Symmetry in Quantum Theory of Gravity
Funding
Conflicts of Interest
Abbreviations
GR | General relativity |
QRF | Quantum reference frame |
References
- Gisin, N. Can relativity be considered complete? From Newtonian nonlocality to quantum nonlocality and beyond. In The Message of Quantum Science; Blanchard, P., Fröhlich, J., Eds.; Springer: Heidelberg, Germany, 2015; pp. 195–217. [Google Scholar]
- Gisin, N. Quantum correlations in Newtonian space and time: Faster than light communication or nonlocality. In Quantum Theory: A Two-Time Success Story; Struppa, D., Tollaksen, J., Eds.; Springer: Milan, Italy, 2014; pp. 185–203. [Google Scholar]
- Tipler, F.J. Quantum nonlocality does not exist. Proc. Natl. Acad. Sci. USA 2014, 111, 11281–11286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawking, S.W. Breakdown of predictability in gravitational collapse. Phys. Rev. D 1976, 14, 2460–2473. [Google Scholar] [CrossRef]
- Susskind, L.; Thorlacius, L. Gedanken experiments involving black holes. Phys. Rev. D 1994, 49, 966–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or firewalls? J. High Energy Phys. 2013, 2013, 062. [Google Scholar] [CrossRef] [Green Version]
- Harlow, D.; Hayden, P. Quantum computation vs. firewalls. J. High Energy Phys. 2013, 2013, 085. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L. Entanglement is not enough. arXiv 2014, arXiv:1411.0690. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. The subtle unphysical hypothesis of the firewall theorem. Entropy 2019, 21, 839. [Google Scholar] [CrossRef] [Green Version]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. The entropy of Hawking radiation. arXiv 2020, arXiv:2006.06872. [Google Scholar] [CrossRef]
- Gu, Y.-Q. Natural coordinate system in curved space-time. J. Geom. Symmetry Phys. 2018, 47, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.-Q. Theory of spinors in curved space-time. Symmetry 2021, 13, 1931. [Google Scholar] [CrossRef]
- Lambiasi, G.; Scardigli, F. Lorentz violation and generalized uncertainty principle. Phys. Rev. D 2018, 97, 075003. [Google Scholar] [CrossRef] [Green Version]
- Illuminati, F.; Lambiasi, G.; Petruzziello, L. Spontaneous Lorentz violation from infrared gravity. Symmetry 2021, 13, 1854. [Google Scholar] [CrossRef]
- Moradpour, H.; Aghababaei, S.; Ziaie, A.H. A note on effects of generalized and extended uncertainty principles on Jüttner gas. Symmetry 2021, 13, 213. [Google Scholar] [CrossRef]
- Abakumova, V.A.; Kaparulin, D.S.; Lyakhovich, S.L. Stable interactions in higher derivative field theories of derived type. Phys. Rev. D 2019, 99, 045020. [Google Scholar] [CrossRef] [Green Version]
- Kaparulin, D.S.; Lyakhovich, S.L.; Nosyrev, O.D. Extended Chern–Simons model for a vector multiplet. Symmetry 2021, 13, 1004. [Google Scholar] [CrossRef]
- Arzano, M.; Kephart, T.W.; Ng, Y.J. From spacetime foam to holographic foam cosmology. Phys. Lett. B 2007, 649, 243–246. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.J. Holographic foam cosmology: From the late to the early universe. Symmetry 2021, 13, 435. [Google Scholar] [CrossRef]
- Addazi, A.; Chen, P.; Fabrocini, F.; Fields, C.; Greco, E.; Lutti, M.; Marcianò, A.; Pasechnik, R. Generalized holographic principle, gauge invariance and the emergence of gravity à la Wilczek. Front. Astron. Space Sci. 2021, 8, 563450. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F.; Marcianò, A. Reference frame induced symmetry breaking on holographic screens. Symmetry 2021, 13, 408. [Google Scholar] [CrossRef]
- Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 2007, 79, 555–609. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, C. Symmetry in Quantum Theory of Gravity. Symmetry 2022, 14, 775. https://doi.org/10.3390/sym14040775
Fields C. Symmetry in Quantum Theory of Gravity. Symmetry. 2022; 14(4):775. https://doi.org/10.3390/sym14040775
Chicago/Turabian StyleFields, Chris. 2022. "Symmetry in Quantum Theory of Gravity" Symmetry 14, no. 4: 775. https://doi.org/10.3390/sym14040775
APA StyleFields, C. (2022). Symmetry in Quantum Theory of Gravity. Symmetry, 14(4), 775. https://doi.org/10.3390/sym14040775