC 0.893 0.859 0.822

4.6. Cross-Dataset Experiments

To verify the generalization ability of the AM-VGG-IQA algorithm, we also conducted
cross-dataset experiments, namely training on one dataset and testing on another dataset.
The databases used include TID2008 and TID2013, and the common distortion types of
images in both datasets are selected. The first group of experiments used TID2008 for
training and TID2013 for testing. The second group of experiments used TID2013 for
training and TID2008 for testing, with SROCC and PLCC as assessment indicators. The
experimental results are shown in Table 10. Comparative algorithms include BRISQUE,
BIECON, and CaHDC.

As shown in Table 10, the best-performing data are highlighted in bold font. Under the
standards of SROCC, the BRISQUE algorithm performs the best, possibly due to its ability
to extract mean subtracted contrast normalized (MSCN) coefficients from images, fit MSCN
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coefficients into an asymmetric generalized Gaussian distribution (AGGD), and extract
features of the fitted Gaussian distribution. At the same time, MSCN does not have a strong
dependence on the strength of the texture. The features extracted in this way are more
applicable. The AM-VGG-IQA algorithm achieved the best or near the best results in both
indicators in two sets of cross-dataset experiments. In some indicators, there is even a 20%
improvement compared to some algorithms. Especially under the standards of PLCC, AM-
VGG-IQA performs the best, indicating that the correlation between the results obtained
by the algorithm and subjective scores is the strongest. This is thanks to the addition of
visual saliency fusion processing to the algorithm, which fully simulates the characteristics
of human eyes when observing images, thus improving the performance of the algorithm.
It can be seen that the AM-VGG-IQA algorithm has a strong generalization ability.

Table 10. Cross-dataset experimental results.

Train TID2008 TID2013

Test TID2013 TID2008

Index SROCC PLCC SROCC PLCC
BRISQUE 0.82 0.84 0.88 0.87
BIECON 0.67 0.66 0.71 0.75
CaHDC 0.74 0.71 0.75 0.78

AM-VGG-IQA 0.80 0.85 0.87 0.90

5. Conclusions
This paper proposes an image quality assessment model based on VGGNET that

integrates visual saliency and attention mechanisms and integrates the feature extraction
and quality score prediction of distorted images into an optimized framework. The image is
subjected to distortion processing and visual saliency fusion, which improves the accuracy
of image feature extraction while expanding the dataset. The addition of an attention
mechanism module improved the efficiency of image feature extraction and calculation,
further improving the performance of the model. The necessity of the above operation has
been verified through prediction accuracy experiments. Through comparative experiments,
we can conclude that our method has a better prediction accuracy and higher consistency
with the subjective quality perception of the human eye compared to traditional methods,
based on natural scene statistics and some deep learning methods. The results of cross-
dataset experiments indicate that the proposed method also has a good generalization
performance for symmetry edge intelligence systems.

The proposed model is optimized for MRI images of specific resolutions, and further
evaluation across different resolutions is required. The proposed IQA scheme plays a
pivotal role in a wide range of practical applications, spanning from image processing and
medical imaging to computer vision and multimedia communication. Its primary utility
lies in evaluating and optimizing the visual fidelity of images, ensuring that they meet
the desired standards for specific tasks. For instance, in medical imaging, IQA is crucial
for enhancing diagnostic accuracy by assessing the clarity and detail of medical scans. In
multimedia applications, it helps to maintain high-quality video streaming and efficient
image compression, balancing quality and bandwidth usage. Despite its widespread
adoption, IQA is not without limitations. One major challenge is the subjective nature of
image quality, as the human perception of quality can vary significantly and is influenced
by contextual factors. Furthermore, most IQA methods are designed for specific types of
distortions and may not generalize well to unseen or complex distortions. Looking ahead,
future research should focus on developing more robust and generalizable no-reference
IQA methods that can handle diverse and complex distortions. Incorporating advanced
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deep learning techniques and leveraging large-scale datasets could further enhance the
accuracy and adaptability of IQA models. Additionally, exploring the integration of IQA
with emerging technologies such as virtual reality (VR) and augmented reality (AR) could
open new avenues for improving immersive experiences. Addressing these challenges and
opportunities will be essential for advancing the field of image quality assessment and
expanding its practical applications.
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