Application of Diversity-Maintaining Adaptive Rafflesia Optimization Algorithm to Engineering Optimisation Problems
<p>The model of the calculated dimensions.</p> "> Figure 2
<p>The flowchart of AROA.</p> "> Figure 3
<p>Convergence curves of the 10 algorithm on selected CEC2013 benchmark test functions.</p> "> Figure 3 Cont.
<p>Convergence curves of the 10 algorithm on selected CEC2013 benchmark test functions.</p> ">
Abstract
:1. Introduction
1.1. Meta-Heuristic Algorithms
1.2. Algorithmic Features or Principles
2. Related Works
2.1. ROA
2.1.1. Attracting Insects Stage
2.1.2. Insectivorous Stage
2.1.3. Seed Dispersal Stages
Algorithm 1 The pseudocode of ROA. |
Input: N: population size; : problem dimension; Max_iter: the maximum number of iterations; |
Output: the location of Rafflesia and its fitness value; |
|
2.2. Adaptive Weight Adjustment Strategy
2.3. The Diversity Maintenance Strategy
2.4. Operational Content and Mechanisms of the Two Optimization Strategies
2.5. Areas of Optimization and Challenges
2.6. Recommendations for Improving the Optimization Process
3. Method
3.1. Improvement Details
3.1.1. Adaptive Weight Adjustment Improvement
3.1.2. Diversity Maintenance Improvement
Algorithm 2 The pseudo code of AROA. |
|
3.2. Role and Necessity of Strategy
4. Experiments
4.1. Experiments Results
4.2. Experimental Analysis
5. Application
5.1. Application Background
5.2. Applied Experiments
Name | Function |
---|---|
Consider | = [d D N] |
Minimize | |
Subject to | |
Parametersrange | 0.05 ≤ ≤ 2, 0.25 ≤ ≤ 1.3, 2 ≤ ≤ 15 |
Algorithm | fbest | |||
---|---|---|---|---|
WOA | ||||
HHO | ||||
GWO | ||||
OOA | ||||
AROA | ||||
ROA |
5.2.1. Tension/Compression Spring Design Problems
5.2.2. The Problem of Pressure Vessel Design
Name | Function |
---|---|
Consider | = [Ts Th R L] |
Minimize | |
Subject to | |
Parameter ranges | 0 ≤ , ≤ 99, 10 ≤ , ≤ 200 |
Algorithm | fbest | ||||
---|---|---|---|---|---|
WOA | |||||
HHO | |||||
GWO | |||||
OOA | |||||
AROA | |||||
ROA |
5.2.3. The Triple Rod Truss Design Problem
Name | Function |
---|---|
Consider | ; l = 100 cm; P = 2 kN/(cm2); q = 2 kN/(cm2) |
Minimize | |
Subject to | |
Parameters fall in the range | 0 ≤ , ≤ 1 |
Algorithm | fbest | ||
---|---|---|---|
WOA | |||
HHO | |||
GWO | |||
OOA | |||
AROA | |||
ROA |
5.2.4. Welded Beam Design Problems
Name | Function |
---|---|
Consider | = [h l t b] |
Minimize | |
Subject to | |
Parameter range | 0.1 ≤ , ≤ 2, 0.1 ≤ , ≤ 10 |
Algorithm | fbest | ||||
---|---|---|---|---|---|
WOA | |||||
HHO | |||||
GWO | |||||
OOA | |||||
AROA | |||||
ROA |
5.2.5. The Problem of Gearbox Design
Name | Function |
---|---|
Consider | |
Minimize | |
Subject to | |
Parameter range | 2.6 ≤ ≤ 3.6, 0.7 ≤ ≤ 0.8, 17 ≤ ≤ 28 |
7.3 ≤ ≤ 8.3, 7.8 ≤ ≤ 8.3, 2.9 ≤ ≤ 3.9, 5.0 ≤ ≤ 5.5 |
Algorithm | fbest | |||||||
---|---|---|---|---|---|---|---|---|
WOA | ||||||||
HHO | ||||||||
GWO | ||||||||
OOA | ||||||||
AROA | ||||||||
ROA |
5.2.6. The Problem of Gear Train Design
Name | Function |
---|---|
Consider | |
Minimize | |
Parameter range | 12 ≤ , , , ≤ 60 |
Algorithm | fbest | ||||
---|---|---|---|---|---|
DBO | |||||
HHO | |||||
GWO | |||||
SO | |||||
DO | |||||
AROA | |||||
ROA |
6. Discussion
6.1. Discussion on the Applicability of the AROA
6.2. Discussion of Time Complexity of AROA
6.3. Discussion of the Performance Capabilities of Algorithms
6.4. Discussions of General Optimization Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Blum, C. Ant colony optimization: Introduction and recent trends. Phys. Life Rev. 2005, 2, 353–373. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Bahrami, M.; Bozorg-Haddad, O.; Chu, X. Cat swarm optimization (CSO) algorithm. In Advanced Optimization by Nature-Inspired Algorithms; Springer: Singapore, 2018; pp. 9–18. [Google Scholar]
- Yang, X.S. Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired Comput. 2011, 3, 267–274. [Google Scholar] [CrossRef]
- Yang, X.S.; He, X. Bat algorithm: Literature review and applications. Int. J. Bio-Inspired Comput. 2013, 5, 141–149. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Pan, J.S.; Zhang, L.G.; Wang, R.B.; Snášel, V.; Chu, S.C. Gannet optimization algorithm: A new metaheuristic algorithm for solving engineering optimization problems. Math. Comput. Simul. 2022, 202, 343–373. [Google Scholar] [CrossRef]
- Neshat, M.; Sepidnam, G.; Sargolzaei, M.; Toosi, A.N. Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif. Intell. Rev. 2014, 42, 965–997. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, F.M.; Li, F.; Wu, H.S. Improved artificial fish swarm algorithm. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, 9–11 June 2014; pp. 748–753. [Google Scholar]
- He, X.; Wang, W.; Jiang, J.; Xu, L. An improved artificial bee colony algorithm and its application to multi-objective optimal power flow. Energies 2015, 8, 2412–2437. [Google Scholar] [CrossRef]
- Chu, S.C.; Feng, Q.; Zhao, J.; Pan, J.S. BFGO: Bamboo Forest Growth Optimization Algorithm. J. Internet Technol. 2023, 24, 1–10. [Google Scholar]
- Pan, J.S.; Fu, Z.; Hu, C.C.; Tsai, P.W.; Chu, S.C. Rafflesia Optimization Algorithm Applied in the Logistics Distribution Centers Location Problem. J. Internet Technol. 2022, 23, 1541–1555. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Rezaei, H.; Bozorg-Haddad, O.; Chu, X. Grey wolf optimization (GWO) algorithm. In Advanced Optimization by Nature-Inspired Algorithms; Springer: Singapore, 2018; pp. 81–91. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Rana, N.; Latiff, M.S.A.; Abdulhamid, S.M.; Chiroma, H. Whale optimization algorithm: A systematic review of contemporary applications, modifications and developments. Neural Comput. Appl. 2020, 32, 16245–16277. [Google Scholar] [CrossRef]
- Pan, J.S.; Liu, L.F.; Chu, S.C.; Song, P.C.; Liu, G.G. A New Gaining-Sharing Knowledge Based Algorithm with Parallel Opposition-Based Learning for Internet of Vehicles. Mathematics 2023, 11, 2953. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 2008, 13, 398–417. [Google Scholar] [CrossRef]
- Karaboğa, D.; Ökdem, S. A simple and global optimization algorithm for engineering problems: Differential evolution algorithm. Turk. J. Electr. Eng. Comput. Sci. 2004, 12, 53–60. [Google Scholar]
- Chu, S.C.; Tsai, P.W.; Pan, J.S. Cat swarm optimization. In PRICAI 2006: Trends in Artificial Intelligence, Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China, 7–11 August 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 854–858. [Google Scholar]
- Dai, C.; Lei, X.; He, X. A decomposition-based evolutionary algorithm with adaptive weight adjustment for many-objective problems. Soft Comput. 2020, 24, 10597–10609. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, X.; Tang, L. MOEA/D with a self-adaptive weight vector adjustment strategy based on chain segmentation. Inf. Sci. 2020, 521, 209–230. [Google Scholar] [CrossRef]
- Ruan, G.; Yu, G.; Zheng, J.; Zou, J.; Yang, S. The effect of diversity maintenance on prediction in dynamic multi-objective optimization. Appl. Soft Comput. 2017, 58, 631–647. [Google Scholar] [CrossRef]
- Chen, B.; Lin, Y.; Zeng, W.; Zhang, D.; Si, Y.W. Modified differential evolution algorithm using a new diversity maintenance strategy for multi-objective optimization problems. Appl. Intell. 2015, 43, 49–73. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Comput. Intell. Lab. Zhengzhou Univ. Zhengzhou China Nanyang Technol. Univ. Singap. Tech. Rep. 2013, 201212, 281–295. [Google Scholar]
- Tvrdík, J.; Poláková, R. Competitive differential evolution applied to CEC 2013 problems. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1651–1657. [Google Scholar]
- Pan, J.S.; Shi, H.J.; Chu, S.C.; Hu, P.; Shehadeh, H.A. Parallel Binary Rafflesia Optimization Algorithm and Its Application in Feature Selection Problem. Symmetry 2023, 15, 1073. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Basu, A.; Cuevas, E.; Sarkar, R. Harris Hawks optimisation with Simulated Annealing as a deep feature selection method for screening of COVID-19 CT-scans. Appl. Soft Comput. 2021, 111, 107698. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; Trojovskỳ, P. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Front. Mech. Eng. 2023, 8, 1126450. [Google Scholar] [CrossRef]
- Pan, J.S.; Sun, B.; Chu, S.C.; Zhu, M.; Shieh, C.S. A parallel compact gannet optimization algorithm for solving engineering optimization problems. Mathematics 2023, 11, 439. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Elhammoudy, A.; Elyaqouti, M.; Arjdal, E.H.; Hmamou, D.B.; Lidaighbi, S.; Saadaoui, D.; Choulli, I.; Abazine, I. Dandelion Optimizer algorithm-based method for accurate photovoltaic model parameter identification. Energy Convers. Manag. X 2023, 19, 100405. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Klimov, P.V.; Kelly, J.; Martinis, J.M.; Neven, H. The snake optimizer for learning quantum processor control parameters. arXiv 2020, arXiv:2006.04594. [Google Scholar]
- Tzanetos, A.; Blondin, M. A qualitative systematic review of metaheuristics applied to tension/compression spring design problem: Current situation, recommendations, and research direction. Eng. Appl. Artif. Intell. 2023, 118, 105521. [Google Scholar] [CrossRef]
- Çelik, Y.; Kutucu, H. Solving the Tension/Compression Spring Design Problem by an Improved Firefly Algorithm. IDDM 2018, 1, 1–7. [Google Scholar]
- Yang, X.S.; Huyck, C.; Karamanoglu, M.; Khan, N. True global optimality of the pressure vessel design problem: A benchmark for bio-inspired optimisation algorithms. Int. J. Bio-Inspired Comput. 2013, 5, 329–335. [Google Scholar] [CrossRef]
- Liu, T.; Deng, Z.; Lu, T. Design optimization of truss-cored sandwiches with homogenization. Int. J. Solids Struct. 2006, 43, 7891–7918. [Google Scholar] [CrossRef]
- Kamil, A.T.; Saleh, H.M.; Abd-Alla, I.H. A multi-swarm structure for particle swarm optimization: Solving the welded beam design problem. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1804, p. 012012. [Google Scholar]
- Almufti, S.M. Artificial Bee Colony Algorithm performances in solving Welded Beam Design problem. Comput. Integr. Manuf. Syst. 2022, 28, 225–237. [Google Scholar]
- Deb, K.; Jain, S. Multi-speed gearbox design using multi-objective evolutionary algorithms. J. Mech. Des. 2003, 125, 609–619. [Google Scholar] [CrossRef]
- Hall, J.F.; Mecklenborg, C.A.; Chen, D.; Pratap, S.B. Wind energy conversion with a variable-ratio gearbox: Design and analysis. Renew. Energy 2011, 36, 1075–1080. [Google Scholar] [CrossRef]
- Golabi, S.; Fesharaki, J.J.; Yazdipoor, M. Gear train optimization based on minimum volume/weight design. Mech. Mach. Theory 2014, 73, 197–217. [Google Scholar] [CrossRef]
- Meng, Z.; Zhong, Y.; Mao, G.; Liang, Y. PSO-sono: A novel PSO variant for single-objective numerical optimization. Inf. Sci. 2022, 586, 176–191. [Google Scholar] [CrossRef]
- De, A.; Pratap, S.; Kumar, A.; Tiwari, M. A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach. Ann. Oper. Res. 2020, 290, 783–811. [Google Scholar] [CrossRef]
- De, A.; Kumar, S.K.; Gunasekaran, A.; Tiwari, M.K. Sustainable maritime inventory routing problem with time window constraints. Eng. Appl. Artif. Intell. 2017, 61, 77–95. [Google Scholar] [CrossRef]
- Bolboacă, S.D.; Roşca, D.D.; Jäntschi, L. Structure-activity relationships from natural evolution. MATCH Commun. Math. Comput. Chem. 2014, 71, 149–172. [Google Scholar]
- JÄNtschi, L. Modelling of acids and bases revisited. Stud. Univ. Babes-Bolyai Chem. 2022, 67, 73–92. [Google Scholar] [CrossRef]
- Dasari, S.K.; Fantuzzi, N.; Trovalusci, P.; Panei, R.; Pingaro, M. Optimal Design of a Canopy Using Parametric Structural Design and a Genetic Algorithm. Symmetry 2023, 15, 142. [Google Scholar] [CrossRef]
- Fan, H.; Ren, X.; Zhang, Y.; Zhen, Z.; Fan, H. A Chaotic Genetic Algorithm with Variable Neighborhood Search for Solving Time-Dependent Green VRPTW with Fuzzy Demand. Symmetry 2022, 14, 2115. [Google Scholar] [CrossRef]
Algorithms | Parameter |
---|---|
AROA | N = 30, pd = Max_iter / 10; A = 2.5; f = 40; w_0 = 1 / f; B = 0.1; w_1 = 1 / f; phi = −0.78545; |
ROA | N = 30, pd = Max_iter / 10; A = 2.5; f = 40; w_0 = 1 / f; B = 0.1; w_1 = 1 / f; phi = −0.78545; |
PSO | N = 30, c = 2.0; w = 0.729; Vmax = 100; Vmin = −100; |
WOA | N = 30; |
GSA | N = 30, Rpower = 1; Rnorm = 2; |
DE | N = 30; PCr = 0.5; F = 0.9; |
CSO | N = 30; AP = 0.1; fl = 2; |
BOA | N = 30; p = 0.6; power_exponent = 0.1; sensory_modality = 0.01; |
BA | N = 30; r0 = 0.7; Af = 0.9; Rf = 0.9; Qmin = 0; Qmax = 1; |
SCA | N = 30; |
Title | AROA’s Mean and Std Comparison Results with ROA, PSO, WOA, and GSA after Running 30 Times on CEC2013 Test Functions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Function | AROA Mean/std | ROA Mean/std | PSO Mean/std | WOA Mean/std | GSA Mean/std | |||||
f1 | ||||||||||
f2 | ||||||||||
f3 | ||||||||||
f4 | ||||||||||
f5 | ||||||||||
f6 | ||||||||||
f7 | ||||||||||
f8 | ||||||||||
f9 | ||||||||||
f10 | ||||||||||
f11 | ||||||||||
f12 | ||||||||||
f13 | ||||||||||
f14 | ||||||||||
f15 | ||||||||||
f16 | ||||||||||
f17 | ||||||||||
f18 | ||||||||||
f19 | ||||||||||
f20 | ||||||||||
f21 | ||||||||||
f22 | ||||||||||
f23 | ||||||||||
f24 | ||||||||||
f25 | ||||||||||
f26 | ||||||||||
f27 | ||||||||||
f28 | ||||||||||
win | - | 20 | - | 19 | - | 17 | - | 21 | - | |
Description | “win” quantifies the number of times AROA outperformed its competitors in terms of the evaluation metric “Mean” |
Title | AROA’s Mean and Std Comparison Results with DE, CSO, BOA, BA, and SCA after Running 30 Times on CEC2013 Test Functions. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Function | DE Mean/Std | CSO Mean/Std | BOA Mean/Std | BA Mean/Std | SCA Mean/Std | |||||
f1 | ||||||||||
f2 | ||||||||||
f3 | ||||||||||
f4 | ||||||||||
f5 | ||||||||||
f6 | ||||||||||
f7 | ||||||||||
f8 | ||||||||||
f9 | ||||||||||
f10 | ||||||||||
f11 | ||||||||||
f12 | ||||||||||
f13 | ||||||||||
f14 | ||||||||||
f15 | ||||||||||
f16 | ||||||||||
f17 | ||||||||||
f18 | ||||||||||
f19 | ||||||||||
f20 | ||||||||||
f21 | ||||||||||
f22 | ||||||||||
f23 | ||||||||||
f24 | ||||||||||
f25 | ||||||||||
f26 | ||||||||||
f27 | ||||||||||
f28 | ||||||||||
win | 18 | - | 17 | - | 27 | - | 23 | - | 27 | - |
Description | “win” quantifies the number of times AROA outperformed its competitors in terms of the evaluation metric “Mean” |
Title | Time complexity analysis for a specific engineering application problem. | |||||
Algorithm | WOA | HHO | GWO | OOA | AROA | ROA |
Time (s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.-S.; Zhang, Z.; Chu, S.-C.; Lee, Z.-J.; Li, W. Application of Diversity-Maintaining Adaptive Rafflesia Optimization Algorithm to Engineering Optimisation Problems. Symmetry 2023, 15, 2077. https://doi.org/10.3390/sym15112077
Pan J-S, Zhang Z, Chu S-C, Lee Z-J, Li W. Application of Diversity-Maintaining Adaptive Rafflesia Optimization Algorithm to Engineering Optimisation Problems. Symmetry. 2023; 15(11):2077. https://doi.org/10.3390/sym15112077
Chicago/Turabian StylePan, Jeng-Shyang, Zhen Zhang, Shu-Chuan Chu, Zne-Jung Lee, and Wei Li. 2023. "Application of Diversity-Maintaining Adaptive Rafflesia Optimization Algorithm to Engineering Optimisation Problems" Symmetry 15, no. 11: 2077. https://doi.org/10.3390/sym15112077
APA StylePan, J. -S., Zhang, Z., Chu, S. -C., Lee, Z. -J., & Li, W. (2023). Application of Diversity-Maintaining Adaptive Rafflesia Optimization Algorithm to Engineering Optimisation Problems. Symmetry, 15(11), 2077. https://doi.org/10.3390/sym15112077