Accelerated Stability Testing in Food Supplements Underestimates Shelf Life Prediction of Resveratrol with Super-Arrhenius Behavior
<p>Degradation of resveratrol at different storage temperatures. Time course of the normalized amount of resveratrol at 25 °C (<b>A</b>), 30 °C (<b>B</b>), and 40 °C (<b>C</b>). Normalized composition is the ratio of resveratrol content at time <span class="html-italic">x</span> (<span class="html-italic">C<sub>x</sub></span>) to time 0 (<span class="html-italic">C</span><sub>0</sub>). The dotted line represents the best fit of the experimental data using Equation (3). The <span class="html-italic">k</span> obtained from the fits is superimposed in each panel. Data are presented as mean ± SE.</p> "> Figure 2
<p>Chromatogram of resveratrol at storage condition <span class="html-italic">T</span> = 25 °C, 60% RH, time 24 months. The retention time (RT) is ca. 5 min.</p> "> Figure 3
<p>Arrhenius plot at 25 °C, 30 °C, and 40 °C. The data points, ln <span class="html-italic">k</span> vs. 1/<span class="html-italic">T</span>, were connected by two linear functions (red dotted lines) (<b>A</b>) and then fitted by the modified Arrhenius equation (red dotted curve) according to Equation (5) (<b>B</b>).</p> "> Figure 4
<p>Molecular structure of <span class="html-italic">trans</span>-resveratrol. Carbon atoms are represented by grey spheres, hydrogen atoms by white spheres, and oxygen atoms by red spheres.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus
2.3. Degradation Experiments
2.4. Extraction of Resveratrol from Tablets
2.5. Chromatographic Experiments
2.5.1. Preparation of Calibration Solutions
2.5.2. HPLC Analysis
2.5.3. Calculation and Expression of Results
2.6. Arrhenius Equation
3. Results
3.1. Degradation of Resveratrol under Different Storage Conditions
3.2. Dependence of the Kinetic Constant on the Temperature: The Arrhenius Equation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bajaj, S.; Singla, D.; Sakhuja, N. Stability Testing of Pharmaceutical Products. J. Appl. Pharm. Sci. 2012, 2, 129–138. [Google Scholar] [CrossRef]
- Aashigari, S.; Goud, R.; Sneha, S.; Vykuntam, U.; Potnuri, N. Stability Studies of Pharmaceutical Products. World J. Pharm. Res. 2019, 8, 479–492. [Google Scholar]
- Zothanpuii, F.; Rajesh, R.; Selvakumar, K. A Review on Stability Testing Guidelines of Pharmaceutical Products. Asian J. Pharm. Clin. Res. 2020, 13, 3–9. [Google Scholar] [CrossRef]
- Sengupta, P.; Chatterjee, B.; Tekade, R.K. Current Regulatory Requirements and Practical Approaches for Stability Analysis of Pharmaceutical Products: A Comprehensive Review. Int. J. Pharm. 2018, 543, 328–344. [Google Scholar] [CrossRef] [PubMed]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Taormina, P.; Hardin, M. Food Safety and Quality-Based Shelf Life of Perishable Foods; Springer: Berlin, Germany, 2021; ISBN 978-3-030-54374-7. [Google Scholar]
- Teshome, E.; Forsido, S.F.; Rupasinghe, H.P.V.; Olika Keyata, E. Potentials of Natural Preservatives to Enhance Food Safety and Shelf Life: A Review. Sci. World J. 2022, e9901018. [Google Scholar] [CrossRef]
- Turner, E.R.; Luo, Y.; Buchanan, R.L. Microgreen Nutrition, Food Safety, and Shelf Life: A Review. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Kohout, J. Modified Arrhenius Equation in Materials Science, Chemistry and Biology. Molecules 2021, 26, 7162. [Google Scholar] [CrossRef]
- WHO Drug Information—Volume 35, No. 1. Available online: https://www.who.int/publications-detail-redirect/9789240022881 (accessed on 3 December 2023).
- Murphy, J.R.; Hofer, J.D. Establishing Shelf Life, Expiry Limits, and Release Limits. Ther. Innov. Regul. Sci. 2002, 36, 769–781. [Google Scholar] [CrossRef]
- Quinlan, M.; Stroup, W.; Schwenke, J.; Christopher, D. Evaluating the Performance of the ICH Guidelines for Shelf Life Estimation. J. Biopharm. Stat. 2013, 23, 881–896. [Google Scholar] [CrossRef]
- Magari, R.T. Estimating Degradation in Real Time and Accelerated Stability Tests with Random Lot-to-Lot Variation: A Simulation Study. J. Pharm. Sci. 2002, 91, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.; Scott, M. Determination of Product Shelf Life and Activation Energy for Five Drugs of Abuse. Clin. Chem. 1991, 37, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Baur, J.A.; Sinclair, D.A. Therapeutic Potential of Resveratrol: The In Vivo Evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The Plant-Derived Compound Resveratrol in Brain Cancer: A Review. Biomolecules 2020, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- Bonnefont-Rousselot, D. Resveratrol and Cardiovascular Diseases. Nutrients 2016, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Iannitti, R.G.; Floridi, A.; Lazzarini, A.; Tantucci, A.; Russo, R.; Ragonese, F.; Monarca, L.; Caglioti, C.; Spogli, R.; Leonardi, L.; et al. Resveratrol Supported on Magnesium DiHydroxide (Resv@MDH) Represents an Oral Formulation of Resveratrol with Better Gastric Absorption and Bioavailability Respect to Pure Resveratrol. Front. Nutr. 2020, 7, 570047. [Google Scholar] [CrossRef] [PubMed]
- Spogli, R.; Bastianini, M.; Ragonese, F.; Iannitti, R.G.; Monarca, L.; Bastioli, F.; Nakashidze, I.; Brecchia, G.; Menchetti, L.; Codini, M.; et al. Solid Dispersion of Resveratrol Supported on Magnesium DiHydroxide (Resv@MDH) Microparticles Improves Oral Bioavailability. Nutrients 2018, 10, 1925. [Google Scholar] [CrossRef] [PubMed]
- Gal, R.; Deres, L.; Toth, K.; Halmosi, R.; Habon, T. The Effect of Resveratrol on the Cardiovascular System from Molecular Mechanisms to Clinical Results. Int. J. Mol. Sci. 2021, 22, 10152. [Google Scholar] [CrossRef]
- Zucchi, A.; Claps, F.; Pastore, A.L.; Perotti, A.; Biagini, A.; Sallicandro, L.; Gentile, R.; Caglioti, C.; Palazzetti, F.; Fioretti, B. Focus on the Use of Resveratrol in Bladder Cancer. Int. J. Mol. Sci. 2023, 24, 4562. [Google Scholar] [CrossRef]
- Ren, B.; Kwah, M.X.-Y.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.-L.; Wang, L.; Ong, P.S.; et al. Resveratrol for Cancer Therapy: Challenges and Future Perspectives. Cancer Lett. 2021, 515, 63–72. [Google Scholar] [CrossRef]
- Dionigi, L.; Ragonese, F.; Monarca, L.; Covino, S.; de Luca, A.; Iannitti, R.G.; Bastioli, F.; Moulas, A.N.; Allegretti, M.; Fioretti, B. Focus on the Use of Resveratrol as an Adjuvant in Glioblastoma Therapy. Curr. Pharm. Des. 2020, 26, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Gerli, S.; Della Morte, C.; Ceccobelli, M.; Mariani, M.; Favilli, A.; Leonardi, L.; Lanti, A.; Iannitti, R.G.; Fioretti, B. Biological and Clinical Effects of a Resveratrol-Based Multivitamin Supplement on Intracytoplasmic Sperm Injection Cycles: A Single-Center, Randomized Controlled Trial. J. Matern. Fetal Neonatal Med. 2022, 35, 7640–7648. [Google Scholar] [CrossRef] [PubMed]
- Ragonese, F.; Monarca, L.; De Luca, A.; Mancinelli, L.; Mariani, M.; Corbucci, C.; Gerli, S.; Iannitti, R.G.; Leonardi, L.; Fioretti, B. Resveratrol Depolarizes the Membrane Potential in Human Granulosa Cells and Promotes Mitochondrial Biogenesis. Fertil. Steril. 2021, 115, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Illiano, E.; Trama, F.; Zucchi, A.; Iannitti, R.G.; Fioretti, B.; Costantini, E. Resveratrol-Based Multivitamin Supplement Increases Sperm Concentration and Motility in Idiopathic Male Infertility: A Pilot Clinical Study. J. Clin. Med. 2020, 11, 4017. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.D.; Malcangi, G.; Inchingolo, A.M.; Piras, F.; Settanni, V.; Garofoli, G.; Palmieri, G.; Ceci, S.; Patano, A.; De Leonardis, N.; et al. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int. J. Mol. Sci. 2022, 23, 4027. [Google Scholar] [CrossRef] [PubMed]
- Alesci, A.; Nicosia, N.; Fumia, A.; Giorgianni, F.; Santini, A.; Cicero, N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022, 27, 424. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.M.; Yu, C.; Toma, R.B.; Cho, S.Y.; Reiboldt, W.; Lee, J.; van Breemen, R.B. Resveratrol in Raw and Baked Blueberries and Bilberries. J. Agric. Food Chem. 2003, 51, 5867–5870. [Google Scholar] [CrossRef] [PubMed]
- Zupančič, Š.; Lavrič, Z.; Kristl, J. Stability and Solubility of Trans-Resveratrol Are Strongly Influenced by pH and Temperature. Eur. J. Pharm. Biopharm. 2015, 93, 196–204. [Google Scholar] [CrossRef]
- Teles, A.S.C.; Chávez, D.W.H.; Gomes, F.d.S.; Cabral, L.M.C.; Tonon, R.V. Effect of Temperature on the Degradation of Bioactive Compounds of Pinot Noir Grape Pomace during Drying. Braz. J. Food Technol. 2017, 21, e2017059. [Google Scholar] [CrossRef]
- Prokop, J.; Abrman, P.; Seligson, A.L.; Sovak, M. Resveratrol and Its Glycon Piceid Are Stable Polyphenols. J. Med. Food 2006, 9, 11–14. [Google Scholar] [CrossRef]
- Jensen, J.S.; Wertz, C.F.; O’Neill, V.A. Preformulation Stability of Trans-Resveratrol and Trans-Resveratrol Glucoside (Piceid). J. Agric. Food Chem. 2010, 58, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Artur, A.B. Symmetry Relations in Chemical Kinetics Arising from Microscopic Reversibility. Phys. Rev. Lett. 2006, 96, 028307. [Google Scholar] [CrossRef]
- Spogli, R.; Biagini, A.; Presciutti, F.; Petracci, A.; Ragonese, F.; Iannitti, R.G.; Ceccarelli, G.; Brecchia, G.; Menchetti, L.; Codini, M.; et al. New Insights on Resveratrol Supported by Magnesium Dihydroxide (Revifast®). Ital. J. Food Sci. 2024, 36, 175–179. [Google Scholar] [CrossRef]
- Li, Y.-G.; Liu, H.; Wang, Z.-T. A Validated Stability-Indicating HPLC with Photodiode Array Detector (PDA) Method for the Stress Tests of Monascus purpureus-Fermented Rice, Red Yeast Rice. J. Pharm. Biomed. Anal. 2005, 39, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, P.; Ko, Y.T. Validated LC–MS/MS Method for Simultaneous Quantification of Resveratrol Levels in Mouse Plasma and Brain and Its Application to Pharmacokinetic and Brain Distribution Studies. J. Pharm. Biomed. Anal. 2016, 119, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Bott, R.F.; Oliveira, W.P. Storage Conditions for Stability Testing of Pharmaceuticals in Hot and Humid Regions. Drug Dev. Ind. Pharm. 2007, 33, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Rosa Junior, A.C.P.; Cruz, C.; Santana, W.S.; Moret, M.A. Characterization of the Non-Arrhenius Behavior of Supercooled Liquids by Modeling Nonadditive Stochastic Systems. Phys. Rev. E 2019, 100, 022139. [Google Scholar] [CrossRef] [PubMed]
- Bancuta, O.R.; Chilian, A.; Bancuta, I.; Setnescu, R.; Setnescu, T.; Ion, R.M. Thermal Characterization of Resveratrol. Rev. Chim. 2018, 69, 1346–1351. [Google Scholar] [CrossRef]
- Silva, R.d.C.; Teixeira, J.A.; Nunes, W.D.G.; Zangaro, G.A.C.; Pivatto, M.; Caires, F.J.; Ionashiro, M. Resveratrol: A Thermoanalytical Study. Food Chem. 2017, 237, 561–565. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Y.; Li, S.; Lu, M. Improving Chemical Stability of Resveratrol in Hot Melt Extrusion Based on Formation of Eutectic with Nicotinamide. Int. J. Pharm. 2021, 607, 121042. [Google Scholar] [CrossRef]
- Huynh-Ba, K.; Zahn, M. Understanding ICH Guidelines Applicable to Stability Testing. In Handbook of Stability Testing in Pharmaceutical Development: Regulations, Methodologies, and Best Practices; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Truhlar, D.G.; Kohen, A. Convex Arrhenius Plots and Their Interpretation. Proc. Natl. Acad. Sci. USA 2001, 98, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Manuel Sá, M.; Sereno, A.M. The Kinetics of Browning Measured during the Storage of Onion and Strawberry. Int. J. Food Sci. Technol. 1999, 34, 343–349. [Google Scholar] [CrossRef]
- Celina, M.; Gillen, K.T.; Assink, R.A. Accelerated Aging and Lifetime Prediction: Review of Non-Arrhenius Behaviour Due to Two Competing Processes. Polym. Degrad. Stab. 2005, 90, 395–404. [Google Scholar] [CrossRef]
- Ebrahim, A.; DeVore, K.; Fischer, T. Limitations of Accelerated Stability Model Based on the Arrhenius Equation for Shelf Life Estimation of In Vitro Diagnostic Products. Clin. Chem. 2021, 67, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Visuthiwan, S.; Assatarakul, K. Kinetic Modeling of Microbial Degradation and Antioxidant Reduction in Lychee Juice Subjected to UV Radiation and Shelf Life during Cold Storage. Food Control 2021, 123, 107770. [Google Scholar] [CrossRef]
- Cui, F.; Zheng, S.; Wang, D.; Tan, X.; Li, Q.; Li, J.; Li, T. Recent Advances in Shelf Life Prediction Models for Monitoring Food Quality. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1257–1284. [Google Scholar] [CrossRef] [PubMed]
- Cisse, M.; Vaillant, F.; Acosta, O.; Dhuique-Mayer, C.; Dornier, M. Thermal Degradation Kinetics of Anthocyanins from Blood Orange, Blackberry, and Roselle Using the Arrhenius, Eyring, and Ball Models. J. Agric. Food Chem. 2009, 57, 6285–6291. [Google Scholar] [CrossRef] [PubMed]
- Loypimai, P.; Moongngarm, A.; Chottanom, P. Thermal and pH Degradation Kinetics of Anthocyanins in Natural Food Colorant Prepared from Black Rice Bran. J. Food Sci. Technol. 2016, 53, 461–470. [Google Scholar] [CrossRef]
- Wang, W.-D.; Xu, S.-Y. Degradation Kinetics of Anthocyanins in Blackberry Juice and Concentrate. J. Food Eng. 2007, 82, 271–275. [Google Scholar] [CrossRef]
- Uddin, M.S.; Hawlader, M.N.A.; Ding, L.; Mujumdar, A.S. Degradation of Ascorbic Acid in Dried Guava during Storage. J. Food Eng. 2002, 51, 21–26. [Google Scholar] [CrossRef]
- Remini, H.; Mertz, C.; Belbahi, A.; Achir, N.; Dornier, M.; Madani, K. Degradation Kinetic Modelling of Ascorbic Acid and Colour Intensity in Pasteurised Blood Orange Juice during Storage. Food Chem. 2015, 173, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, J.; Shivhare, U.; Sandhu, K. Thermal Degradation Kinetics of Carotenoids and Visual Color of Papaya Puree. J. Food Sci. 2002, 67, 2692–2695. [Google Scholar] [CrossRef]
25 °C | 30 °C | 40 °C | |
---|---|---|---|
A | 0.926 ± 0.015 | 0.904 ± 0.012 | 0.8525 ± 0.018 |
k (months−1) | 0.07140 ± 0.00007 | 0.1937 ± 0.0002 | 0.231 ± 0.002 |
R2 | 0.99785 | 0.98299 | 0.99785 |
Time, t (Months) | 25 °C | 30 °C | 40 °C |
---|---|---|---|
3 | 0.99 ± 0.03 | 0.96 ± 0.04 | 0.93 ± 0.04 |
6 | 0.98 ± 0.03 | 0.93 ± 0.04 | 0.89 ± 0.05 |
12 | 0.96 ± 0.01 | 0.92 ± 0.01 | |
24 | 0.94 ± 0.01 | 0.91 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biagini, A.; Refrigeri, N.; Caglioti, C.; Sabbatini, P.; Ticconi, S.; Ceccarelli, G.; Iannitti, R.G.; Palazzetti, F.; Fioretti, B. Accelerated Stability Testing in Food Supplements Underestimates Shelf Life Prediction of Resveratrol with Super-Arrhenius Behavior. Symmetry 2024, 16, 493. https://doi.org/10.3390/sym16040493
Biagini A, Refrigeri N, Caglioti C, Sabbatini P, Ticconi S, Ceccarelli G, Iannitti RG, Palazzetti F, Fioretti B. Accelerated Stability Testing in Food Supplements Underestimates Shelf Life Prediction of Resveratrol with Super-Arrhenius Behavior. Symmetry. 2024; 16(4):493. https://doi.org/10.3390/sym16040493
Chicago/Turabian StyleBiagini, Andrea, Nicola Refrigeri, Concetta Caglioti, Paola Sabbatini, Silvia Ticconi, Giada Ceccarelli, Rossana Giulietta Iannitti, Federico Palazzetti, and Bernard Fioretti. 2024. "Accelerated Stability Testing in Food Supplements Underestimates Shelf Life Prediction of Resveratrol with Super-Arrhenius Behavior" Symmetry 16, no. 4: 493. https://doi.org/10.3390/sym16040493