
Citation: Ozkan, Y.; Erdogmus, P.

Evaluation of Classification

Performance of New Layered

Convolutional Neural Network

Architecture on Offline Handwritten

Signature Images. Symmetry 2024, 16,

649. https://doi.org/10.3390/

sym16060649

Academic Editors: Zhenghong Jin and

Yufeng Tian

Received: 5 April 2024

Revised: 7 May 2024

Accepted: 15 May 2024

Published: 23 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Evaluation of Classification Performance of New Layered
Convolutional Neural Network Architecture on Offline
Handwritten Signature Images
Yasin Ozkan 1,2,* and Pakize Erdogmus 2

1 Department of Computer Technologies, Zonguldak Bulent Ecevit University, Zonguldak 67100, Turkey
2 Department of Computer Engineering, Faculty of Engineering, Duzce University, Duzce 81000, Turkey;

pakizeerdogmus@duzce.edu.tr
* Correspondence: yasin.ozkan@beun.edu.tr

Abstract: While there are many verification studies on signature images using deep learning algo-
rithms in the literature, there is a lack of studies on the classification of signature images. Signatures
are used as a means of identification for banking, security controls, symmetry, certificates, and
contracts. In this study, the aim was to design network architectures that work very fast in areas
that require only signature images. For this purpose, a new Si-CNN network architecture with
existing layers was designed. Afterwards, a new loss function and layer (Si-CL), a novel architecture
using Si-CL as classification layer in Si-CNN to increase the performance of this architecture, was
designed. This architecture was called Si-CNN+NC (New Classification). Si-CNN and Si-CNN+NC
were trained with two datasets. The first dataset which was used for training is the “C-Signatures”
(Classification Signatures) dataset, which was created to test these networks. The second dataset
is the “Cedar” dataset, which is a benchmark dataset. The number of classes and sample numbers
in the two datasets are symmetrical with each other. To compare the performance of the trained
networks, four of the most well-known pre-trained networks, GoogleNet, DenseNet201, Inceptionv3,
and ResNet50, were also trained with the two datasets with transfer learning. The findings of the
study showed that the proposed network models can learn features from two different handwritten
signature images and achieve higher accuracy than other benchmark models. The test success of the
trained networks showed that the Si-CNN+NC network outperforms the others, in terms of both
accuracy and speed. Finally, Si-CNN and Si-CNN+NC networks were trained with the gold standard
dataset MNIST and showed superior performance. Due to its superior performance, Si-CNN and
Si-CNN+NC can be used by signature experts as an aid in a variety of applications, including criminal
detection and forgery.

Keywords: convolutional neural networks; classification; signature; cedar signature

1. Introduction

As a form of identification in everyday life, handwritten signatures are widely used
on important documents [1]. They indicate that the signer accepts and is responsible for
the entire content of the signed document. Handwritten signatures are unique and easy
to collect. For this reason, identification of the signature becomes an extremely important
process in terms of determining whether the signature belongs to the original signatory.
Since manual recognition creates time costs and is prone to recognition errors, systems
need to automate the process.

Signature samples are divided into online and offline handwritten signature classifi-
cation technologies. The images obtained through online signature are dynamic images
obtained through touch screens. The process of signatures obtained offline involves scan-
ning the signatures on paper, converting them to digital form, and processing them on
the computer. Handwritten signatures can be classified by their similarity based solely on

Symmetry 2024, 16, 649. https://doi.org/10.3390/sym16060649 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16060649
https://doi.org/10.3390/sym16060649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2029-0856
https://orcid.org/0000-0003-2172-5767
https://doi.org/10.3390/sym16060649
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16060649?type=check_update&version=1

Symmetry 2024, 16, 649 2 of 28

strategic information such as shape and location [2,3]. Therefore, recognition and classifica-
tion of handwritten signature images is a more challenging task than online signatures.

Handwritten signature classification is divided into two stages according to the devel-
opment processes. The first stage includes traditional classification approaches. The second
involves the classification of handwritten signatures using deep learning approaches. Phys-
ical properties of signatures are generally analyzed by feature extraction techniques. Deep
learning techniques enable learning network architectures for large amounts of data. Re-
searchers working in this field have recently introduced many deep learning technologies
and obtained results that contribute to the field.

The handwritten signature verification system has a problem regarding how genuine
and forged signatures are classified. It is a system that tries to distinguish between genuine
and forged signatures of individuals. Although signatures are used for authentication,
some signatures of the same person may differ due to a number of factors and conditions.
In other words, not every signature taken from the same person may be symmetrical.
Hilton emphasizes that signatures have three main characteristics: form, movement, and
variation [3]. The author also observed that once people adopt a signature style, small
changes occur over time. The signing process is defined as the process by which the brain
retrieves information from long-term memory with parameters such as size, shape, etc.
Genuine signatures are associated with neural activity planning, while forged signatures
are the result of deliberate handwriting imitation [4].

Handwritten signature forgery can be detected by a number of features and character-
istics. However, if a forged signature is created by a skilled person, it can cause confusion
for examiners. To counter such problems, deep image classification methods can be used
that focus on comparing multiple combinations of comprehensive signature features. For
this purpose, a special signature image dataset, “C-Signatures “, is created for this study and
Si-CNN and Si-CNN+NC models are presented to improve the classification performance
for signature images. The Si-CNN model, the first CNN model constructed, as well as the
pre-trained models employed in this study were categorized using standard cross-entropy,
and the results were obtained. A new loss function was created for the Si-CNN+NC model,
and classification outcomes were achieved. The major goal of this comparison is to assess
the way the classification layer created for the Si-CNN+NC model performs in comparison
to the classification layer used in Si-CNN and pre-trained models. The proposed model is
deliberately designed to be lightweight in order to output a classification result for a given
input as quickly as possible, even when deployed on devices that are limited in processing
power (e.g., mobile devices). Various state-of-the-art classifiers are used, including deep
neural networks to compare the classification performance of the proposed new models.

While there are many studies on handwritten signature image recognition in the
literature, there is a lack of studies on signature image classification in the research field. To
this end, this study can contribute to the field in five different ways.

(1) Two different convolutional frameworks are proposed to design compatible CNN
model architectures to investigate signature image classification.

(2) A new model that is highly accurate: a unique model, a CNN, which outperforms the
state-of-the-art baselines and is lightweight, quick, and accurate, is presented.

(3) A comprehensive hyper-parameter optimization task: To determine the optimal
value for each hyper-parameter in the suggested model, a thorough hyper-parameter
optimization was carried out. As a result, the model that would eventually provide
the best classification accuracy was selected.

(4) A new classification layer design: a new classification layer design named “Si-CL”
is presented.

(5) A new dataset: a new dataset of image images, “C-Signatures”, is proposed for use by
researchers in this field.

The remainder of the paper will be organized as follows: Section 2 briefly presents
the work conducted in the related field and information about CNN. Section 3 describes
the datasets used and the methodology. Section 4 presents the results of the experiments.

Symmetry 2024, 16, 649 3 of 28

Section 5 presents the discussions. Section 6 concludes the paper by giving information
about what can be done after this study.

2. Related Work

The success of deep learning methods in many fields, especially after the developments
in graphics card technology, has attracted the attention of researchers working on signature
verification and classification. Researchers have applied deep learning methods to signature
verification and classification in order to increase success in this field. Luiz G. Hafemann
et al. developed an author-independent signature feature extraction model for classifying
author-dependent signature sets using a CNN [5].

Especially for offline signatures, the performance of offline signature verification is
significantly degraded due to the fact that dynamic features are not available and, therefore,
it is difficult to extract signature characteristics with a very limited set of features. For
this reason, the authors have developed an author-dependent offline signature verification
model with signature attributes automatically extracted with CNN, independent of the
author. However, as stated in their study, they only used real signatures as training data. In
some cases, they also included skilled forged signature samples. Therefore, the training
data are quite small and it is thought to affect the success of learning.

Zhang et al. [6] proposed a multi-phase unsupervised classification method for offline
signature verification using Deep Convolutional Generative Adversarial Networks (DCGANs).
In order to solve the problem of insufficient data in their proposed system, they trained the
system with both user-independent and user-dependent signatures.

Sam et al. [7] tested different versions of the Google inception CNN model for online
signature verification with different numbers of users and compared their performance.
They emphasized that the 22-layer inception V1 model outperformed the 42-layer inception
V3 model on signature images. Souza et al. [8] proposed a support vector machine (SVM)
system for author-independent classification. In their proposed system, they used the CNN
method for user-dependent feature extraction.

Rabbi et al. [9] proposed a study on offline handwritten signature verification using
CNN. They used data augmentation with the CNN model and also presented a com-
parative study with Multilayer Perceptron (MLP) and Single-Layer Perceptron (SLP).
Alajrami et al. [10] created a CNN model for offline signatures using python and achieved
a high success rate. Mohapatra et al. [11] used a CNN to learn features from pre-processed
real and forged signatures. The CNN model they used was inspired by the Inception V1
architecture. The architecture used the concept of having different filters at the same level
to make the network wider instead of deeper.

Parcham et al. [12] used a combination of CNNs and capsule neural networks for an
offline signature verification model. There are two reasons for using CapsNet for feature ex-
traction. First, there is the possibility of reducing the number of layers and parameters. Sec-
ond, CapsNet can detect details of spatial and angular changes. Berkay et al. [13] proposed
a hybrid user-dependent/independent offline signature verification technique with a two-
channel CNN for both verification and feature extraction. Muhammed Mutlu et al. [14]
proposed a Deep Learning (DL)-based offline signature verification method to prevent
signature forgery by malicious actors. The DL method used in the study is a CNN. The
CNN is designed and trained separately for two different models, Writer-Dependent (WD)
and Writer-Independent (WI).

Jain et al. [15] proposed a language-independent shallow sCNN for signature verifi-
cation. Although the proposed architecture is quite simple, it is highly efficient in terms
of accuracy. A specialized shallow CNN is used to automatically learn signature features
from the provided training data.

While there are many studies on signature image recognition, there is a lack of stud-
ies on signature image classification. There are some studies on signature classification:
Vargas et al. [16] proposed an offline handwritten signature classification approach. In their

Symmetry 2024, 16, 649 4 of 28

study, HMM and SVMLight models were analyzed and a high performance was obtained
in the SVMLight model.

Rosso et al. [17] proposed an online handwritten signature classification and verifica-
tion approach. Using One-Class SVM, it was found that the number of training examples
in the dataset is an important criterion for success. Kim et al. [18] proposed classifying
handwritten signature images using a chromosome clustering technique. Ganguly et al. [19]
proposed an automatic approach for handwritten signature classification. The input images
were first converted into binary images. Then, rotation and noise removal operations were
performed. A set of 100 images was tested using K-NN classification and the classification
success of the model was 92%.

Keyhosravi et al. [20] proposed a new method for offline signature identification using
deep learning approaches under various experimental conditions and different uncertainties
such as environmental noises. The signatures of 85 people were collected at various time
intervals. The proposed method was analyzed not only on the collected dataset but also on
various other datasets. The proposed model achieved a high performance. Samonte et al. [21]
implemented an ED model to classify a dataset of 300 signatures from 20 authors using a feature
extraction algorithm of global features such as area, height, and width.

Akhundjanov et al. [22] proposed a model based on CNNs to classify handwritten
signature images. A study-specific dataset and a publicly available handwritten signature
dataset called Bengali were used. In the study-specific dataset, handwritten signature
data of 40 people, consisting of 10 real and 10 fake signatures, were collected. The Bengali
dataset consists of 100 people and there are 24 real and 30 fake signatures for each person. In
this study, experiments were conducted by randomly selecting 20 people from the Bengali
dataset. Images in the two datasets were used as input data for the proposed network
architecture. As a result of testing the proposed CNN model, classification accuracies
of 90.04% were obtained from the study-specific dataset and 97.50% were obtained from
the Bengali dataset.

Mohammed et al. [23] proposed a model based on a CNN to classify handwritten
signature images. To test the effectiveness of the presented model, comparisons with
MobileNets were made. In the study, experiments were carried out using CEDAR, ICDER,
and sigcomp datasets and the effectiveness of the presented model was demonstrated.

Culqui et al. [24] proposed a model based on a CNN to quickly classify a person’s
signature with over 90% accuracy. In the study, two different datasets called the publicly
available CEDAR dataset and GC-DB prepared by the researchers were used.

3. Materials and Methods

The dataset structure, the Si-CNN and Si-CNN+NC models, and the models developed
to benchmark the suggested model are all thoroughly explained in the subsections that
follow in this section.

3.1. Datasets Construction and Workflow of the Method

Three different datasets (C-Signatures, Cedar, and MNIST) were used for training
and evaluation of Si-CNN, Si-CNN+NC, and benchmark models. First, the dataset called
“C-Signatures” was used, which was created by taking 24 samples from 55 different people.
Signature samples were collected from a total of 65 students, but some of the collected
samples were not included in the created dataset because (1) they did not meet the expected
quality in terms of DPI and/or resolution, or (2) they were corrupted. Since the importance
of preprocessing was proven in this study, each image in the dataset was preprocessed
in order to improve the quality of the data, which directly affects the performance of the
proposed CNN models. The preprocessing phase included the following steps: (1) each
image was cropped for handwritten signature samples, and (2) each image was resized
to 120 pixels× 120 pixels. Thanks to the implemented script, the pre-processing phase
was fully automated and is shown in Figure 1. A sample image of the classes in the
“C-Signatures” dataset is shown in Figure 2.

Symmetry 2024, 16, 649 5 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 5 of 29

processed in order to improve the quality of the data, which directly affects the perfor-
mance of the proposed CNN models. The preprocessing phase included the following
steps: (1) each image was cropped for handwritten signature samples, and (2) each image
was resized to 120 pixels × 120 pixels. Thanks to the implemented script, the pre-pro-
cessing phase was fully automated and is shown in Figure 1. A sample image of the classes
in the “C-Signatures” dataset is shown in Figure 2.

Figure 1. An illustration of the preprocessing phase of the proposed model.

Figure 2. An overview of the “C-Signatures” dataset.

The second dataset used in the study, “Cedar Signature”, consists of real and forged
signature images from 55 different people. Both real and forged signatures in this dataset
have 55 different classes and each class consists of 24 different signature images. In this
study, only real signature images were used. A sample image of the classes in the “Cedar
Signature” dataset is shown in Figure 3.

Figure 3. An overview of the “Cedar Signature” dataset.

In image recognition and classification, preprocessing steps significantly affect the
performance of the proposed CNN models [25]. To improve the performance of the Si-
CNN and Si-CNN+NC models, every image in both datasets was preprocessed. All im-
ages in the “C-Signatures” and “Cedar Signature” dataset used in the study were resized
to 120 pixels × 120 pixels and trained.

Figure 1. An illustration of the preprocessing phase of the proposed model.

Symmetry 2024, 16, x FOR PEER REVIEW 5 of 29

processed in order to improve the quality of the data, which directly affects the perfor-
mance of the proposed CNN models. The preprocessing phase included the following
steps: (1) each image was cropped for handwritten signature samples, and (2) each image
was resized to 120 pixels × 120 pixels. Thanks to the implemented script, the pre-pro-
cessing phase was fully automated and is shown in Figure 1. A sample image of the classes
in the “C-Signatures” dataset is shown in Figure 2.

Figure 1. An illustration of the preprocessing phase of the proposed model.

Figure 2. An overview of the “C-Signatures” dataset.

The second dataset used in the study, “Cedar Signature”, consists of real and forged
signature images from 55 different people. Both real and forged signatures in this dataset
have 55 different classes and each class consists of 24 different signature images. In this
study, only real signature images were used. A sample image of the classes in the “Cedar
Signature” dataset is shown in Figure 3.

Figure 3. An overview of the “Cedar Signature” dataset.

In image recognition and classification, preprocessing steps significantly affect the
performance of the proposed CNN models [25]. To improve the performance of the Si-
CNN and Si-CNN+NC models, every image in both datasets was preprocessed. All im-
ages in the “C-Signatures” and “Cedar Signature” dataset used in the study were resized
to 120 pixels × 120 pixels and trained.

Figure 2. An overview of the “C-Signatures” dataset.

The second dataset used in the study, “Cedar Signature”, consists of real and forged
signature images from 55 different people. Both real and forged signatures in this dataset
have 55 different classes and each class consists of 24 different signature images. In this
study, only real signature images were used. A sample image of the classes in the “Cedar
Signature” dataset is shown in Figure 3.

Symmetry 2024, 16, x FOR PEER REVIEW 5 of 29

processed in order to improve the quality of the data, which directly affects the perfor-
mance of the proposed CNN models. The preprocessing phase included the following
steps: (1) each image was cropped for handwritten signature samples, and (2) each image
was resized to 120 pixels × 120 pixels. Thanks to the implemented script, the pre-pro-
cessing phase was fully automated and is shown in Figure 1. A sample image of the classes
in the “C-Signatures” dataset is shown in Figure 2.

Figure 1. An illustration of the preprocessing phase of the proposed model.

Figure 2. An overview of the “C-Signatures” dataset.

The second dataset used in the study, “Cedar Signature”, consists of real and forged
signature images from 55 different people. Both real and forged signatures in this dataset
have 55 different classes and each class consists of 24 different signature images. In this
study, only real signature images were used. A sample image of the classes in the “Cedar
Signature” dataset is shown in Figure 3.

Figure 3. An overview of the “Cedar Signature” dataset.

In image recognition and classification, preprocessing steps significantly affect the
performance of the proposed CNN models [25]. To improve the performance of the Si-
CNN and Si-CNN+NC models, every image in both datasets was preprocessed. All im-
ages in the “C-Signatures” and “Cedar Signature” dataset used in the study were resized
to 120 pixels × 120 pixels and trained.

Figure 3. An overview of the “Cedar Signature” dataset.

In image recognition and classification, preprocessing steps significantly affect the
performance of the proposed CNN models [25]. To improve the performance of the Si-CNN
and Si-CNN+NC models, every image in both datasets was preprocessed. All images
in the “C-Signatures” and “Cedar Signature” dataset used in the study were resized to
120 pixels × 120 pixels and trained.

On a benchmark dataset, MNIST, the generalization capacities of the models were
demonstrated [26]. For this goal, the MNIST dataset was used to test the models that were
trained on the signature image datasets. Figure 4 provides a summary of the MNIST dataset.

Symmetry 2024, 16, 649 6 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 29

On a benchmark dataset, MNIST, the generalization capacities of the models were
demonstrated [26]. For this goal, the MNIST dataset was used to test the models that were
trained on the signature image datasets. Figure 4 provides a summary of the MNIST da-
taset.

Figure 4. An overview of the MNIST dataset.

The aim of the proposed method is to provide an effective way to perform classifica-
tion of handwritten signature images. Figure 5 presents the overview of the proposed
method. This method is divided into four different parts. They are listed as (i) pre-pro-
cessing, (ii) feature extraction, (iii) training, and (iv) classification.

Figure 5. Block diagram of the proposed method.

Figure 4. An overview of the MNIST dataset.

The aim of the proposed method is to provide an effective way to perform classification
of handwritten signature images. Figure 5 presents the overview of the proposed method.
This method is divided into four different parts. They are listed as (i) pre-processing,
(ii) feature extraction, (iii) training, and (iv) classification.

Symmetry 2024, 16, x FOR PEER REVIEW 6 of 29

On a benchmark dataset, MNIST, the generalization capacities of the models were
demonstrated [26]. For this goal, the MNIST dataset was used to test the models that were
trained on the signature image datasets. Figure 4 provides a summary of the MNIST da-
taset.

Figure 4. An overview of the MNIST dataset.

The aim of the proposed method is to provide an effective way to perform classifica-
tion of handwritten signature images. Figure 5 presents the overview of the proposed
method. This method is divided into four different parts. They are listed as (i) pre-pro-
cessing, (ii) feature extraction, (iii) training, and (iv) classification.

Figure 5. Block diagram of the proposed method. Figure 5. Block diagram of the proposed method.

3.2. Background

Traditional machine learning algorithms need the experience and knowledge of ex-
perts for feature extraction and selection tasks, which are important tasks for data sci-
entists. CNNs have the ability to perform feature selection and feature extraction from
raw data compared to traditional machine learning algorithms [27,28]. In CNN archi-
tectures, there are two types of feature extraction: high-level and low-level. As they
can efficiently learn high-level characteristics, CNNs are frequently employed to learn
visual and semantic information. Due to their proximity to the inputs, low-level picture
characteristics also include more thorough information [29]. Many modern techniques

Symmetry 2024, 16, 649 7 of 28

combine low-level and high-level features into multi-layered features, which can con-
siderably increase the network’s performance accuracy [30]. In the U-net architecture,
Ronneberger et al. combined low-level and high-level characteristics to obtain excellent
accuracy in biomedical picture segmentation [31].

One of the most popular classifiers is deep neural networks. They are highly preferred
due to their modular design. CNN designs may be quickly customized to meet particular
requirements by changing connections, adding special layers, and conducting experiments
with a wide variety of activation functions [32]. CNN architectures are generally composed
of input, convolution, activation function, pooling, dropout, and fully connected layers
with various variations. They are not limited to the layers mentioned here and there are
various layers with different features. The input layer is the first layer in CNNs. The data
presented to the network is first presented from this layer. The convolution layer is the layer
where new feature matrices are obtained by circulating m × n filters whose dimensions
and properties are determined by the developers on the data coming from the previous
layer. The activation layer brings the matrix values obtained from the convolution layer
to the range determined depending on the algorithm used. The pooling layer is the layer
used to reduce the preceding data into smaller matrices. Although this data reduction
process makes the network run faster, it may cause data loss in some cases. In the dropout
layer, when the network has a small amount of data, there is a risk of overlearning. It
is used to prevent the network from memorizing the training set. The fully connected
layer is the layer that takes all the data from the previous layers and transforms it into a
one-dimensional array matrix [33]. The data from this layer is transferred directly to the
classification layer as input.

Neural network designs learn to translate a collection of input training data to a set
of outputs using deep learning. It is exceedingly challenging to determine the neural
network weights that are the most ideal since there are so many variables. Instead, the
learning problem is resolved via an algorithm. Stochastic gradient descent (SGD) and
Adaptive Moment Estimation (Adam) optimization techniques are the typical algorithms
utilized in neural networks. The “gradient” in gradient descent refers to an error gradient.
Predictions are made using a model with certain weight values, and errors related to these
predictions are computed. To reduce network loss is the major goal of researchers that are
interested in deep neural networks. As a result, the value determined by the error function
is referred to as “loss” [34]. Choosing a loss function is necessary for determining the
model’s error throughout the optimization phase. The chosen loss function must reflect the
characteristics of the current issue. It will be quite challenging to obtain adequate outcomes
if a well-performing loss function is not selected specifically for the issue [35]. From hinge
loss, logit loss, cross-entropy loss, to quadratic loss, etc., numerous loss functions exist.
In addition to these, researchers can design and apply custom loss functions for CNN
systems. The activation function employed in the neural network’s output layer has a
direct impact on the loss function that is selected. These two design components are tied
to one another, and harmony is crucial. From this point of view, construction of a new
classification layer and loss function was attempted in addition to the Si-CNN model
designed in the study. The Si-CNN model, the first CNN model constructed, as well as the
pre-trained models employed in this study were categorized using standard cross-entropy,
and the results were obtained. A new loss function was created for the Si-CNN+NC model,
and classification outcomes were achieved. The major goal of this comparison is to assess
the way the classification layer created for the Si-CNN+NC model performs in comparison
to the classification layer used in Si-CNN and pre-trained models.

3.3. Si-CNN and Si-CNN+NC Models
3.3.1. Model Configuration

A brand-new CNN-based model is suggested for the task of classifying handwritten
signature images. The Si-CNN and Si-CNN+NC models consist of 29 layers. An overview
of the Si-CNN and Si-CNN+NC models is presented in Figure 6. Si-CNN and Si-CNN+NC

Symmetry 2024, 16, 649 8 of 28

start with an input layer that accepts images. The input is then passed through an 8-filter
convolutional layer (referred to as Conv.) to execute convolutional processing on it. CNN’s
foundation is its convolution layer. Applying a certain filter to the image allows for the
detection of low-level features in some images, followed by the detection of higher-level
features. Low-level features in an image are the tiniest components, such as lines, colors,
or dots, while high-level features, which are used to identify objects and more substantial
forms in an image, are built from low-level features [36]. In order to learn high-level
features, CNNs are trained on large image datasets. Thus, CNNs can learn to identify and
extract high-level features [37].

Symmetry 2024, 16, x FOR PEER REVIEW 10 of 29

Figure 6. Image of the proposed Si-CNN and Si-CNN+NC models.

3.3.2. Models Training
CNNs use a loss function to estimate the model�s loss, which is then utilized to up-

date the neuronal weights in order to minimize the loss. For the Si-CNN model, in the
proposed work, the Adam algorithm, which is an extension of Stochastic Gradient Descent
(SGD), was used as the optimization algorithm of the model. Adam is an optimization
algorithm that calculates adaptive learning rates for each network parameter [43].

CNN networksʹ hyper-parameters are determined empirically and significantly af-
fect the learning process. For this reason, experiments need to be made over a wide range
of values to reveal the most optimized model in terms of classification performance. A
range of commonly used values, listed in Table 2, were tried and the most suitable values
are shown in bold.

Table 2. Tested values and hyper-parameters (The parameter�s best value is denoted in bold).

Hyper-Parameters Simulations of Values
Dropout rate of vonv. layers 0.2, 0.3, 0.4, 0.5, 0.6

Dropout rate of the final fully con-
nected layer 0.2, 0.3, 0.4, 0.5, 0.6

Learning rate e − 2, e − 3, e − 4, e − 5,
Batch size 32, 64, 128

Activation function ReLU, sigmoid, tanh, softmax
Pooling type Max Pooling, Average Pooling

Optimization algorithms SGD, RMSprop, Adam

Figure 6. Image of the proposed Si-CNN and Si-CNN+NC models.

The ReLU activation function was applied following the convolution layer. The ReLU
activation function [38] was used as the activation function since it returns the non-linear
negative inputs as 0 and the positive values are unchanged. Convolution and activation
layers were used again. After this layer, batch normalization, max pooling, and dropout
layers were used, respectively. The reasons for using the layers in this order are as follows:
the process of batch normalization involves averaging each activation output’s mean and
standard deviation across all samples in the minibatch [39]. In the Si-CNN and Si-CNN+NC
models, batch normalization was used after convolution and fully connected layers. The
training time for the neural network is shortened by max pooling. Additionally, by applying
the maximum function to the pooling window, it can be utilized as a sampling strategy
to lower the input size of the images [40]. A max pooling layer with pooling dimensions
of (2 × 2) was used, which resulted in a two-fold reduction in both width and height. The
model performs better in terms of accuracy when categorizing the provided samples into
the classes they belong to because the size of the incoming images is also reduced [41].
Dropout is a popular solution suggested to get around the overfitting problem [42]. In
order to prevent memorizing, dropout randomly removes neurons from the neural network

Symmetry 2024, 16, 649 9 of 28

during training. To avoid overfitting, a dropout layer was used after the batch normalization
layers. In addition, max pooling layers additionally help in reducing the issue of overfitting.
The convolution (1), convolution (2), batch normalization, max pooling, and dropout layers
were designed to extract the features of the images in a total of 4 iterations. During these
iterations, convolution (1) and convolution (2) filters were increased by 8, 16, 32, and 32.
After this iterative structure, a fully connected layer of 128 units was used. ReLU was
utilized as the activation function for this fully connected layer, just like it was for the
conv layers. After this layer, batch normalization and dropout layers were used. Fully
connected, batch normalization, and dropout layers were also repeated 2 times. During
these repetitions, the fully connected layer continued to decrease from 128 to 64, and so
on. The output layer of the suggested model uses a 55-unit fully connected layer and a
softmax activation function to classify the acquired image into 55 categories. The Si-CNN
model’s classification layer uses cross-entropy as the error function. A new network model
called Si-CNN+NC was developed, replacing the Si-CNN model’s classification layer with
the Si-CL special classification layer. The formula for the error function used in the Si-CL
layer is given in Equation (1). In the Equation, YJ stands for input; TJ stands for target;
N stands for normalization; and K stands for the number of classes. The layers of the
network structures of the Si-CNN and Si-CNN+NC models are presented in Table 1. All
layers except the last layer in the table were used in the same way in the Si-CNN and
Si-CNN+NC models. The only difference between the Si-CNN+NC model and the Si-CNN
model is that the classifier layer is different.

L = − 1
N ∑N

n=1 ∑K
i=1 (Tni ln(Yni) + (1 − Tni)ln(1 − Yni))−

1
N ∑N

n=1 ∑K
i=1 (Yni − Tni)

4 (1)

Table 1. Si-CNN and Si-CNN+NC models structures.

Si-CNN/Si-CNN+NC

Number Layer Hyper-Parameters Number of
Parameters Number Layer Hyper-Parameters Number of

Parameters

1 Input Input Layer 0 21 Dropout Rate: 0.3 0

2 Conv
Filters:8

Activation: ReLU
Filter size: (13 × 13)

224 22 FC Units: 128
Activation: ReLU 262,272

3 Conv
Filters:8

Activation: ReLU
Filter size: (13 × 13)

584 23 Batch N. Epsilon: 0.0001 256

4 Batch N. Epsilon: 0.0001 16 24 Dropout Rate: 0.3 0

5 Max P. Pool size: (2 × 2)
Stride: (2 × 2) 0 25 FC Units: 64

Activation: ReLU 8256

9 Dropout Rate: 0.3 0 26 Batch N. Epsilon: 0.0001 128

10 Max P. Pool size: (2 × 2)
Stride: (2 × 2) 0 27 Dropout Rate: 0.3 0

11 Dropout Rate: 0.3 0 28 FC Units: 20
Activation: Softmax 3575

12 Conv
Filters:32

Activation: ReLU
Filter size: (13 × 13)

4640 29 Class.
Si-CL (New Layer

used only in
Si-CNN+NC model)

0

13 Conv
Filters:32

Activation: ReLU
Filter size: (13 × 13)

9248

14 Batch N. Epsilon: 0.0001 64

Symmetry 2024, 16, 649 10 of 28

Table 1. Cont.

Si-CNN/Si-CNN+NC

Number Layer Hyper-Parameters Number of
Parameters Number Layer Hyper-Parameters Number of

Parameters

15 Max P. Pool size: (2 × 2)
Stride: (2 × 2) 0

16 Dropout Rate: 0.3 0

17 Conv
Filters:64

Activation: ReLU
Filter size: (13 × 13)

9248

18 Conv
Filters:64

Activation: ReLU
Filter size: (13 × 13)

9248

19 Batch N. Epsilon: 0.0001 64

20 Max P. Pool size: (2 × 2)
Stride: (2 × 2) 0

3.3.2. Models Training

CNNs use a loss function to estimate the model’s loss, which is then utilized to update
the neuronal weights in order to minimize the loss. For the Si-CNN model, in the proposed
work, the Adam algorithm, which is an extension of Stochastic Gradient Descent (SGD),
was used as the optimization algorithm of the model. Adam is an optimization algorithm
that calculates adaptive learning rates for each network parameter [43].

CNN networks’ hyper-parameters are determined empirically and significantly affect
the learning process. For this reason, experiments need to be made over a wide range of
values to reveal the most optimized model in terms of classification performance. A range
of commonly used values, listed in Table 2, were tried and the most suitable values are
shown in bold.

Table 2. Tested values and hyper-parameters (The parameter’s best value is denoted in bold).

Hyper-Parameters Simulations of Values

Dropout rate of vonv. layers 0.2, 0.3, 0.4, 0.5, 0.6

Dropout rate of the final fully connected layer 0.2, 0.3, 0.4, 0.5, 0.6

Learning rate e − 2, e − 3, e − 4, e − 5,

Batch size 32, 64, 128

Activation function ReLU, sigmoid, tanh, softmax

Pooling type Max Pooling, Average Pooling

Optimization algorithms SGD, RMSprop, Adam

Deep neural networks are currently among the most widely used classifiers. Although
they easily achieve a very good performance, one of the best-selling points of these models
is their modular design; architectures can be easily adapted to specific needs, special layers
can be added, connection patterns can be changed, normalization schemes can be made,
and experiments can be made with numerous activation functions. While an impressively
wide spread of various configurations of almost every aspect of deep networks can be
found, classification problems are often poorly represented [32]. The vast majority of
applications use only log loss. Starting from this point, the loss function of the classification
layer in the Si-CNN model was formulated specifically for the study.

Following the model proposal, the model was trained using a recall that controlled
the training in the following ways: (1) EarlyStopping, which is in charge of terminating the
training if the monitored criterion does not improve for a predetermined number of epochs;

Symmetry 2024, 16, 649 11 of 28

this ensures that the training has an optimum time at the most advantageous moment and
avoids the model from becoming overfit [44].

To enhance the performance of Si-CNN and Si-CNN+NC architectures in training:

• Early Stopping technique was used.
• Evaluations were made by separating the datasets into training, testing, and validation.
• Hyper-parameter optimization was performed and the most appropriate hyper-parameters

were used.
• More accurate and faster results were obtained by developing a new loss function in

the Si-CNN+NC architecture.

3.4. Benchmarking Models

To evaluate the effectiveness of the Si-CNN and Si-CNN+NC models, four different
models, namely, Inceptionv3, GoogleNet, ResNet50, and DenseNet201, were used with the
transfer learning technique [45]. The feature extraction layers of the pre-trained models
are not trained in order to implement this strategy. The widely used ImageNet [46] dataset
served as the training ground for these pre-trained algorithms. The layer weights generated
for ImageNet were applied as a result. Information is transmitted in this way. Table 2
lists the (1) Top-1 accuracy rate obtained from ImageNet, (2) depth, and (3) number of
parameters of the models used in the study.

Inceptionv3, The Inception-V3 model, is the updated version of the Inception-V1
model. It has a wider network than the Inception-V1 and V2 models. The Inception-V3
model is a deep CNN trained directly on a low-configuration computer [47].

GoogLeNet, with an error rate of 6.66%, is the model that won the 2014 ILSVRC
Imagenet competition among the compared models used in the study. GoogLeNet no
longer arranges its layers in a sequential fashion. In order to reduce the memory cost of
the network and reduce the probability of memorization of the network, GoogLeNet uses
initial modules connected to each other in parallel instead of adding many consecutive
layers and using filters. In GoogLeNet, 1 × 1, 3 × 3, 5 × 5 convolution filters are then
collected in the inception module and given as input to the next layer. Thanks to this
module, both general and specific features of an object are extracted [48]. The input size of
the GoogLeNet architecture is given as 224 × 224 × 3.

DenseNet201: This architecture was created by Huang et al. to ensure information transfer.
In this architecture, for each layer, the outputs of the previous layers become input values.
DenseNet network architecture significantly reduces the disappearing gradient problem. The
DenseNet model has a reduced number of parameters to perform this process. DenseNet201
also has a total of 201 layers consisting of a 7 × 7 convolution filter followed by a 3 × 3
MaxPool as the first layer, 196 convolutional layers with 3 average pooling layers in between,
and 1 output [49]. The input size to the DenseNet201 architecture is given as 224 × 224 × 3.

ResNet50: It is a model developed in 2015. The ResNet model won the 2015 ILSVRC
ImageNet competition. ILSVRC is a structure that came first in the competition held in 2015
with an error rate of 3.6%. It is one of the first algorithms to use batch normalization.
The network requires input images of size 224 × 224 × 3 [50]. These custom models,
which were built for this work and are designated with TGoogleNet, TResnet50, and
TDenseNet201, respectively, were applied to the binary image classification task because
the original models were created for their own classification tasks.

The transfer learning approach employed did not include the classification-related
layers because the pre-trained models were created specifically for their classification tasks.
The number of trainable parameters was greatly decreased by transferring the weights
from the ImageNet dataset to the layers of the pre-trained models. For instance, the original
DenseNet201 has 20.2 M trainable parameters, as shown in Table 3. The DenseNet201
model has 3.8 K trainable parameters when utilized with the transfer learning technique. It
offers significant time savings in this regard. Table 4 provides a comparison of the deep
neural network trainable parameters for transfer learning. The final layers of these four
models, which are in charge of categorization, are not incorporated in the models that were

Symmetry 2024, 16, 649 12 of 28

constructed for this reason. The completely linked layer of the model was put after the basic
layers in place of the classification layers, as shown in Figure 7. These designs are referred
to in this work as SInceptionv3, SGoogleNet, SResnet50, and SDenseNet201 since they were
created for specific tasks of classification. These previously developed specialized models
were applied to classify handwritten signature images on two different datasets.

Table 3. Comparison of pre-trained models.

Pre-Trained Models Depth Number of Parameters Top 1 Acc.

GoogleNet 22 6.79 M 66.5

DenseNet201 402 20.2 M 77.3

Inceptionv3 189 23.9 M 77.9

ResNet50 50 25.6 M 74.9

Si-CNN 28 30.7 K NA

Si-CNN+NC 28 30.7 K NA

Table 4. An analysis of the number of parameters for training between the benchmark models’
original and transfer learning versions.

Model Total Parameters Trained without Freezing Layers Total Parameters Trained with Freezing Layers

GoogleNet 5.6 M 7.1 K

DenseNet201 20.2 M 3.8 K

Inceptionv3 23.9 M 4.1 K

ResNet-50 25.6 M 14.3 K

Si-CNN 30.7 K -

Si-CNN+NC 30.7 K -

Symmetry 2024, 16, x FOR PEER REVIEW 12 of 29

ResNet50: It is a model developed in 2015. The ResNet model won the 2015 ILSVRC
ImageNet competition. ILSVRC is a structure that came first in the competition held in
2015 with an error rate of 3.6%. It is one of the first algorithms to use batch normalization.
The network requires input images of size 224 × 224 × 3 [50]. These custom models, which
were built for this work and are designated with TGoogleNet, TResnet50, and TDense-
Net201, respectively, were applied to the binary image classification task because the orig-
inal models were created for their own classification tasks.

The transfer learning approach employed did not include the classification-related
layers because the pre-trained models were created specifically for their classification
tasks. The number of trainable parameters was greatly decreased by transferring the
weights from the ImageNet dataset to the layers of the pre-trained models. For instance,
the original DenseNet201 has 20.2 M trainable parameters, as shown in Table 3. The
DenseNet201 model has 3.8 K trainable parameters when utilized with the transfer learn-
ing technique. It offers significant time savings in this regard. Table 4 provides a compar-
ison of the deep neural network trainable parameters for transfer learning. The final layers
of these four models, which are in charge of categorization, are not incorporated in the
models that were constructed for this reason. The completely linked layer of the model
was put after the basic layers in place of the classification layers, as shown in Figure 7.
These designs are referred to in this work as SInceptionv3, SGoogleNet, SResnet50, and
SDenseNet201 since they were created for specific tasks of classification. These previously
developed specialized models were applied to classify handwritten signature images on
two different datasets.

Table 3. Comparison of pre-trained models.

Pre-Trained Models Depth Number of Parameters Top 1 Acc.
GoogleNet 22 6.79 M 66.5

DenseNet201 402 20.2 M 77.3
Inceptionv3 189 23.9 M 77.9

ResNet50 50 25.6 M 74.9
Si-CNN 28 30.7 K NA

Si-CNN+NC 28 30.7 K NA

Figure 7. An example of how benchmarking models are built.

Table 4. An analysis of the number of parameters for training between the benchmark models� orig-
inal and transfer learning versions.

Model
Total Parameters Trained without Freezing

Layers
Total Parameters Trained with Freezing

Layers
GoogleNet 5.6 M 7.1 K

DenseNet201 20.2 M 3.8 K

Figure 7. An example of how benchmarking models are built.

4. Experimental Results

The equipment of the computer used for training the model is essential for future
research. The Si-CNN and Si-CNN+NC models and the compared models were tested on
Matlab R2020a software installed on a Windows 11 operating system. The specifications of
the computer used are: Intel i5-9400 CPU, 2.9 GHz processor, and 8 GB Ram memory.

The precise assessment criteria of accuracy, precision, recall, and f1-score were em-
ployed to assess the classification performance of the Si-CNN and Si-CNN+NC models.
The term “TP” refers to samples that are both really indicative of a positive state and
are classified as such by the classifier. TN refers to cases that the classifier predicts as

Symmetry 2024, 16, 649 13 of 28

negative but which truly indicate a negative situation. FP stands for cases that the classifier
predicts as positive but really indicate a negative condition. FN denotes cases that the
classifier predicts as negative but actually indicate a positive condition. The most common
evaluation statistic is accuracy, which is just the proportion of properly predicted cases to
all instances. Precision is defined as the proportion of accurately anticipated positives to all
positive observations. The proportion of accurately anticipated positives to all positives is
known as recall [51]. The F1-score is the harmonic mean of precision and recall and is more
useful than accuracy for unbalanced datasets. The equations for the techniques used are
presented as (2), (3), (4), and (5).

Accuracy = (TP + TN)/(TP + TN + FP + FN) (2)

Precision = TP/(TP + FP) (3)

Recall = TP/(TP + FN) (4)

F1 − Score = 2 × (Precision × Recall)/(Precision + Recall) (5)

The Si-CNN and Si-CNN+NC models, SGoogleNet, SResNet50, SInceptionv3, and
SDenseNet201 architectures were evaluated on three different datasets. The first dataset
used in the study is the “C-Signatures” dataset, the second is the “Cedar Signature” dataset,
and the third is the “MNIST” dataset. Both datasets consist of 55 classes and each class
has 24 different images. Both datasets consist of 1320 handwritten signature images. The
information about the datasets used in this study is listed in Table 5. In machine learning
processes, the datasets are divided into three different clusters: (1) training set for training
the model, (2) validation set to measure the effect of training, and (3) test set to measure the
final accuracy of the model. In all experiments, 20% of the dataset to be processed was used
as a test set. The rest of the datasets were used as follows: 20% of the remaining part was
divided into a validation set and 80% into a training set. As a result, 16% of the datasets
were used as validation, 20% as test set, and 64% as training set. The training of all models
used in the study was evaluated under the same conditions and the results are presented.

Table 5. A summary of the datasets used for this investigation.

Dataset Samples in the
Training Set

Samples in the
Validation Set

Samples in the
Test Set

Total Number of
Samples

C-Signatures 845 211 264 1320

Cedar Signature 845 211 264 1320

MNIST 48,000 12,000 10,000 70,000

4.1. Experiments with the “C-Signatures” Dataset

The Si-CNN and Si-CNN+NC models and benchmark models were trained and
evaluated on a dataset of handwritten signature images called “C-Signatures”. The number
of epochs to train the Si-CNN model was set to 250, but the training of the proposed model
continued for 80 epochs because early stopping was used. The training time of the new
proposed model was 85 min and 14 s. The epoch number was also set to 250 for the training
of the Si-CNN+NC model, but the training of the proposed model continued for 106 epochs
since early stopping was used. The training time of the proposed new model also took
65 min and 28 s, despite an increase in the number of epochs. A plot of the accuracy
values obtained for the training and validation sets during the training of the proposed
models is presented in Figures 8 and 9. This figure shows that there is no over fitting
problem for the proposed model. The benchmark models were also trained under the
same training configuration conditions as the Si-CNN and the obtained accuracy plots are
presented in Figure 10.

Symmetry 2024, 16, 649 14 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 14 of 29

4.1. Experiments with the “C-Signatures” dataset
The Si-CNN and Si-CNN+NC models and benchmark models were trained and eval-

uated on a dataset of handwritten signature images called “C-Signatures”. The number of
epochs to train the Si-CNN model was set to 250, but the training of the proposed model
continued for 80 epochs because early stopping was used. The training time of the new
proposed model was 85 min and 14 s. The epoch number was also set to 250 for the train-
ing of the Si-CNN+NC model, but the training of the proposed model continued for 106
epochs since early stopping was used. The training time of the proposed new model also
took 65 min and 28 s, despite an increase in the number of epochs. A plot of the accuracy
values obtained for the training and validation sets during the training of the proposed
models is presented in Figures 8 and 9. This figure shows that there is no over fitting prob-
lem for the proposed model. The benchmark models were also trained under the same
training configuration conditions as the Si-CNN and the obtained accuracy plots are pre-
sented in Figure 10.

Figure 8. Accuracy graph of Si-CNN model with “C-Signatures” dataset.

Figure 8. Accuracy graph of Si-CNN model with “C-Signatures” dataset.
Symmetry 2024, 16, x FOR PEER REVIEW 15 of 29

Figure 9. Accuracy graph of Si-CNN+NC model with “C-Signatures” dataset.

Figure 9. Accuracy graph of Si-CNN+NC model with “C-Signatures” dataset.

Symmetry 2024, 16, 649 15 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 16 of 29

Figure 10. Accuracy plots of benchmark models with “C-Signatures” dataset.

The most common table for visualizing classifier predictions is the confusion matrix.
The Si-CNN and Si-CNN+NC models� classification performance was assessed using the
confusion matrix. The confusion matrix�s rows correspond to the true class�s instance
count. The number of instances in the projected class is shown in the columns. Figures 11
and 12 show the confusion matrices that were used to evaluate the Si-CNN and Si-
CNN+NC models on the “C-Signatures” test set.

Figure 10. Accuracy plots of benchmark models with “C-Signatures” dataset.

The most common table for visualizing classifier predictions is the confusion matrix.
The Si-CNN and Si-CNN+NC models’ classification performance was assessed using the
confusion matrix. The confusion matrix’s rows correspond to the true class’s instance count.
The number of instances in the projected class is shown in the columns. Figures 11 and 12
show the confusion matrices that were used to evaluate the Si-CNN and Si-CNN+NC
models on the “C-Signatures” test set.

Figure 13 displays a chart of the accuracy scores attained for the compared models.
The Si-CNN+NC model outperformed the other three models with an accuracy of 98.64%.
This model was followed by Si-CNN with 97.82%. When the Si-CNN+NC model was
valuated in the test set, 98.67% precision, 98.64% recall, and 98.72% F1-score values were
obtained. Table 6 provides an analysis of the models utilized across all evaluation criteria.

Symmetry 2024, 16, 649 16 of 28Symmetry 2024, 16, x FOR PEER REVIEW 17 of 29

Figure 11. Si-CNN model�s confusion matrix for the dataset “C-Signatures”.

Figure 12. Si-CNN+NC model�s confusion matrix for the dataset “C-Signatures”.

Figure 13 displays a chart of the accuracy scores attained for the compared models.
The Si-CNN+NC model outperformed the other three models with an accuracy of 98.64%.

Figure 11. Si-CNN model’s confusion matrix for the dataset “C-Signatures”.

Symmetry 2024, 16, x FOR PEER REVIEW 17 of 29

Figure 11. Si-CNN model�s confusion matrix for the dataset “C-Signatures”.

Figure 12. Si-CNN+NC model�s confusion matrix for the dataset “C-Signatures”.

Figure 13 displays a chart of the accuracy scores attained for the compared models.
The Si-CNN+NC model outperformed the other three models with an accuracy of 98.64%.

Figure 12. Si-CNN+NC model’s confusion matrix for the dataset “C-Signatures”.

Symmetry 2024, 16, 649 17 of 28

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 29

This model was followed by Si-CNN with 97.82%. When the Si-CNN+NC model was val-
uated in the test set, 98.67% precision, 98.64% recall, and 98.72% F1-score values were ob-
tained. Table 6 provides an analysis of the models utilized across all evaluation criteria.

Figure 13. Graph of the benchmark models� accuracy results on the “C-Signatures” dataset.

Table 6. When trained and tested on the “C-Signatures” dataset, classification performance of the
models.

CNN Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
SGoogleNet 76.36 76.65 76.36 81.20

SDenseNet201 94.55 94.58 94.55 95.77
SInceptionv3 94.91 94.98 94.91 96.33

SResNet50 94.18 93.78 94.18 95.77
Si-CNN 97.82 97.78 97.82 98.21

Si-CNN+NC 98.64 98.67 98.64 98.72

The training of CNN models takes a long time even on machines with high pro-
cessing power and large amounts of memory due to their complex and deep architecture,
large amount of data processing, and large number of parameters. For this reason, the
training time for each thousand CNN models benchmarked using the “C-Signatures” da-
taset is presented in Table 7.

The trial findings showed that SResNet50 was the quickest model, finishing training
in 3762 s. The Si-CNN+NC and Si-CNN models finished the training in 3928 and 5114 s,
respectively, after SResNet50. SDenseNet201 was found to be the slowest model as it has
the highest depth among the benchmark models. Compared to the pre-trained network
models GoogleNet, DenseNet201, Inceptionv3, and ResNet50 of the Si-CNN+NC(Si-
CNN+Si-CL) model, the accuracy, recall, precision, and f1-score values of the proposed
model are higher than other network models. Additionally, when the training times of the
network models were examined, the Si-CNN+NC architecture showed the most success-
ful performance after the ResNet50 model.

The impact of the developed Si-CL classification layer can be noticed when the train-
ing periods of Si-CNN and Si-CNN+NC models are compared. The training is finished
faster thanks to the new classification layer�s loss function, which also returns the error
more accurately. Due to the loss function used in the layer, the network performance
shows positive results in terms of timing and accuracy.

Table 7. Training times for the models used on the “C-Signatures” dataset.

CNN Model Training Time
SGoogleNet 89 min. 15 s.

SDenseNet201 229 min. 38 s.

Figure 13. Graph of the benchmark models’ accuracy results on the “C-Signatures” dataset.

Table 6. When trained and tested on the “C-Signatures” dataset, classification performance of the
models.

CNN Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SGoogleNet 76.36 76.65 76.36 81.20

SDenseNet201 94.55 94.58 94.55 95.77

SInceptionv3 94.91 94.98 94.91 96.33

SResNet50 94.18 93.78 94.18 95.77

Si-CNN 97.82 97.78 97.82 98.21

Si-CNN+NC 98.64 98.67 98.64 98.72

The training of CNN models takes a long time even on machines with high processing
power and large amounts of memory due to their complex and deep architecture, large
amount of data processing, and large number of parameters. For this reason, the training
time for each thousand CNN models benchmarked using the “C-Signatures” dataset is
presented in Table 7.

Table 7. Training times for the models used on the “C-Signatures” dataset.

CNN Model Training Time

SGoogleNet 89 min. 15 s.

SDenseNet201 229 min. 38 s.

SInceptionv3 71 min. 17 s.

SResNet50 62 min. 42 s.

Si-CNN 85 min. 14 s.

Si-CNN+NC 65 min. 28 s.

The trial findings showed that SResNet50 was the quickest model, finishing training
in 3762 s. The Si-CNN+NC and Si-CNN models finished the training in 3928 and 5114 s,
respectively, after SResNet50. SDenseNet201 was found to be the slowest model as it has the
highest depth among the benchmark models. Compared to the pre-trained network models
GoogleNet, DenseNet201, Inceptionv3, and ResNet50 of the Si-CNN+NC(Si-CNN+Si-CL)
model, the accuracy, recall, precision, and f1-score values of the proposed model are higher
than other network models. Additionally, when the training times of the network models
were examined, the Si-CNN+NC architecture showed the most successful performance
after the ResNet50 model.

Symmetry 2024, 16, 649 18 of 28

The impact of the developed Si-CL classification layer can be noticed when the training
periods of Si-CNN and Si-CNN+NC models are compared. The training is finished faster
thanks to the new classification layer’s loss function, which also returns the error more
accurately. Due to the loss function used in the layer, the network performance shows
positive results in terms of timing and accuracy.

4.2. Experiments with the “Cedar” Dataset

The Si-CNN and Si-CNN+NC models and benchmark models were trained and
evaluated on a dataset of handwritten signature images named “Cedar”. The number of
epochs to train the Si-CNN model was set to 250, but the training of the proposed model
continued for 101 epochs because early stopping was used. The training time of the new
proposed model was 61 min and 33 s. The epoch number was also set to 250 for the training
of the Si-CNN+NC model, but the training of the proposed model continued for 132 epochs
since early stopping was used. The training time of the proposed new model also took
57 min and 8 s, despite an increase in the number of epochs. A plot of the accuracy values
obtained during the training of the proposed model for the training and validation sets
is presented in Figures 14 and 15. This figure shows that there is no over fitting problem
for the proposed model in this dataset. The benchmark models were trained under the
same training configuration conditions as the Si-CNN and the accuracy plots are presented
in Figure 16. The visualization of the confusion matrix obtained for the evaluation of
the Si-CNN and Si-CNN+NC models on the “Cedar Signature” test set is presented in
Figures 17 and 18.

Symmetry 2024, 16, x FOR PEER REVIEW 19 of 29

SInceptionv3 71 min. 17 s.
SResNet50 62 min. 42 s.

Si-CNN 85 min. 14 s.
Si-CNN+NC 65 min. 28 s.

4.2. Experiments with the “Cedar” Dataset
The Si-CNN and Si-CNN+NC models and benchmark models were trained and eval-

uated on a dataset of handwritten signature images named “Cedar”. The number of
epochs to train the Si-CNN model was set to 250, but the training of the proposed model
continued for 101 epochs because early stopping was used. The training time of the new
proposed model was 61 min and 33 s. The epoch number was also set to 250 for the train-
ing of the Si-CNN+NC model, but the training of the proposed model continued for 132
epochs since early stopping was used. The training time of the proposed new model also
took 57 min and 8 s, despite an increase in the number of epochs. A plot of the accuracy
values obtained during the training of the proposed model for the training and validation
sets is presented in Figures 14 and 15. This figure shows that there is no over fitting prob-
lem for the proposed model in this dataset. The benchmark models were trained under
the same training configuration conditions as the Si-CNN and the accuracy plots are pre-
sented in Figure 16. The visualization of the confusion matrix obtained for the evaluation
of the Si-CNN and Si-CNN+NC models on the “Cedar Signature” test set is presented in
Figures 17 and 18.

Figure 14. Accuracy graph of Si-CNN model during training with “Cedar” dataset.

Figure 14. Accuracy graph of Si-CNN model during training with “Cedar” dataset.

Symmetry 2024, 16, 649 19 of 28Symmetry 2024, 16, x FOR PEER REVIEW 20 of 29

Figure 15. Accuracy graph of Si-CNN+NC model during training with “Cedar” dataset.

Figure 16. Accuracy plots of benchmarking models with “Cedar” dataset.

Figure 15. Accuracy graph of Si-CNN+NC model during training with “Cedar” dataset.

Symmetry 2024, 16, x FOR PEER REVIEW 20 of 29

Figure 15. Accuracy graph of Si-CNN+NC model during training with “Cedar” dataset.

Figure 16. Accuracy plots of benchmarking models with “Cedar” dataset. Figure 16. Accuracy plots of benchmarking models with “Cedar” dataset.

Symmetry 2024, 16, 649 20 of 28Symmetry 2024, 16, x FOR PEER REVIEW 21 of 29

Figure 17. Si-CNN model�s confusion matrix for the dataset “Cedar”.

Figure 18. Si-CNN+NC model�s confusion matrix for the dataset “Cedar”.

Figure 19 shows a graph of the accuracy scores obtained for the contrasted models.
The Si-CNN+NC model achieved an accuracy of 99.09%, which was the best performance
among the four models on the “Cedar Signature” dataset. This model was followed by Si-
CNN with 98.55%. On the “Cedar Signature” test set, 99.11% precision, 99.09% recall, and
99.20% F1-score values were obtained when the Si-CNN+NC model was assessed. Table 8
provides a comparison of the models utilized across all evaluation criteria.

Figure 17. Si-CNN model’s confusion matrix for the dataset “Cedar”.

Symmetry 2024, 16, x FOR PEER REVIEW 21 of 29

Figure 17. Si-CNN model�s confusion matrix for the dataset “Cedar”.

Figure 18. Si-CNN+NC model�s confusion matrix for the dataset “Cedar”.

Figure 19 shows a graph of the accuracy scores obtained for the contrasted models.
The Si-CNN+NC model achieved an accuracy of 99.09%, which was the best performance
among the four models on the “Cedar Signature” dataset. This model was followed by Si-
CNN with 98.55%. On the “Cedar Signature” test set, 99.11% precision, 99.09% recall, and
99.20% F1-score values were obtained when the Si-CNN+NC model was assessed. Table 8
provides a comparison of the models utilized across all evaluation criteria.

Figure 18. Si-CNN+NC model’s confusion matrix for the dataset “Cedar”.

Figure 19 shows a graph of the accuracy scores obtained for the contrasted models.
The Si-CNN+NC model achieved an accuracy of 99.09%, which was the best performance
among the four models on the “Cedar Signature” dataset. This model was followed by
Si-CNN with 98.55%. On the “Cedar Signature” test set, 99.11% precision, 99.09% recall,
and 99.20% F1-score values were obtained when the Si-CNN+NC model was assessed.
Table 8 provides a comparison of the models utilized across all evaluation criteria.

Symmetry 2024, 16, 649 21 of 28
Symmetry 2024, 16, x FOR PEER REVIEW 22 of 29

Figure 19. Graph of the benchmark models� accuracy results on the “Cedar” dataset.

Table 8. When trained and tested on the “Cedar” dataset, classification performance of the models.

CNN Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
SGoogleNet 88.73 88.48 88.73 90.29

SDenseNet201 95.27 94.97 95.27 96.22
SInceptionv3 94.91 94.30 94.91 94.88

SResNet50 96.36 95.98 96.36 97.22
Si-CNN 98.55 98.53 98.55 98.79

Si-CNN+NC 99.09 99.11 99.09 99.20

According to the results of the experiment with the “Cedar Signature” dataset, Si-
CNN+NC was found to be the fastest model, completing training in 3428 s. Si-CNN and
SGoogleNet models followed Si-CNN+NC by completing training in 3693 and 3890 s, re-
spectively. The training times for each CNN model benchmarked using the “Cedar Signa-
ture” dataset are also presented in Table 9. As in the case of the “C-Signatures” dataset,
the model with the longest training time was SDenseNet201. These experimental findings
lead to the generalization that the deeper the deep neural network, the longer the training
period. Similar to the “C-Signatures dataset”, when the training times and evaluation met-
rics of the Si-CNN and Si-CNN+NC models are compared, the most successful results are
in the Si-CNN+NC model. At this point, the effect of the Si-CL classification layer can be
seen. It can be noticed that the mistakes are returned rapidly and the training time is fin-
ished in a shorter amount of time due to the loss function employed in the Si-CL layer in
this dataset.

Table 9. Training times for the models used on the “Cedar Signature” dataset.

CNN Model Training Time
SGoogleNet 64 min. 50 s.

SDenseNet201 254 min. 34 s.
SInceptionv3 94 min. 6 s.

SResNet50 76 min. 25 s.
Si-CNN 61 min. 33 s.

Si-CNN+NC 57 min. 8 s.

4.3. Experiments with the “MNIST” Dataset
In order to compare the models proposed in the literature, all models should be eval-

uated on the same dataset. To this end, as a final experiment, the Si-CNN and Si-CNN+NC
models were both trained and evaluated on the MNIST dataset. The Si-CNN and Si-
CNN+NC models, which were trained on the MNIST dataset, were computed with high

Figure 19. Graph of the benchmark models’ accuracy results on the “Cedar” dataset.

Table 8. When trained and tested on the “Cedar” dataset, classification performance of the models.

CNN Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SGoogleNet 88.73 88.48 88.73 90.29

SDenseNet201 95.27 94.97 95.27 96.22

SInceptionv3 94.91 94.30 94.91 94.88

SResNet50 96.36 95.98 96.36 97.22

Si-CNN 98.55 98.53 98.55 98.79

Si-CNN+NC 99.09 99.11 99.09 99.20

According to the results of the experiment with the “Cedar Signature” dataset, Si-CNN+NC
was found to be the fastest model, completing training in 3428 s. Si-CNN and SGoogleNet
models followed Si-CNN+NC by completing training in 3693 and 3890 s, respectively. The
training times for each CNN model benchmarked using the “Cedar Signature” dataset are also
presented in Table 9. As in the case of the “C-Signatures” dataset, the model with the longest
training time was SDenseNet201. These experimental findings lead to the generalization that
the deeper the deep neural network, the longer the training period. Similar to the “C-Signatures
dataset”, when the training times and evaluation metrics of the Si-CNN and Si-CNN+NC
models are compared, the most successful results are in the Si-CNN+NC model. At this point,
the effect of the Si-CL classification layer can be seen. It can be noticed that the mistakes are
returned rapidly and the training time is finished in a shorter amount of time due to the loss
function employed in the Si-CL layer in this dataset.

Table 9. Training times for the models used on the “Cedar Signature” dataset.

CNN Model Training Time

SGoogleNet 64 min. 50 s.

SDenseNet201 254 min. 34 s.

SInceptionv3 94 min. 6 s.

SResNet50 76 min. 25 s.

Si-CNN 61 min. 33 s.

Si-CNN+NC 57 min. 8 s.

4.3. Experiments with the “MNIST” Dataset

In order to compare the models proposed in the literature, all models should be
evaluated on the same dataset. To this end, as a final experiment, the Si-CNN and
Si-CNN+NC models were both trained and evaluated on the MNIST dataset. The Si-CNN

Symmetry 2024, 16, 649 22 of 28

and Si-CNN+NC models, which were trained on the MNIST dataset, were computed with
high accuracy (96.98% and 97.19%, respectively), and they are shown in Figures 20 and 21.
When comparing the two models presented, it is clear that the Si-CNN+NC model which
employs the Si-CL layer performs better. As a result, when our suggested models were
evaluated using the gold standard dataset, they showed high accuracy rates.

Symmetry 2024, 16, x FOR PEER REVIEW 23 of 29

accuracy (96.98% and 97.19%, respectively), and they are shown in Figures 20 and 21.
When comparing the two models presented, it is clear that the Si-CNN+NC model which
employs the Si-CL layer performs better. As a result, when our suggested models were
evaluated using the gold standard dataset, they showed high accuracy rates.

Figure 20. Accuracy graph of Si-CNN model during training with MNIST dataset.

Figure 21. Accuracy graph of Si-CNN+NC model during training with MNIST dataset.

The “1”, “2”, and “7” were determined to be the most accurately recognized numbers,
according to the matrix of confusion of the Si-CNN model�s evaluation on the MNIST
dataset, which is shown in Figure 22. The “1”, “2”, and “7” were determined to be the
most precisely detected numbers in Figure 23, which also displays the matrix of confusion
of the analysis of the Si-CNN+NC algorithm on the MNIST dataset. The highest accuracies
in both Si-CNN and Si-CNN+NC architectures are “1”, “2” and “7”, indicating the con-
sistency and effectiveness of the proposed models. In addition, when the results obtained
from these two new proposed models are compared, the lowest accuracies were obtained
from the numbers “5” and “6”.

Figure 20. Accuracy graph of Si-CNN model during training with MNIST dataset.

Symmetry 2024, 16, x FOR PEER REVIEW 23 of 29

accuracy (96.98% and 97.19%, respectively), and they are shown in Figures 20 and 21.
When comparing the two models presented, it is clear that the Si-CNN+NC model which
employs the Si-CL layer performs better. As a result, when our suggested models were
evaluated using the gold standard dataset, they showed high accuracy rates.

Figure 20. Accuracy graph of Si-CNN model during training with MNIST dataset.

Figure 21. Accuracy graph of Si-CNN+NC model during training with MNIST dataset.

The “1”, “2”, and “7” were determined to be the most accurately recognized numbers,
according to the matrix of confusion of the Si-CNN model�s evaluation on the MNIST
dataset, which is shown in Figure 22. The “1”, “2”, and “7” were determined to be the
most precisely detected numbers in Figure 23, which also displays the matrix of confusion
of the analysis of the Si-CNN+NC algorithm on the MNIST dataset. The highest accuracies
in both Si-CNN and Si-CNN+NC architectures are “1”, “2” and “7”, indicating the con-
sistency and effectiveness of the proposed models. In addition, when the results obtained
from these two new proposed models are compared, the lowest accuracies were obtained
from the numbers “5” and “6”.

Figure 21. Accuracy graph of Si-CNN+NC model during training with MNIST dataset.

The “1”, “2”, and “7” were determined to be the most accurately recognized numbers,
according to the matrix of confusion of the Si-CNN model’s evaluation on the MNIST
dataset, which is shown in Figure 22. The “1”, “2”, and “7” were determined to be the most
precisely detected numbers in Figure 23, which also displays the matrix of confusion of the
analysis of the Si-CNN+NC algorithm on the MNIST dataset. The highest accuracies in
both Si-CNN and Si-CNN+NC architectures are “1”, “2” and “7”, indicating the consistency
and effectiveness of the proposed models. In addition, when the results obtained from
these two new proposed models are compared, the lowest accuracies were obtained from
the numbers “5” and “6”.

Symmetry 2024, 16, 649 23 of 28Symmetry 2024, 16, x FOR PEER REVIEW 24 of 29

Figure 22. Si-CNN model�s confusion matrix for the dataset MNIST.

Figure 23. Si-CNN+NC model�s confusion matrix for the dataset MNIST.

5. Discussion
The Si-CNN and Si-CNN+NC models performed well on the “C-Signatures” dataset

created for this study. However, for an objective comparison, the proposed CNN models
should be evaluated together with other databases commonly used in previous studies.
Additionally, the proposed network models need to be compared with pre-trained net-
works to demonstrate their effectiveness. For this purpose, the proposed CNN models
were evaluated with the “Cedar” dataset as well as the “C-Signatures” dataset. Table 10
presents the studies conducted in the literature with the “Cedar” dataset and their results.

Table 10. Comparison of related studies trained and evaluated on “Cedar” dataset.

Reference Classifier Accuracy
Kalera et al. [52] k-NN 93.33

Hadjadji et al. [53] PCA-FI 97.99
Kumari et al. [54] SVM 94.8

Calik et al. [55] CNN 97.47

Figure 22. Si-CNN model’s confusion matrix for the dataset MNIST.

Symmetry 2024, 16, x FOR PEER REVIEW 24 of 29

Figure 22. Si-CNN model�s confusion matrix for the dataset MNIST.

Figure 23. Si-CNN+NC model�s confusion matrix for the dataset MNIST.

5. Discussion
The Si-CNN and Si-CNN+NC models performed well on the “C-Signatures” dataset

created for this study. However, for an objective comparison, the proposed CNN models
should be evaluated together with other databases commonly used in previous studies.
Additionally, the proposed network models need to be compared with pre-trained net-
works to demonstrate their effectiveness. For this purpose, the proposed CNN models
were evaluated with the “Cedar” dataset as well as the “C-Signatures” dataset. Table 10
presents the studies conducted in the literature with the “Cedar” dataset and their results.

Table 10. Comparison of related studies trained and evaluated on “Cedar” dataset.

Reference Classifier Accuracy
Kalera et al. [52] k-NN 93.33

Hadjadji et al. [53] PCA-FI 97.99
Kumari et al. [54] SVM 94.8

Calik et al. [55] CNN 97.47

Figure 23. Si-CNN+NC model’s confusion matrix for the dataset MNIST.

5. Discussion

The Si-CNN and Si-CNN+NC models performed well on the “C-Signatures” dataset
created for this study. However, for an objective comparison, the proposed CNN models
should be evaluated together with other databases commonly used in previous studies.
Additionally, the proposed network models need to be compared with pre-trained networks
to demonstrate their effectiveness. For this purpose, the proposed CNN models were
evaluated with the “Cedar” dataset as well as the “C-Signatures” dataset. Table 10 presents
the studies conducted in the literature with the “Cedar” dataset and their results.

According to this table, the accuracy of the Si-CNN+NC model is presented as 99.09%.
In addition to the dataset created, the effectiveness of the proposed CNN architectures was
demonstrated by comparing them with recent studies. In addition, evaluations were made
on the MNIST dataset, which is the gold standard dataset, to compare the effectiveness of
the proposed network models. Table 11 presents some studies trained and evaluated on
the MNIST dataset.

Symmetry 2024, 16, 649 24 of 28

Table 10. Comparison of related studies trained and evaluated on “Cedar” dataset.

Reference Classifier Accuracy

Kalera et al. [52] k-NN 93.33

Hadjadji et al. [53] PCA-FI 97.99

Kumari et al. [54] SVM 94.8

Calik et al. [55] CNN 97.47

Djoudjai et al. [56] One-class principal
component analysis 98.06

Proposed Model 1 (Si-CNN) CNN 98.55

Proposed Model 2
(Si-CNN+NC) CNN 99.09

Table 11. Comparison of related studies trained and evaluated on “MNIST” dataset.

Related Work Accuracy (%)

Xiao et al. [57] 97.30

Solovyev et al. [58] 96

H. Wu [59] 94

Agarap [60] 91.74

Zhao et al. [61] 97.67

Ma et al. [62] 97.36

Proposed Model 1 (Si-CNN) 96.98

Proposed Model 2 (Si-CNN+NC) 97.19

According to this table, the accuracy of the Si-CNN and Si-CNN+NC models is
presented as 96.98% and 97.19%, respectively. Thus, in addition to the “C-Signatures”
and “Cedar” datasets, the effectiveness of the proposed CNN architectures has been
demonstrated by comparing them with recent studies.

The Si-CNN and Si-CNN+NC models have some advantages over other compared
models. One of them is the possibility of high-precision classification with a small number
of original samples. This feature is enabled by the feature extraction ability of CNNs. The
main disadvantage of this method is that it costs time because it has too many parameters.
However, it still requires less time than manually classifying signatures. Finally, it is seen
in the presented findings that the presented handwritten signature classification models
are extremely satisfactory and sufficient. It can be concluded that they may be a useful aid
to signature verification and classification experts.

6. Conclusions

With the opportunities and advantages provided by technology, studies in the fields
of identification, object recognition, and verification from digital images are increasing
day by day. Although signature verification studies have been greatly improved with
CNN models, the classification of handwritten signature images remains insufficient in
the research field. For this purpose, in this study, new CNN-based models called Si-CNN
and Si-CNN+NC are proposed for the classification of handwritten signature images. The
effectiveness of the Si-CNN and Si-CNN+NC models was tested on three different datasets
used in this study. First, the study used “C-Signatures”, a dataset containing 1320 images
collected from 55 participants for handwritten signature image classification. The Si-CNN
and Si-CNN+NC models were trained and evaluated on this dataset. According to the
experimental results, the Si-CNN model had an accuracy of 97.82% and the Si-CNN+NC

Symmetry 2024, 16, 649 25 of 28

model achieved a high accuracy of 98.64%. To compare the efficiency of the Si-CNN and
Si-CNN+NC models, four different CNN models were used. The Si-CNN+NC model
outperformed the other benchmark models with an accuracy of 98.64%. When looking
at the results obtained with our second dataset, “Cedar Signature”, Si-CNN+NC showed
the best performance among the benchmark models with an accuracy rate of 98.55%.
The study’s conclusions show that the suggested network models can outperform other
benchmark models in accuracy by learning characteristics from two distinct handwritten
signature images. The results of the trained networks’ tests indicate that the Si-CNN+NC
network performs better than the others in terms of accuracy and speed. Finally, the Si-CNN
and Si-CNN+NC models were trained and evaluated on the MNIST dataset for the sake
of comparison with the related studies. The Si-CNN and Si-CNN+NC models produced
accuracy results of 96.98% and 97.19%, respectively, demonstrating the effectiveness of
the suggested models. In addition, since there are many hyper-parameters that can be
experimentally optimized within the scope of this study, research has been conducted to
ensure that the Si-CNN and Si-CNN+NC models get the best accuracy results. The results
obtained from the experiments are discussed to contribute to the field of machine learning.

There are some limitations in this study that should be acknowledged. First, the
datasets used in the research consist of low-resolution images. Second, by nature, biometric
characteristics begin to change after a certain period of time.

In future work, the generated dataset can be expanded by adding more examples to
improve the model’s learning ability and help avoid overfitting, a major problem of CNNs.
Additionally, performance differences can be revealed by examining the architectures of the
pre-trained models used in more detail. In addition, AUC graphs can be added to evaluate
the performance of network architectures and the results can be evaluated comprehensively.
Finally, performance differences can be revealed by adding behavioral features to increase
the accuracy and reliability of the system and the online signature classification method.

Author Contributions: Conceptualization, P.E.; methodology, Y.O. and P.E.; validation, Y.O.; writing—
original draft preparation, Y.O. and P.E.; writing—review and editing, Y.O. and P.E.; visualization,
Y.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available upon request by e-mail.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Singh, G.; Bhardwaj, G.; Singh, S.V.; Garg, V. Biometric identification system: Security and privacy concern. In Artificial Intelligence

for a Sustainable Industry 4.0; Springer: Cham, Switzerland, 2021; pp. 245–264.
2. Ghosh, R. A recurrent neural network based deep learning model for offline signature verification and recognition system. Expert

Syst. Appl. 2021, 168, 114249. [CrossRef]
3. Mazzolini, D.; Mignone, P.; Pavan, P.; Vessio, G. An easy-to-explain decision support framework for forensic analysis of dynamic

signatures. Forensic Sci. Int. Digit. Investig. 2021, 38, 301216. [CrossRef]
4. Ferrer, M.A.; Diaz, M.; Carmona-Duarte, C.; Morales, A. A Behavioral Handwriting Model for Static and Dynamic Signature

Synthesis. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1041–1053. [CrossRef]
5. Hafemann, L.G.; Sabourin, R.; Oliveira, L.S. Learning features for offline handwritten signature verification using deep convolu-

tional neural networks. Pattern Recognit. 2017, 70, 163–176. [CrossRef]
6. Zhang, Z.; Liu, X.; Cui, Y. Multi-Phase Offline Signature Verification System Using Deep Convolutional Generative Adversarial

Networks. In Proceedings of the 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou,
China, 10–11 December 2016.

7. Jahandad; Sam, S.M.; Kamardin, K.; Sjarif, N.N.A.; Mohamed, N. Offline Signature Verification using Deep Learning Convolu-
tional Neural Network (CNN) Architectures GoogLeNet Inception-v1 and Inception-v3. Procedia Comput. Sci. 2019, 161, 475–483.
[CrossRef]

8. Souza, V.L.F.; Oliveira, A.L.I.; Sabourin, R. A writer-independent approach for offline signature verification using deep convolu-
tional neural networks features. In Proceedings of the 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), Sao Paulo,
Brazil, 22–25 October 2018.

https://doi.org/10.1016/j.eswa.2020.114249
https://doi.org/10.1016/j.fsidi.2021.301216
https://doi.org/10.1109/TPAMI.2016.2582167
https://doi.org/10.1016/j.patcog.2017.05.012
https://doi.org/10.1016/j.procs.2019.11.147

Symmetry 2024, 16, 649 26 of 28

9. Rabbi, T.F.; Rahman, S.M.T.; Biswash, P.; Kim, J.; Sheikh, A.A.; Saha, A.K. Handwritten Signature Verification Using CNN with
Data 4 Augmentation. J. Contents Comput. 2019, 1, 25–37. [CrossRef]

10. Alajrami, E.; Ashqar, B.A.M.; Abu-Nasser, B.S.; Khalil, A.J.; Musleh, M.M.; Barhoom, A.M.; Abu-Naser, S.S. Handwritten signature
verification using deep learning. Int. J. Acad. Multidiscip. Res. 2020, 3, 39–44.

11. Mohapatra, R.K.; Shaswat, K.; Kedia, S. Offline handwritten signature verification using CNN inspired by inception V1 architec-
ture. In Proceedings of the 2019 Fifth International Conference on Image Information Processing (ICIIP), Shimla, India, 15–17
November 2019; IEEE: Piscataway, NJ, USA, 2019.

12. Parcham, E.; Ilbeygi, M.; Amini, M. CBCapsNet: A novel writer-independent offline signature verification model using a
CNN-based architecture and capsule neural networks. Expert Syst. Appl. 2021, 185, 115649. [CrossRef]

13. Yilmaz, M.B.; Ozturk, K. Hybrid user-independent and user-dependent offline signature verification with a two-channel CNN.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA,
18–22 June 2018.

14. Yapici, M.M.; Tekerek, A.; Topaloglu, N. Convolutional neural network based offline signature verification application. In
Proceedings of the 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), Ankara,
Turkey, 3–4 December 2018; IEEE: Piscataway, NJ, USA, 2018.

15. Jain, A.; Singh, S.K.; Singh, K.P. Handwritten signature verification using shallow convolutional neural network. Multimed. Tools
Appl. 2020, 79, 19993–20018. [CrossRef]

16. Vargas, J.F.; Travieso, C.M.; Ferrer, M.A.; Alonso, J.B. Signature classification using optimum contour. In Proceedings of the 6th
WSEAS International Conference on Applied Computer Science, Stevens Point, WI, USA, 16–18 December 2006; pp. 45–48.

17. Rosso, O.A.; Ospina, R.; Frery, A.C. Classification and Verification of Online Handwritten Signatures with Time Causal Information
Theory Quantifiers. arXiv 2016, arXiv:1601.06925.

18. Kim, T.H.; Bhattacharyya, D.; Bandyopadhyay, S.K. Supervised chromosome clustering and image classification. Future Gener.
Comput. Syst. 2011, 27, 372–376. [CrossRef]

19. Ganguly, C.; Jana, S.; Parekh, R. Geometrical Transformation Invariant Approach for Classification of Signatures Using k-NN
Classifier. In Proceedings of the Computational Intelligence, Communications, and Business Analytics: Second International
Conference, CICBA 2018, Kalyani, India, 27–28 July 2018; Revised Selected Papers, Part I 2. Springer: Singapore, 2018; pp. 106–120.

20. Keykhosravi, D.; Razavi, S.N.; Majidzadeh, K.; Sangar, A.B. Offline writer identification using a developed deep neural network
based on a novel signature dataset. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 12425–12441. [CrossRef]

21. Samonte, M.J.C.; Eullo, R.M.G.; Misa, A.I. Offline handwritten signature verification using OC-SVM and BC-SVM classifier. In
Proceedings of the 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communica-
tion and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1–5.

22. Akhundjanov, U.Y.; Starovoitov, V.V. Static signature verification based on machine learning. In Proceedings of the Eighth
International Scientific and Practical Conference BIG DATA and Advanced Analytics, Minsk, Republic of Belarus, 11–12 May 2022.

23. Mohammed, I.B.; Mahdi, B.S.; Kadhm, M.S. Handwritten signature identification based on MobileNets model and support vector
machine classifier. Bull. Electr. Eng. Inform. 2023, 12, 2401–2409. [CrossRef]

24. Culqui-Culqui, G.; Sanchez-Gordon, S.; Hernández-Álvarez, M. An Algorithm for Classifying Handwritten Signatures Using
Convolutional Networks. IEEE Lat. Am. Trans. 2022, 20, 465–473. [CrossRef]

25. Murcia-Gomez, D.; Rojas-Valenzuela, I.; Valenzuela, O. Impact of image preprocessing methods and deep learning models for
classifying histopathological breast cancer images. Appl. Sci. 2022, 12, 11375. [CrossRef]

26. LeCun, Y.; Cortes, C.; Burges, C. MNIST Handwritten Digit Database. ATT Labs [Online]. 2010. Available online: http:
//yann.lecun.com/exdb/mnist (accessed on 15 May 2024).

27. Liao, D.; Shi, C.; Wang, L. A complementary integrated Transformer network for hyperspectral image classification. CAAI Trans.
Intell. Technol. 2023, 8, 1288–1307. [CrossRef]

28. Gheisari, M.; Ebrahimzadeh, F.; Rahimi, M.; Moazzamigodarzi, M.; Liu, Y.; Pramanik, P.K.D.; Heravi, M.A.; Mehbodniya,
A.; Ghaderzadeh, M.; Feylizadeh, M.R.; et al. Deep learning: Applications, architectures, models, tools, and frameworks: A
comprehensive survey. CAAI Trans. Intell. Technol. 2023, 8, 581–606. [CrossRef]

29. Asad, M.; Yang, J.; He, J.; Shamsolmoali, P.; He, X. Multi-frame feature-fusion-based model for violence detection. Vis. Comput.
2021, 37, 1415–1431. [CrossRef]

30. Du, C.; Wang, Y.; Wang, C.; Shi, C.; Xiao, B. Selective feature connection mechanism: Concatenating multi-layer CNN features
with a feature selector. Pattern Recognit. Lett. 2020, 129, 108–114. [CrossRef]

31. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18. Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

32. Janocha, K.; Czarnecki, W.M. On loss functions for deep neural networks in classification. arXiv 2017, arXiv:1702.05659. [CrossRef]
33. Bodaghi, M.; Hosseini, M.; Gottumukkala, R. A Multimodal Intermediate Fusion Network with Manifold Learning for Stress

Detection. arXiv 2024, arXiv:2403.08077.

https://doi.org/10.9728/jcc.2019.12.1.1.25
https://doi.org/10.1016/j.eswa.2021.115649
https://doi.org/10.1007/s11042-020-08728-6
https://doi.org/10.1016/j.future.2010.06.005
https://doi.org/10.1007/s12652-022-04330-w
https://doi.org/10.11591/eei.v12i4.4965
https://doi.org/10.1109/TLA.2022.9667145
https://doi.org/10.3390/app122211375
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://doi.org/10.1049/cit2.12150
https://doi.org/10.1049/cit2.12180
https://doi.org/10.1007/s00371-020-01878-6
https://doi.org/10.1016/j.patrec.2019.11.015
https://doi.org/10.4467/20838476SI.16.004.6185

Symmetry 2024, 16, 649 27 of 28

34. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
35. Zhang, Q.; Xiao, J.; Tian, C.; Lin, J.C.-W.; Zhang, S. A robust deformed convolutional neural network (CNN) for image denoising.

CAAI Trans. Intell. Technol. 2023, 8, 331–342. [CrossRef]
36. Chen, B.; Xia, M.; Huang, J. Mfanet: A multi-level feature aggregation network for semantic segmentation of land cover. Remote

Sens. 2021, 13, 731. [CrossRef]
37. Li, H.; Lu, H.; Lin, Z.; Shen, X.; Price, B. LCNN: Low-level feature embedded CNN for salient object detection. arXiv 2015,

arXiv:1508.03928.
38. Chai, E.; Yu, W.; Cui, T.; Ren, J.; Ding, S. An efficient asymmetric nonlinear activation function for deep neural networks. Symmetry

2022, 14, 1027. [CrossRef]
39. Salimans, T.; Kingma, D.P. Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In

Proceedings of the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain, 5–10 December 2016.
40. Zheng, Y.; Iwana, B.K.; Uchida, S. Discovering class-wise trends of max-pooling in subspace. In Proceedings of the 2018 16th

International Conference on Frontiers in Handwriting Recognition (ICFHR), Niagara Falls, NY, USA, 5–8 August 2018; IEEE:
Piscataway, NJ, USA, 2018.

41. Shen, F.; Shen, C.; Zhou, X.; Yang, Y.; Shen, H.T. Face image classification by pooling raw features. Pattern Recognit. 2016,
54, 94–103. [CrossRef]

42. Gulzar, Y.; Hamid, Y.; Soomro, A.B.; Alwan, A.A.; Journaux, L. A convolution neural network-based seed classification system.
Symmetry 2020, 12, 2018. [CrossRef]

43. Reyad, M.; Sarhan, A.; Arafa, M. A modified Adam algorithm for deep neural network optimization. Neural Comput. Appl. 2023,
35, 17095–17112. [CrossRef]

44. Vrbančič, G.; Podgorelec, V. Transfer Learning with Adaptive Fine-Tuning. IEEE Access 2020, 8, 196197–196211. [CrossRef]
45. Pires de Lima, R.; Marfurt, K. Convolutional neural network for remote-sensing scene classification: Transfer learning analysis.

Remote Sens. 2019, 12, 86. [CrossRef]
46. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
47. Shah, S.R.; Qadri, S.; Bibi, H.; Shah, S.M.W.; Sharif, M.I.; Marinello, F. Comparing inception V3, VGG 16, VGG 19, CNN, and

ResNet 50: A case study on early detection of a rice disease. Agronomy 2023, 13, 1633. [CrossRef]
48. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

49. Altaf, Y.; Wahid, A.; Kirmani, M.M. Deep Learning Approach for Sign Language Recognition Using DenseNet201 with Transfer
Learning. In Proceedings of the 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science
(SCEECS), Bhopal, India, 18–19 February 2023; pp. 1–6. [CrossRef]

50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

51. Bahrami, B.; Arbabkhah, H. Enhanced Flood Detection through Precise Water Segmentation Using Advanced Deep Learning
Models. J. Civ. Eng. Res. 2024, 6, 1–8. [CrossRef]

52. Kalera, M.K.; Srihari, S.; Xu, A. Offline signature verification and identification using distance statistics. Int. J. Pattern Recognit.
Artif. Intell. 2004, 18, 1339–1360. [CrossRef]

53. Hadjadji, B.; Chibani, Y.; Nemmour, H. An efficient open system for offline handwritten signature identification based on curvelet
transform and one-class principal component analysis. Neurocomputing 2017, 265, 66–77. [CrossRef]

54. Kumari, K.; Rana, S. Offline signature recognition using deep features. In Machine Learning for Predictive Analysis; Joshi, A., Ed.;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 405–421.

55. Çalik, N.; Kurban, O.C.; Yilmaz, A.R.; Yildirim, T.; Ata, L.D. Large-scale offline signature recognition via deep neural networks
and feature embedding. Neurocomputing 2019, 359, 1–14. [CrossRef]

56. Djoudjai, M.A.; Chibani, Y. Open writer identification from offline handwritten signatures by jointing the one-class symbolic data
analysis classifier and feature-dissimilarities. Int. J. Doc. Anal. Recognit. 2023, 26, 15–31. [CrossRef]

57. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv
2017, arXiv:1708.07747.

58. Solovyev, R.A.; Kalinin, A.A.; Kustov, A.G.; Telpukhov, D.V.; Ruhlov, V.S. FPGA Implementation of Convolutional Neural
Networks with Fixed-Point Calculations. arXiv 2018, arXiv:1808.09945.

59. Wu, H. CNN-Based Recognition of Handwritten Digits in MNIST Database; Research School of Computer Science, The Australia
National University: Canberra, Australia, 2018.

60. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.

https://doi.org/10.1049/cit2.12110
https://doi.org/10.3390/rs13040731
https://doi.org/10.3390/sym14051027
https://doi.org/10.1016/j.patcog.2016.01.010
https://doi.org/10.3390/sym12122018
https://doi.org/10.1007/s00521-023-08568-z
https://doi.org/10.1109/ACCESS.2020.3034343
https://doi.org/10.3390/rs12010086
https://doi.org/10.3390/agronomy13061633
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/SCEECS57921.2023.10063044
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.61186/JCER.6.1.1
https://doi.org/10.1142/S0218001404003630
https://doi.org/10.1016/j.neucom.2017.01.108
https://doi.org/10.1016/j.neucom.2019.03.027
https://doi.org/10.1007/s10032-022-00403-w

Symmetry 2024, 16, 649 28 of 28

61. Zhao, J.; Jiao, L. Sparse Deep Tensor Extreme Learning Machine for Pattern Classification. IEEE Access 2019, 7, 119181–119191.
[CrossRef]

62. Ma, C.; Kong, X.; Huang, B. Image Classification Based on Layered Gradient Clipping Under Differential Privacy. IEEE Access
2023, 11, 20150–20158. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2019.2924647
https://doi.org/10.1109/ACCESS.2023.3249575

	Introduction
	Related Work
	Materials and Methods
	Datasets Construction and Workflow of the Method
	Background
	Si-CNN and Si-CNN+NC Models
	Model Configuration
	Models Training

	Benchmarking Models

	Experimental Results
	Experiments with the “C-Signatures” Dataset
	Experiments with the “Cedar” Dataset
	Experiments with the “MNIST” Dataset

	Discussion
	Conclusions
	References

