Nonlinear T-symmetry Quartic, Sextic, Octic Oscillator Models under Real Spectra
<p>Ground state wave function for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (Equation (<a href="#FD9-symmetry-15-00573" class="html-disp-formula">9</a>)).</p> "> Figure 2
<p>Pictorial view of the <span class="html-italic">T</span>-symmetry matrix.</p> ">
Abstract
:1. Introduction
2. Non-Hermitian Models Having Real Eigenvalues
2.1. Operator Model
2.2. Real Non-Hermitian Matrix Having Real Eigenvalues
3. Momentum Transformation in Complex Space: Quartic Operator
3.1. Invariance in Commutation Relation
3.2. Hamiltonian on Momentum Transformation
4. Nonlinear Sextic Hamiltonian with Quadratic Nonlinearity
5. Nonlinear Octic Hamiltonian with Quadratic Nonlinearity
6. Nonlinear Quartic, Octic Hamiltonian with Quartic Nonlinearity
7. Nonlinear Singular Model Nonlinearity in Quartic Operator
8. Method of Calculation
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bender, C.M.; Boettecher, S. Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 1997, 24, 5243–5256. [Google Scholar]
- Rath, B. Real spectra in some negative potentials:linear and non-linear one-dimensional PT-invariant quantum systems. Eur. J. Phys. Plus 2021, 136, 493. [Google Scholar] [CrossRef]
- Hatano, N.; Nelson, D.R. Localization Transition in non-Hermitian Quantum Mechanics. Phys. Rev. Lett. 1996, 96, 570–572. [Google Scholar] [CrossRef] [Green Version]
- Rath, B.; Mallick, P.; Mohapatra, P. A new non-Hermitian quadratic operator having exact solution. Acta Phys. Pol. B 2020, 51, 2189–2194. [Google Scholar] [CrossRef]
- Ahmed, Z. Pseudo-Hermiticity of Hamiltonians under imaginary shift of the coordinate real spectrum of complex potentials. Phys. Lett. 2001, A290, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Cioslowski, J. Connected moments expansions for the ground-state energy of systems described by nonlinear Hamiltonians. Phys. Rev. 1987, A36, 374–376. [Google Scholar] [CrossRef]
1.0379 |
3.1139 |
5.1387 |
7.1570 |
Energy | Present | Previous [6] | |
---|---|---|---|
0.5 | 0.59574 | 0.59574 | |
1 | 0.66235 | 0.66235 | |
0.5 | 0.41964 | 0.41964 | |
1 | 0.37743 | 0.37743 |
H | |
---|---|
1.2628 | 0.9293 |
4.0021 | 3.6686 |
7.6581 | 7.3246 |
11.8472 | 11.5136 |
16.4642 | 16.1307 |
21.4408 | 21.1073 |
26.7309 | 26.3974 |
32.3031 | 31.9675 |
38.1254 | 37.7919 |
44.1836 | 43.8500 |
Quantum No. | Sextic Operator |
---|---|
0 | 1.0681 |
1 | 3.6568 |
2 | 7.8084 |
3 | 13.1266 |
4 | 19.3569 |
5 | 26.3947 |
6 | 34. 1618 |
7 | 42. 5987 |
8 | 51.6585 |
9 | 61.3030 |
Quantum No. | Sextic Operator |
---|---|
0 | 1.1305 |
1 | 4.2463 |
2 | 9.3934 |
3 | 16.2161 |
4 | 24.4188 |
5 | 33.8533 |
6 | 44.4223 |
7 | 56.0506 |
8 | 68.6778 |
9 | 82.2541 |
Quantum No. | Sextic Operator |
---|---|
0 | 1.2677 |
1 | 4.7978 |
2 | 10.2869 |
3 | 17.3850 |
4 | 25.8509 |
5 | 35.5398 |
6 | 46.3547 |
7 | 58.2216 |
8 | 71.0812 |
9 | 84.8845 |
Quantum No. | Sextic Operator |
---|---|
0 | 1.0627 |
1 | 3.8020 |
2 | 7.4580 |
3 | 11.6471 |
4 | 16.2640 |
5 | 21.2407 |
6 | 26.5308 |
7 | 32.1009 |
8 | 37.9253 |
9 | 43.9835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rath, B.; Asad, J.; Jarrar, R.; Shanak, H.; Wannan, R. Nonlinear T-symmetry Quartic, Sextic, Octic Oscillator Models under Real Spectra. Symmetry 2023, 15, 573. https://doi.org/10.3390/sym15030573
Rath B, Asad J, Jarrar R, Shanak H, Wannan R. Nonlinear T-symmetry Quartic, Sextic, Octic Oscillator Models under Real Spectra. Symmetry. 2023; 15(3):573. https://doi.org/10.3390/sym15030573
Chicago/Turabian StyleRath, Biswanath, Jihad Asad, Rabab Jarrar, Hussein Shanak, and Rania Wannan. 2023. "Nonlinear T-symmetry Quartic, Sextic, Octic Oscillator Models under Real Spectra" Symmetry 15, no. 3: 573. https://doi.org/10.3390/sym15030573