Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton
Abstract
:1. Motivation and Introduction
2. Conformal Ricci–Yamabe Soliton Structure in Perfect Fluid Spacetime with Torse-Forming Vector Field
- (i)
- proper conformal Killing vector field if are not constant.
- (ii)
- homothetic vector field if are constant.
3. Dust Fluid Spacetime with Conformal Ricci–Yamabe Soliton
4. Dark Fluid Spacetime with Conformal Ricci–Yamabe Soliton
5. Radiation Era in Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton
6. Conformal -Ricci–Yamabe Soliton Structure in Perfect Fluid Spacetime
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, R.S. Three Manifold with positive Ricci curvature. J. Differ. Geom. 1982, 17, 255–306. [Google Scholar] [CrossRef]
- Topping, P. Lecture on the Ricci Flow; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Hamilton, R.S. The Ricci flow on surfaces. Commun. Contemp. Math. 1988, 71, 237–261. [Google Scholar]
- Basu, N.; Bhattacharyya, A. Conformal Ricci soliton in Kenmotsu manifold. Glob. J. Adv. Res. Class. Mod. Geom. 2015, 4, 15–21. [Google Scholar]
- Siddiqi, M.D. Conformal η-Ricci solitons in δ- Lorentzian Trans Sasakian manifolds. Int. J. Maps Math. 2018, 1, 15–34. [Google Scholar]
- Barbosa, E.; Ribeiro, E. On conformal solutions of the Yamabe flow. Arch. Math. 2013, 101, 79–89. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharyya, A. A Kenmotsu Metric as a*-conformal Yamabe Soliton with Torse Forming Potential Vector Field. Acta Math. Sci. 2021, 37, 1896–1908. [Google Scholar] [CrossRef]
- Cao, H.D.; Sun, X.; Zhang, Y. On the structure of gradient Yamabe solitons. arXiv 2011, arXiv:1108.6316v2. [Google Scholar] [CrossRef]
- Dey, S.; Roy, S. *-η-Ricci Soliton within the framework of Sasakian manifold. J. Dyn. Syst. Geom. Theor. 2020, 18, 163–181. [Google Scholar] [CrossRef]
- Ghosh, A. Yamabe soliton and Quasi Yamabe soliton on Kenmotsu manifold. Math. Slovaca 2020, 70, 151–160. [Google Scholar] [CrossRef]
- Singh, A.; Kishor, S. Some types of η-Ricci Solitons on Lorentzian para-Sasakian manifolds. Facta Univ. (NIŠ) 2018, 33, 217–230. [Google Scholar] [CrossRef]
- Cho, J.T.; Kimura, M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 2009, 61, 205–212. [Google Scholar] [CrossRef]
- Catino, G.; Mazzieri, L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66–94. [Google Scholar] [CrossRef] [Green Version]
- Abedi, E.; Ziabari, R.B. Slant submanifolds of a conformal Sasakian manifold. Acta Univ. Apulensis 2014, 40, 35–49. [Google Scholar]
- Abedi, E.; Ziabari, R.B.; Tripathi, M.M. Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form. Arch. Math. 2016, 52, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Alegre, P.; Carriazo, A.; Kim, Y.H.; Yoon, D.W. B.-Y. Chen’s inequality for submanifolds of generalized space forms. Indian J. Pure Appl. Math. 2007, 38, 185–201. [Google Scholar]
- Akram, A.; Alkhaldi, A.H. Chen inequalities for warped product pointwise bi-slant submanifolds of complex space forms and its applications. Symmetry 2019, 11, 200. [Google Scholar]
- Akram, A.; Mofarreh, F.; Laurian-Ioan, P.; Alluhaibi, N. Geometry of k-Yamabe Solitons on Euclidean Spaces and Its Applications to Concurrent Vector Fields. Symmetry 2021, 13, 222. [Google Scholar]
- Akram, A.; Piscoran, L.I. Geometric classification of warped products isometrically immersed into Sasakian space form. Math. Nachr. 2019, 292, 234–251. [Google Scholar] [CrossRef]
- Akram, A.; Piscoran, L.I. Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions. J. Geom. Phys. 2017, 114, 276–290. [Google Scholar]
- Akram, A.; Uddin, S.; Othman, W.A.M. Geometry of warped product pointwise semi-slant submanifolds of Kahler manifolds. Filomat 2017, 12, 3771–3778. [Google Scholar]
- Al-Solamy, F.R.; Khan, V.A. Warped product semi-slant submanifolds of a Sasakian manifold. Serdica Math. J. 2008, 34, 597–606. [Google Scholar]
- Yang, Z.C.; Li, Y.L.; Erdoǧdub, M.; Zhu, Y.S. Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane. J. Geom. Phys. 2022, 104513, 1–23. [Google Scholar]
- Li, Y.L.; Liu, S.Y.; Wang, Z.G. Tangent developables and Darboux developables of framed curves. Topol. Appl. 2021, 301, 107526. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Z.G. Lightlike tangent developables in de Sitter 3-space. J. Geom. Phys. 2021, 164, 1–11. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Z.G.; Zhao, T.H. Geometric Algebra of Singular Ruled Surfaces. Adv. Appl. Clifford Algebr. 2021, 31, 1–19. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhu, Y.S.; Sun, Q.Y. Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space. Int. J. Geom. Methods Mod. Phys. 2021, 18, 1–31. [Google Scholar] [CrossRef]
- Li, Y.L.; Ganguly, D.; Dey, S.; Bhattacharyya, A. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7, 5408–5430. [Google Scholar] [CrossRef]
- Li, Y.L.; Alkhaldi, A.H.; Ali, A.; Laurian-Ioan, P. On the Topology of Warped Product Pointwise Semi-Slant Submanifolds with Positive Curvature. Mathematics 2021, 9, 3156. [Google Scholar] [CrossRef]
- Li, Y.L.; Lone, M.A.; Wani, U.A. Biharmonic submanifolds of Kähler product manifolds. AIMS Math. 2021, 6, 9309–9321. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Ali, R. A general inequality for CR-warped products in generalized Sasakian space form and its applications. Adv. Math. Phys. 2021, 2021, 5777554. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Ali, R. Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms. J. Funct. Space 2021, 2021, 6195939. [Google Scholar]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Alluhaibi, N. Homology groups in warped product submanifolds in hyperbolic spaces. J. Math. 2021, 2021, 8554738. [Google Scholar] [CrossRef]
- Kumara, H.A. Ricci soliton and geometrical structure in a perfect fluid spacetime with torse-forming vector field. Afr. Mat. 2019, 30, 725–736. [Google Scholar]
- Siddiqi, M.D.; Siddiqui, S.A. Conformal Ricci soliton and Geometrical structure in a perfect fluid spacetime. Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050083. [Google Scholar] [CrossRef]
- Arsenović, M.; Manojlović, V.; Näkki, R. Boundary modulus of continuity and quasiconformal mappings. Ann. Acad. Sci. Fenn. Math. 2012, 37, 107–118. [Google Scholar] [CrossRef]
- Cvetković, D.M.; Todorčević, V. Cospectrality graphs of Smith graphs. Filomat 2019, 33, 3269–3276. [Google Scholar] [CrossRef]
- Klén, R.; Todorčević, V.; Vuorinen, M. Teichmüller’s problem in space. J. Math. Anal. Appl. 2017, 455, 1297–1316. [Google Scholar] [CrossRef] [Green Version]
- Klén, R.; Manojlović, V.; Simić, S.; Vuorinen, M. Bernoulli inequality and hypergeometric functions. Proc. Am. Math. Soc. 2014, 142, 559–573. [Google Scholar] [CrossRef]
- Koskela, P.; Manojlović, V. Quasi-nearly subharmonic functions and quasiconformal mappings. Potential Anal. 2012, 37, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Kojić, V.; Pavlović, M. Subharmonicity of |f|p for quasiregular harmonic functions, with applications. J. Math. Anal. Appl. 2008, 342, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Kojić, V. Quasi-nearly subharmonic functions and conformal mappings. Filomat 2007, 21, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, V.; Vuorinen, M. On quasiconformal maps with identity boundary values. Trans. Am. Math. Soc. 2011, 363, 2367–2479. [Google Scholar] [CrossRef] [Green Version]
- Manojlović, V. On bilipschicity of quasiconformal harmonic mappings. Novi Sad J. Math. 2015, 45, 105–109. [Google Scholar] [CrossRef]
- Manojlović, V. Bilipschitz mappings between sectors in planes and quasi-conformality. Funct. Anal. Approx. Comput. 2009, 1, 1–6. [Google Scholar]
- Manojlović, V. Bi-Lipschicity of quasiconformal harmonic mappings in the plane. Filomat 2009, 23, 85–89. [Google Scholar] [CrossRef]
- Manojlović, V. On conformally invariant extremal problems. Appl. Anal. Discret. Math. 2009, 3, 97–119. [Google Scholar] [CrossRef] [Green Version]
- Nezhad, A.D.; Radenović, S. Some aspects of b(αn, βn) -hypermetric spaces over banach algebras. Eur. J. Pure Appl. Math. 2021, 14, 1148–1160. [Google Scholar] [CrossRef]
- Nezhad, A.D.; Ahmadi, A. A novel approach to sheaves on diffeological spaces. Topol. Appl. 2019, 263, 141–153. [Google Scholar] [CrossRef]
- Nezhad, A.D.; Davvaz, B. Universal hyperdynamical systems. Bull. Korean Math. Soc. 2010, 47, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Simić, S.; Todorčević, V. Jensen Functional, Quasi-Arithmetic Mean and Sharp Converses of Hölder’s Inequalities. Mathematics 2021, 9, 3104. [Google Scholar] [CrossRef]
- Srivastava, S.K. General Relativity and Cosmology; Prentice-Hall of India Private Limited: New Delhi, India, 2008. [Google Scholar]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Todorčević, V. Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys. 2019, 9, 1211–1225. [Google Scholar] [CrossRef]
- Güler, S.; Crasmareanu, M. Ricci–Yamabe maps for Riemannian flows and their volume variation and volume entropy. Turk. J. Math. 2019, 43, 2361–2641. [Google Scholar] [CrossRef]
- O’Neill, B. Semi-Riemannian Geometry with Apllications to Relativity; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Yano, K. On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo 1944, 20, 340–345. [Google Scholar] [CrossRef]
- Blaga, A.M. Solitons and geometrical structures in a perfect fluid spacetime. arXiv 2017, arXiv:1705.04094. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Li, Y.; Roy, S.; Dey, S.; Bhattacharyya, A. Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton. Symmetry 2022, 14, 594. https://doi.org/10.3390/sym14030594
Zhang P, Li Y, Roy S, Dey S, Bhattacharyya A. Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton. Symmetry. 2022; 14(3):594. https://doi.org/10.3390/sym14030594
Chicago/Turabian StyleZhang, Pengfei, Yanlin Li, Soumendu Roy, Santu Dey, and Arindam Bhattacharyya. 2022. "Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton" Symmetry 14, no. 3: 594. https://doi.org/10.3390/sym14030594
APA StyleZhang, P., Li, Y., Roy, S., Dey, S., & Bhattacharyya, A. (2022). Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton. Symmetry, 14(3), 594. https://doi.org/10.3390/sym14030594