Applications of Symmetries to Nonlinear Partial Differential Equations
Abstract
:1. Introduction
- (1).
- Reducing the number of independent and dependent variables, potentially transforming a PDE with two variables into a one-variable ODE.
- (2).
- Linking conservation laws to symmetry properties.
- (3).
- Classifying PDEs into equivalence classes and identifying simpler representations.
- (4).
- Generating new solutions from existing ones.
2. Basic Methods of Symmetry Analysis
- (1):
- Identify classical Lie point symmetries for the suggested model.
- (2):
- Construct an algebra based on the identified symmetries.
- (3):
- Determine similarity variables corresponding to each symmetry.
- (4):
- Utilize the obtained symmetries to reduce the PDE to a lower-order PDE or ODE.
- (5):
- Obtain solutions from the ODE.
2.1. Classical Lie Group Method
2.2. Conditional Symmetry Method
2.3. CK Direct Method
3. Finite Symmetry Transformation Groups
3.1. MCK Direct Method
3.2. Lax Pair-Assisted Finite Symmetry Transformation Group
4. Nonlocal Symmetries
4.1. Nonlocal Symmetries Derived from Conserved Form
4.2. Nonlocal Symmetries Derived from the Conformal Invariant Form and Residual Symmetry
4.3. Nonlocal Symmetries Derived from Darboux Transformations
4.4. Nonlocal Symmetries Derived from Lax Pair
4.5. Localization of Nonlocal Symmetries
5. Supersymmetric Equation and Supersymmetric Dark Equation
5.1. Supersymmetric Equations
5.2. Supersymmetric Dark Equation
5.3. Bosonization of Supersymmetric Integrable System
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lie, S. On integration of a class of linear partial differential equations by means of definite integrals. Arch. Math. 1881, 6, 328–368. [Google Scholar]
- Noether, E. Invariante variations probleme. In Göttingen Math Phys Kl; Königliche Gesellschaft der Wissenschaften: Gottingen, Germany, 1918; pp. 235–257. [Google Scholar]
- Olver, P. Applications of Lie Group to Differential Equations; Spring: New York, NY, USA, 1986. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Spring: New York, NY, USA, 1989. [Google Scholar]
- Muhammad, B.R.; Adil, J.; Duraihem, F.Z.; Martinovic, J. Analyzing dynamics: Lie symmetry approach to bifurcation, chaos, multistability, and solitons in Extended (3+1)-Dimensional Wave Equation. Symmetry 2024, 16, 608. [Google Scholar]
- Clarkson, P.A. Nonclassical symmetry reductions of the Boussinesq equation. Chaos Solitons Fractals 1995, 5, 2261–2301. [Google Scholar] [CrossRef]
- Rosenau, P.; Schwarzmeier, J.L. On similarity solutions of Boussinesq-type equations. Phys. Lett. A 1986, 115, 75–77. [Google Scholar] [CrossRef]
- Nishitani, T.; Tajiri, M. On similarity solutions of the Boussinesq equation. Phys. Lett. A 1982, 89, 379–380. [Google Scholar] [CrossRef]
- Tracinà, R. Symmetries and Invariant Solutions of Higher-Order Evolution Systems. Symmetry 2024, 16, 1023. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, S.K.; Baleanu, D.; Osman, M.S.; Wazwaz, A.M. Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 2022, 14, 597. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S. Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. Comput. Math. Appl. 2019, 78, 857–877. [Google Scholar] [CrossRef]
- Tian, S.F. Lie symmetry analysis, conservation laws and solitary wave solutions to a fourth-order nonlinear generalized Boussinesq water wave equation. Appl. Math. Lett. 2020, 100, 106056. [Google Scholar] [CrossRef]
- Ovsjannikov, L.V. Gruppovye Svoystva Diferentsialny Uravneni; Siberian Branch, USSR Academy of Sciences: Novosibirsk, Russia, 1962. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Ames, W.F., Translator; Academic: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Fushchych, W.I.; Nikitin, A.G. Symmetries of Maxwell’s Equations; Reidel: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Fushchich, V.I. Conditional symmetry of the equations of nonlinear mathematical physics. Ukr. Math. Zh. 1991, 43, 1456–1470. [Google Scholar] [CrossRef]
- Levi, D.; Winternitz, P. Non-classical symmetry reduction: Example of the Boussinesq equation. J. Phys. A Math. Gen. 1989, 22, 2915. [Google Scholar] [CrossRef]
- Vorob’ev, E.M. Symmetries of compatibility conditions for systems of differential equations. Acta Appl. Math. 1992, 26, 61–86. [Google Scholar] [CrossRef]
- Vorob’ev, E.M. Reduction and Quotient Equations for Differential Equations with Symmettles. Acta Appl. Math. 1991, 23, 1–24. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Kruskal, M.D. New similarity reductions of the Boussinesq equation. J. Math. Phys. 1989, 30, 2201–2213. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cole, J.D. Similarity Methods for Differential Equations; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Lou, S.Y.; Ma, H.C. Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A Math. Gen. 2005, 38, L129–L137. [Google Scholar] [CrossRef]
- Lou, S.Y. A note on the new similarity reductions of the Boussinesq equation. Phys. Lett. 1990, 151, 133. [Google Scholar] [CrossRef]
- Schwarz, F. Symmetries of the two-dimensional Korteweg-deVries Equation. J. Phys. Soc. Jpn. 1982, 51, 2387–2388. [Google Scholar] [CrossRef]
- Lou, S.Y.; Ma, H.C. Finite symmetry transformation groups and exact solutions of Lax integrable systems. Chaos Solitons Fractals 2006, 30, 804–821. [Google Scholar] [CrossRef]
- Lou, S.Y. and Tang, X.Y. Equations of arbitrary order invariant under the Kadomtsev-Petviashvili symmetry group. J. Math. Phys. 2004, 45, 1020–1030. [Google Scholar] [CrossRef]
- Krasilshchik, I.S.; Vinogradov, A.M. Nonlocal Symmetries and the Theory of Coverings: An Addendum to A. M. Vinogradov’s ‘Local Symmetries and Conservation Laws’. Acta Appt. Math. 1984, 2, 79–96. [Google Scholar] [CrossRef]
- Vinogradov, A.M.; Krasil’shchik, I.S. A method for computing higher symmetries of nonlinear evolutionary equations and nonlocal symmetries. Dokl. Akad. Nauk SSSR 1980, 253, 1289–1293. (In Russian) [Google Scholar]
- Krasil’shchik, I.S. Nonlocal Trends in the Geometry of Differential Equations: Symmetries, Conservation Laws, and Bäcklund Transformation. Acta Appl. Math. 1989, 15, 161–209. [Google Scholar] [CrossRef]
- Bluman, G.W.; Reid, G.J. New classes of symmetries for partial differential equations. J. Math. Phys. 1988, 29, 806–811. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F. Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation. J. Math. Anal. Appl. 2007, 333, 93–111. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F.; Ivanova, N.M. Framework for nonlocally related partial differential equation systems and nonlocal symmetries: Extension, simplification, and examples. J. Math. Phys. 2006, 47, 113505. [Google Scholar] [CrossRef]
- Bluman, G.W.; Rosa, R.d.l.; Bruzó, M.S.; Gandarias, M.L. A new symmetry-based method for constructing nonlocally related PDE systems from admitted multi-parameter groups. J. Math. Phys. 2020, 61, 061503. [Google Scholar] [CrossRef]
- Lou, S.Y. Conformal invariance and integrable models. J. Phys. A Math. Gen. 1997, 30, 4803. [Google Scholar] [CrossRef]
- Lou, S.Y.; Hu, X.B. Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 1997, 38, 6401–6427. [Google Scholar] [CrossRef]
- Gao, X.N.; Lou, S.Y.; Tang, X.Y. Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation. J. High Energy Phys. 2013, 2013, 29. [Google Scholar] [CrossRef]
- Liu, P.; Li, B.; Yang, J.R. Residual symmetries of the modified Korteweg-de Vries equation and its localization. Cent. Euro. J. Phys. 2014, 12, 541–553. [Google Scholar] [CrossRef]
- Nursena, G.A.; Emrullah, Y. The residual symmetry, Bäcklund transformations, CRE integrability and interaction solutions: (2+1)-dimensional Chaffee-Infante equation. Commun. Theor. Phys. 2023, 75, 115004. [Google Scholar]
- Wu, J.W.; Cai, Y.J.; Lin, J. Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Chin. Phys. B 2022, 31, 030201. [Google Scholar] [CrossRef]
- Fei, J.X.; Ma, Z.Y.; Cao, W.P. Residual symmetries and interaction solutions for the Whitham-Broer-Kaup equation. Nonl. Dyn. 2017, 88, 395–402. [Google Scholar] [CrossRef]
- Liu, X.Z.; Li, J.T.; Yu, J. Residual symmetry, CRE integrability and interaction solutions of two higher-dimensional shallow water wave equations. Chin. Phys. B 2023, 32, 110206. [Google Scholar] [CrossRef]
- Hao, X.Z.; Liu, Y.P.; Tang, X.Y.; Li, Z.B. The residual symmetry and exact solutions of the Davey-Stewartson III equation. Comput. Math. Appl. 2017, 73, 2404–2414. [Google Scholar] [CrossRef]
- Lou, S.Y.; Hu, X.B. Non-local symmetries via Darboux transformations. J. Phys. A Math. Gen. 1997, 30, L95. [Google Scholar] [CrossRef]
- Wadati, M.; Sanuki, H.; Konno, K. Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 1975, 53, 419–436. [Google Scholar] [CrossRef]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Xin, X.P.; Miao, Q.; Chen, Y. Nonlocal symmetry, optimal systems, and explicit solutions of the mKdV equation. Chin. Phys. B 2014, 23, 010203. [Google Scholar] [CrossRef]
- Nucci, M.C. Painlevé property and pseudopotentials for nonlinear evolution equations. J. Phys. A Math. Gen. 1989, 22, 2897. [Google Scholar] [CrossRef]
- Wess, J.; Zumino, B. Supergauge transformations in four dimensions. Nucl. Phys. B 1974, 70, 39–50. [Google Scholar] [CrossRef]
- Miyazawa, H. Baryon Number Changing Currents. Prog. Theor. Phys. 1966, 36, 1266–1276. [Google Scholar] [CrossRef]
- D’Auria, R.; Sciuto, S. Group theoretical construction of two-dimensional supersymmetric models. Nucl. Phys. B 1980, 171, 189. [Google Scholar] [CrossRef]
- Olshanetsky, M.A. Supersymmetric two-dimensional Toda lattice. Commun. Math. Phys. 1983, 88, 63. [Google Scholar] [CrossRef]
- Kuperschmidt, B.A. A super Korteweg-de Vrie sequation: An integrable system. Phys. Lett. 1984, 102A, 213. [Google Scholar] [CrossRef]
- Carstea, A.S.; Ramani, A.; Grammaticos, B. Constructing the soliton solutions for the N=1 supersymmetric KdV hierarchy. Nonlinearity 2001, 14, 1419–1423. [Google Scholar] [CrossRef]
- Manin, Y.I.; Radul, A.O. A Supersymmetric Extension of the Kadomtsev-Petviashvili Hierarchy. Comm. Math. Phys. 1985, 98, 65–67. [Google Scholar] [CrossRef]
- Tian, K.; Popowicz, Z.; Liu, Q.P. A non-standard Lax formulation of the Harry Dym hierarchy and its supersymmetric extension. J. Phys. A Math. Theor. 2012, 45, 122001. [Google Scholar] [CrossRef]
- Tian, K.; Liu, Q.P. A supersymmetric Sawada-Kotera equation. Phys. Lett. A 2009, 373, 1807–1810. [Google Scholar] [CrossRef]
- Mathieu, P. Supersymmetric extension of the Korteweg-de Vries equation. J. Math. Phys. 1988, 29, 2499–2506. [Google Scholar] [CrossRef]
- Özer, M.; Taha, M.O. A possible solution to the main cosmological problems. Phys. Lett. B 1986, 171, 363–365. [Google Scholar] [CrossRef]
- Argüelles, C.R.; Becerra-Vergara, E.A.; Rueda, J.A.; Ruffini, R. Fermionic dark matter: Physics, astrophysics, and cosmology. Universe 2023, 9, 197. [Google Scholar] [CrossRef]
- Wang, D.; Koussour, M.; Malik, A.; Myrzakulov, N.; Mustafa, G. Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the universe. Eur. Phys. J. C 2023, 83, 670. [Google Scholar] [CrossRef]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Kupershmidt, B.A. Dark equations. J. Nonl. Math. Phys. 2001, 8, 363. [Google Scholar] [CrossRef]
- Lou, S.Y. Extensions of dark KdV equations: Nonhomogeneous classifications, bosonizations of fermionic systems and supersymmetric dark systems. Phys. D 2024, 464, 134199. [Google Scholar] [CrossRef]
- Fokas, A.S. Symmetries and Integrability. Stud. Appl. Math. 1987, 77, 253–299. [Google Scholar] [CrossRef]
- Mcarthub, I.N.; Yung, C.M. Hirota bilinear form for the super-KdV hierarchy. Mod. Phys. Lett. A 1993, 8, 1739–1745. [Google Scholar] [CrossRef]
- Gao, X.N.; Yang, X.D.; Lou, S.Y. Exact solutions of supersymmetric KdVa system via bosonization approach. Commun. Theor. Phys. 2012, 58, 617. [Google Scholar] [CrossRef]
- Hill, J.M.; Avagliano, A.J.; Edwards, M.P. Some exact results for nonlinear diffusion with absorption. IMA J. Appl. Math. 1992, 48, 283–304. [Google Scholar] [CrossRef]
- Di, Y.M.; Zhang, D.D.; Shen, S.F.; Zhang, J. Conditional Lie–Bäcklund symmetries to inhomogeneous nonlinear diffusion equations. Appl. Math. Mod. 2014, 38, 4409–4416. [Google Scholar] [CrossRef]
- Shi, D.D.; Zhang, Y.F. Diversity of exact solutions to the conformable space–time fractional MEW equation. Appl. Math. Lett. 2020, 99, 105994. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhang, Y.F.; Wang, J.J. Investingation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznersov equation with single-power law nonlinearity. Fractals 2023, 31, 2350033. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, X.J. Symmetry group analysis of several coupled fractional partial differential equations. Chaos Soliton. Fract. 2023, 173, 113603. [Google Scholar] [CrossRef]
- Buckwar, E.; Luchko, Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 1998, 227, 81–97. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Continuous transformation groups of fractional differential equations. Vestn. Usatu. 2007, 9, 21. [Google Scholar]
- Gazizov, R.K.; Kasatkin, A.A.; Lukashchuk, S.Y. Symmetry properties of fractional diffusion equations. Phys. Scr. 2009, T136, 014016. [Google Scholar] [CrossRef]
- Naeema, I.; Khan, M.D. Symmetry classification of time-fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simulat. 2017, 42, 560–570. [Google Scholar] [CrossRef]
- Liu, H.Z.; Wang, Z.G.; Xin, X.P.; Liu, X.Q. Symmetries, Symmetry reductions and exact solutions to the generalized nonlinear fractional wave equations. Commun. Theor. Phys. 2018, 70, 14–18. [Google Scholar] [CrossRef]
- Sahadevan, R.; Bakkyaraj, T. Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 2012, 393, 341–347. [Google Scholar] [CrossRef]
- Bakkyaraja, T. Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative. Eur. Phys. J. Plus 2020, 135, 126. [Google Scholar] [CrossRef]
- Singla, K.; RANA, M. Symmetries, explicit solutions and conservation laws for some time space fractional nonlinear systems. Rep. Math. Phys. 2020, 86, 139–156. [Google Scholar] [CrossRef]
- Singla, K.; Gupta, R.K. Generalized Lie symmetry approach for fractional order systems of differential equations. III. J. Math. Phys. 2017, 58, 061501. [Google Scholar] [CrossRef]
Lie | ||||||
---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | |||
0 | 0 | 0 | 0 |
Lie | ||||||
---|---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Lou, S. Applications of Symmetries to Nonlinear Partial Differential Equations. Symmetry 2024, 16, 1591. https://doi.org/10.3390/sym16121591
Liu P, Lou S. Applications of Symmetries to Nonlinear Partial Differential Equations. Symmetry. 2024; 16(12):1591. https://doi.org/10.3390/sym16121591
Chicago/Turabian StyleLiu, Ping, and Senyue Lou. 2024. "Applications of Symmetries to Nonlinear Partial Differential Equations" Symmetry 16, no. 12: 1591. https://doi.org/10.3390/sym16121591
APA StyleLiu, P., & Lou, S. (2024). Applications of Symmetries to Nonlinear Partial Differential Equations. Symmetry, 16(12), 1591. https://doi.org/10.3390/sym16121591