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Abstract: China has a vast land area, with mountains accounting for 1/3 of the country’s
land area. Flooding in these areas can cause significant damage to human life and property.
Therefore, rainstorms and flood hazards in Huangshan City should be accurately assessed
and effectively managed to improve urban resilience, promote green and low-carbon devel-
opment, and ensure socio-economic stability. Through the Random Forest (RF) algorithm
and the Soil Conservation Service (SCS) model, this study aimed to assess and demarcate
rainstorm and flood hazard risks in Huangshan City. Specifically, Driving forces-Pressure-
State-Impact-Response (DPSIR)’s framework was applied to examine the main influencing
factors. Subsequently, the RF algorithm was employed to select 11 major indicators and
establish a comprehensive risk assessment model integrating four factors: hazard, expo-
sure, vulnerability, and adaptive capacity. Additionally, a flood hazard risk zoning map of
Huangshan City was generated by combining the SCS model with a Geographic Informa-
tion System (GIS)-based spatial analysis. The assessment results reveal significant spatial
heterogeneity in rainstorm and flood risks, with higher risks concentrated in low-lying
areas and urban fringes. In addition, precipitation during the flood season and economic
losses were identified as key contributors to flood risk. Furthermore, flood risks in certain
areas have intensified with ongoing urbanization. The evaluation model was validated
by the 7 July 2020 flood event, suggesting that Huangshan District, Huizhou District, and
northern Shexian County suffered the most severe economic losses. This confirms the
reliability of the model. Finally, targeted flood disaster prevention and mitigation strate-
gies were proposed for Huangshan City, particularly in the context of carbon neutrality
and green urbanization, providing decision-making support for disaster prevention and
emergency management. These recommendations will contribute to enhancing the city’s
disaster resilience and promoting sustainable urban development.

Keywords: flood hazard risk assessment; random forest algorithm; SCS model; risk spatial
zoning; mountainous city

1. Introduction
Flood-related catastrophes have become one of the global risks directly induced by

the increasing scale of climate change and extreme climatic terms. Flood disasters have
intensified regarding frequency and magnitude in recent decades, as revealed in global
climate reports under the United Nations Framework Convention on Climate Change
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(UNFCCC). This carries not only a high toll of lives and assets but also a strong impact on
the environment, food production, and urban systems.

In China, flood disasters are increasing. Particularly, the southern regions are highly
susceptible because of their complex terrain and concentrated precipitation, making rain-
induced mountain floods and urban waterlogging common types of severe disasters [1].
Statistical data from the China Meteorological Administration and water resources authori-
ties suggest that torrential rains and mountain floods in the south have significantly affected
local socio-economic conditions and people’s livelihoods in recent years. Huangshan City,
a representative mountainous city in southern China, encounters particularly pronounced
flood hazards. In this context, the Huangshan municipal government proposed the Huang-
shan Modern Water Network Construction Plan (2024) to strengthen its disaster prevention
and mitigation capability [2].

The importance of integrating disaster prevention and ecological civilization devel-
opment in the context of carbon neutrality has become more prominent as the goals of
ecological civilization and carbon neutrality continue to be pursued. With the speedy
development of the digital economy, big data analytics and intelligent technologies can be
presumably applied for disaster risk assessment. In this way, Huangshan City can obtain
more precise tools for rainfall forecasting and hydrological alteration detection, laying a
science-based foundation for decision-making [3]. Thus, scientifically assessing the risk
of rain and flood disasters in Huangshan City contributes to not only formulating more
precise countermeasures to reduce disaster losses but also raising the public’s awareness of
disaster prevention and promoting green and sustainable development. Additionally, this
process provides references for other parts of the world that face similar challenges and
ultimately enhance disaster resilience and environmental sustainability globally.

Internationally, relatively comprehensive rainstorm and flood hazard risk assessment
and disaster prevention systems have been established, particularly in countries such as the
United States and Japan. Early studies primarily focused on response measures for individ-
ual disaster events and employed traditional hydrological models, such as the Hydrologic
Engineering Center’s Hydrologic Modeling System (HEC-HMS) and the Storm Water
Management Model (SWMM), to simulate watershed flooding. By reconstructing rainfall-
runoff processes, these models laid a scientific foundation for flood control design and
emergency planning [4]. Risk assessment has expanded from analyzing individual disaster
types to comprehensive multi-hazard evaluations with further research advancements [5].
For instance, Japan has integrated early warning systems with community-based disaster
prevention networks, bringing about significantly reinforced public disaster awareness
and response capabilities [6]. In the United States, national-level emergency management
systems (such as the Federal Emergency Management Agency (FEMA)) and regional flood
emergency response plans have been developed to strengthen disaster coordination before
and after flood events [7]. Over the years, these research efforts eventually developed
into comprehensive crisis management schemes for handling issues from pre-disaster risk
assessment to emergency response during disasters to post-disaster recovery. Currently,
flood hazard risk assessment has become a hot topic in worldwide research, with more
and more findings [8–10]. In recent years, researchers have paid growing attention to
the coupling relationship between floods induced by rainstorms and secondary disasters,
including debris flows and landslides, as well as integrated spatiotemporal models for
multi-hazard risk assessment. Flood hazard risk research is not new internationally and
can be traced back to the 1950s. In 1991, the United Nations explicitly defined risk as
“the expected impact of certain natural disasters or social events on human life safety and
economic losses” [11,12]. Subsequently, researchers further refined this definition [13–15],
establishing that flood hazards stem from the combined effects of hazard-inducing factors,
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disaster-prone environments, and exposed elements [16]. This drove the development of
a four-dimensional flood risk assessment framework, involving hazard-inducing factors,
disaster-prone environments, exposed elements, and disaster prevention and mitigation
measures [17]. In accordance with the differences in data sources, data processing tech-
niques, and assessment methodologies, existing flood risk assessment approaches can
be broadly categorized into four types: historical disaster data analysis, scenario-based
dynamic simulation, indicator-based assessment methods, and integrated approaches
combining GIS and remote sensing (RS) technologies.

Currently, advancements in machine learning have introduced new approaches to
flood hazard risk assessment, and the RF algorithm has emerged as a particularly popular
tool attributed to its adaptability and ability to process complex datasets [18]. Compared to
traditional physical models, RF excels at handling intricate interactions among multiple
influencing factors by constructing multiple decision trees to enhance predictive accuracy,
rendering it specifically effective in complex terrains. For example, Chen et al. [19,20]
designed an urban flood hazard assessment framework through the Driving-Pressure-State-
Impact-Response (DPSIR) model for the Yangtze River Delta. Using the RF algorithm,
they identified 15 key flood risk indicators (including impervious urban surfaces and
precipitation levels during the flood season) and constructed a flood risk assessment model.
Similarly, Anderson et al. [21] integrated machine learning with numerical simulations to
assess coastal flood risks in San Diego, California, while evaluating potential impacts of
future climate change. The advantages of the RF algorithm extend beyond its efficiency
in data processing. Unlike traditional methods relying heavily on precise physical model
assumptions and data inputs, RF can efficiently analyze large-scale, high-dimensional
datasets. Wang et al. [22] adopted an RF-based assessment model to evaluate regional
flood risks in the Dongjiang River Basin, China, selected 11 risk indicators, and generated
5000 samples for model training and testing. Additionally, Hao et al. [23] employed RF to
predict potential terrorism risks in the Indochina Peninsula across a spatial scale involving
15 driving factors, demonstrating its versatility in hazard assessment. Moreover, RF offers
intuitive rankings of variable importance and thus facilitates the identification of key flood
risk factors. This capability enhances disaster prevention, emergency response, and policy
formulation efforts [24–26], enabling RF to be a valuable tool in the field of flood risk
assessment and management.

The Soil Conservation Service Curve Number (SCS-CN) method, a widely used em-
pirical formula, has obtained increasing attention in recent years for its application in
rainstorm and flood hazard risk assessment [27]. By incorporating factors such as precipita-
tion, soil type, land use, land cover, and antecedent soil moisture, this method allows for
rapid estimation of regional runoff and provides effective support for flood risk evaluation.
For instance, Jia et al. [28] utilized a GIS-based SCS-CN approach to evaluate flood risks
at cultural heritage sites in Shanxi Province under three different Shared Socioeconomic
Pathway (SSP) climate change scenarios (SSP119, SSP245, and SSP585) projected to the end
of the 21st century. By combining the Land Use Scenario Dynamics-Urban (LUSD-urban)
model with the SCS-CN method, Fang et al. [29] proposed a novel approach for estimating
future surface runoff through Urban Ecosystem Integrity (UEI) analysis. Additionally,
Ei et al. [30] applied meteorological and morphological data analysis while merging the
SCS Curve Number method for precipitation loss estimation with the SCS-Hydrograph for
runoff transformation. Their model was implemented in two watersheds (An-Nawayah
and Al-Rashrash) southeast of Cairo, Egypt. Compared to traditional hydrological models,
the SCS-CN method presents notable advantages, consisting of operational simplicity, fast
computation speed, and minimal data requirements for topographic and meteorological
inputs. Thus, it is particularly suitable for regions with limited data availability or com-
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putational resources. However, the method also possesses certain limitations, especially
when it is applied to complex terrains or extreme climate events, where its accuracy and
applicability may be constrained. To overcome these limitations, researchers have increas-
ingly integrated the SCS-CN method with advanced technologies such as remote sensing
(RS), Geographic Information Systems (GIS), and machine learning algorithms [31]. For
example, Yin et al. [32,33] successfully enhanced risk assessment accuracy and efficiency
by combining the RF algorithm with the SCS-CN method, revealing the significant poten-
tial of this integrated approach. Such methodological integrations can reinforce model
robustness while enhancing its sensitivity to multiple variables, particularly in complex
environmental conditions.

Nonetheless, there is insufficient current research on the integration of the RF algo-
rithm with the Soil Conservation Service (SCS) model for assessing rainstorm and flood
hazards in mountainous cities. Specifically, the RF algorithm has demonstrated clear ad-
vantages in handling complex datasets and capturing nonlinear relationships, contributing
to its widespread application in precipitation forecasting and watershed hydrological mod-
eling. However, its effective integration with the SCS model under the unique topographic
conditions, complex hydrological processes, and multiple impacts of climate change in
mountainous cities has yet to be fully explored. The SCS model is well-suited for simu-
lating rainfall-runoff processes, especially at the watershed scale. However, the model
faces notable limitations in capturing complex hydrological characteristics and spatial
heterogeneity when being applied to mountainous urban environments. By leveraging
the strengths of the RF algorithm, it can be integrated with the SCS model to compensate
for the latter’s shortcomings in dynamic prediction and adaptive adjustments, thereby
improving the accuracy and reliability of flood risk assessment in complex mountainous
urban settings. Overall, exploring this integrated approach holds significant academic
value and practical application potential. It may also assist in more accurate flood hazard
early warning, risk evaluation, and emergency management for mountainous cities, so as
to facilitate urban sustainability and disaster resilience.

This study aimed to integrate the RF algorithm with the Soil Conservation Service
Curve Number (SCS-CN) method and conduct a detailed assessment and zoning of flood
hazards in Huangshan City by leveraging Geographic Information System (GIS) technology.
The SCS-CN method, as a simple yet effective empirical formula, accounts for factors such
as precipitation, soil type, and land use to rapidly estimate regional runoff, providing
crucial support for flood risk evaluation. Meanwhile, the RF algorithm with the automatic
selection of key flood risk factors can effectively handle complex spatial data and nonlinear
relationships to enhance prediction accuracy. The two approaches may complement each
other. In this study, they were integrated to optimize their individual strengths for obtaining
reliable assessment results and achieving accurate identification of high-risk areas. The
findings ultimately inform disaster prevention and mitigation strategies that are more
tailored to the local context and support flood risk management in Huangshan City.

2. Study Area and Date Description
2.1. Study Area Description

Huangshan City is located in southern Anhui Province, at the transition zone between
the middle and lower reaches of the Yangtze River Plain and the mountainous region [34].
It is located in longitudes from 117◦30′ to 118◦30′ E and latitudes from 29◦24′ to 30◦20′ N
(Figure 1). Huangshan City administers Tunxi District, Huangshan District, Huizhou
District, and several counties, and the world-renowned Huangshan Scenic Area was
awarded the World Natural and Cultural Heritage by UNESCO. Huangshan has a complex
topography, with mountainous and hilly plains, composed of several mountain ranges,
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with Fanshu Mountain as its center. It is mainly granite upon which peculiar rock edifices
and steep terrains form [35]. Huangshan City has a subtropical monsoon climate with
four distinct seasons. Its annual average temperature and yearly average precipitation are
around 16 ◦C and 1800–2400 mm, mainly during the plum rain and typhoon seasons.
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The resident population in 2022 will be about 1.33 million, with an urbanization rate
of 55%, but the mountainous areas are sparsely populated and vulnerable. The economy
is highly dependent on tourism, with a monolithic structure that makes it less resilient to
disasters. The problem of aging is prominent, with 22% of the population over 60 years
old, a serious exodus of young adults, increasing rural “hollowing out”, and insufficient
disaster response capacity for the elderly and children left behind. Infrastructure is lagging
behind, and the level of transportation, medical care, and other public services in remote
mountainous areas is low, constraining the ability to prevent and mitigate disasters. The
city of Huangshan needs to promote economic diversification and upgrade public services
and disaster prevention capabilities to cope with natural disasters and socio-economic
challenges while protecting the ecology.

Despite advances in flood hazard risk assessment for Huangshan City, research in
this area is still scarce, and most of them emphasize single-hazard assessments. There
is a long road to achieving a systematic and multi-layered comprehensive risk analysis.
Thus, detailed research on flood hazard risks in Huangshan City, especially the combi-
nation of machine learning algorithms and hydrological models, has great academic and
practical significance.

Huangshan City has a long history of frequent rainstorms and flood disasters. The
Huizhou Prefecture Chronicles recorded multiple instances of mountain floods and debris
flows triggered by heavy rainfall during the Ming and Qing dynasties. In recent years,
extreme rainfall events and flooding have increased in frequency and severity because of
climate change (Appendix A). In 1991, 2006, and 2011, there were major floods in Henan.
Moreover, a significant flood exerted a substantial impact on a national examination called
“Gaokao” in July 2020. Annual precipitation has continued to rise from my parent’s time
(10%), and extreme weather events have increased recently. Increasingly extreme rainfall
has elevated the risks of floods and geological disasters. Flood risk assessment is performed
on a strong foundation of historical meteorological and hydrological data. Integrating
and embedding GIS technology into the SCS model play a supportive role in formulating
effective disaster prevention and mitigation measures, contributing to the enhanced flood
resilience in Huangshan City.
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2.2. Date Description

This study needs to deal with the following types of data, which are pre-processed
by technical means to ensure the accuracy and completeness of the data. According to the
research factors to be selected for rain and flood risk assessment, the selected data sources
and contents are shown in Table 1.

Table 1. Basic data and sources.

Data Type Data Source Data Content Time Span

Topographic Data

National Geospatial Information Center
(https://www.webmap.cn/main.do?

method=index (accessed on
11 September 2024))

Digital Elevation
Model (DEM) data
(30 m resolution)

Long-term
observation

Precipitation Data

National Meteorological Science Data
Center

(https://data.cma.cn/ (accessed on
11 September 2024))

Daily rainfall data Last 50 years

Soil Data
FAO Soil Database

(https://www.fao.org/soils-portal/en/
(accessed on 11 September 2024))

Soil type,
permeability, moisture

content

Long-term
observation

Vegetation Data

Huangshan Ecology and Environment
Bureau

(https://sthjj.huangshan.gov.cn/
(accessed on 15 September 2024))

Vegetation type,
coverage, density Dynamic data

Transportation Data

National Geospatial Information Resource
Directory Service System

(https://www.webmap.cn/main.do?
method=index (accessed on

11 September 2024))

Road network
distribution Real-time updates

Population Density
Huangshan Statistics Bureau

(https://tjj.huangshan.gov.cn/ (accessed
on 11 September 2024))

Population density
distribution by region 10-year census data

Land Use Data

National Geospatial Information Resource
Directory Service System

(https://www.webmap.cn/main.do?
method=index (accessed on

11 September 2024))

Land use types and
spatial distribution 5 years

Economic Data
Huangshan Statistics Bureau

(https://tjj.huangshan.gov.cn/ (accessed
on 15 September 2024))

Economic
development level,

economic loss
assessment, GDP per

km2

10-year economic
census data

Urbanization Rate
Huangshan Statistics Bureau

(https://tjj.huangshan.gov.cn/ (accessed
on 15 September 2024))

Urbanization level by
region 10-year statistical data

Per Capita Arable
Land

Ministry of Agriculture and Rural Affairs
(http://www.moa.gov.cn/ (accessed on

15 September 2024))

Per capita arable land
in each

county/district
Real-time updates

Built-up Area Road
Network Density

National Geospatial Information Resource
Directory Service System

(https://www.webmap.cn/main.do?
method=index (accessed on

11 September 2024))

Road network density
per unit area of
built-up land

Real-time updates

Municipal Flood
Control Investment

Huangshan Water Resources Bureau
(https://slj.huangshan.gov.cn/ (accessed

on 15 September 2024))

Investment in flood
control infrastructure

per unit area
Real-time updates

https://www.webmap.cn/main.do?method=index
https://www.webmap.cn/main.do?method=index
https://data.cma.cn/
https://www.fao.org/soils-portal/en/
https://sthjj.huangshan.gov.cn/
https://www.webmap.cn/main.do?method=index
https://www.webmap.cn/main.do?method=index
https://tjj.huangshan.gov.cn/
https://www.webmap.cn/main.do?method=index
https://www.webmap.cn/main.do?method=index
https://tjj.huangshan.gov.cn/
https://tjj.huangshan.gov.cn/
http://www.moa.gov.cn/
https://www.webmap.cn/main.do?method=index
https://www.webmap.cn/main.do?method=index
https://slj.huangshan.gov.cn/
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Rainstorm and flood hazard risk assessment and zoning rely on the comprehensive
processing and analysis of multi-source data. With Geographic Information System (GIS)
technology and the Soil Conservation Service (SCS) model, in this study, the following
categories of data are processed, and technical methods are applied for data preprocessing
to ensure accuracy and completeness. The selected research factors and corresponding data
sources for flood hazard risk assessment are summarized in Table 2 [36]. Additionally, data
preprocessing is conducted by GIS technology and the SCS model to reinforce data quality
and improve the reliability of risk assessment.

Table 2. Significance assessment of indexes based on RF model.

Index Code Index Name Index Weight

I1 Precipitation during flood season (mm) 0.345
I2 Elevation (m) 0.054
I3 Urbanization rate (%) 0.039
I4 Population density (people/km2) 0.025

I5 GDP per square kilometer of land
(0.1 billion CNY/km2) 0.049

I6 Per capita arable land area (10,000 people/km2) 0.043
I7 Water area ratio (%) 0.039
I8 Vegetation coverage (%) 0.030
I9 Road network density in built-up areas (km/km2) 0.027

I10 Direct economic losses from floods
(10 million CNY) 0.298

I11 Municipal flood control investment per unit area
(10,000 CNY) 0.051

3. Methodology
3.1. Research Framework

We developed a technical framework for analyzing the risk assessment and zoning
of rain and flood hazards in Huangshan City (Figure 2).The corresponding framework
consists of five modules: construction of evaluation indicators, determination of indicator
weights, construction of the rainstorm and flood hazard risk assessment model, model
validation, and policy decision-making. A DPSIR framework-based natural disaster risk in-
dicator system is constructed in the first module. In the second module, complex nonlinear
relationships among indicators are captured, and their comprehensive weights are calcu-
lated by the RF algorithm. In the third module, our research group sets up the flood hazard
risk assessment model, involving hazard, vulnerability, exposure, and emergency response
capacity. In this study, a flood hazard risk zoning map of Huangshan City is completed
by combining the Soil Conservation Service (SCS) model with a Geographic Information
System (GIS)-based spatial analysis. The accuracies of the flood risk assessment are val-
idated in the fourth module by comparing the spatial distributions of flood hazard risk
levels and the impacts by “7 July 2020”. Lastly, policy recommendations developed from
the assessment outcomes are formulated in the fifth module to support disaster prevention
and mitigation efforts.
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3.2. DPSIR Framework

Urban flood disasters are examples of socio-environmental problems, engaging so-
cioeconomic conditions, environmental changes, land use planning, water environment
management, and climate change. With the complex interactions among these factors, it
is difficult to predict the probability and impacts of flood disasters, especially as climate
change adds complexity to the system. Currently, flood risk assessment methodologies lack
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standardized evaluation criteria, and there is no universally accepted framework for assess-
ment indicators [37]. Given this issue, the Organization for Economic Co-operation and
Development (OECD) introduced the Pressure-State-Response (PSR) framework [38], which
describes the relationships between human activities, resource utilization, environmental
changes, and management responses. Subsequently, the European Environment Agency
(EEA) expanded this model into the DPSIR framework (Figure 3) [39,40], which empha-
sizes “Driving Forces” as direct influencing factors and distinguishes between “State” and
“Impact” components. In this way, the analysis becomes more structured and systematic.
DPSIR framework with the ability to analyze causal relations of multidimensional complex
systems has been widely applied in environmental assessment (EE). Hence, the application
of the DPSIR paradigm in the assessment of urban flood disasters effectively clarifies the
interrelations of social, economic, ecological, and resource aspects. Such methodology
lays an experimental foundation for the management of flooding risk, enables quantitative
risk assessment, and assists in the formulation of prevention and mitigation strategies for
disasters [41].
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3.3. Random Forest Algorithm

RF is a machine learning algorithm that performs classification or regression analysis
by constructing multiple decision trees. It is one of the most accurate models for classifi-
cation predictions, consisting of decision trees and the Bagging (Bootstrap Aggregating)
algorithm [42]. Compared to other methods, RF has a lower generalization error and higher
prediction accuracy, allowing it to be well suited for problems with no prior knowledge,
nonlinear multivariable constraints, or incomplete datasets [43]. In this study, the RF
algorithm adopts historical rainstorm and flood disaster data from Huangshan City while
integrating multiple influencing factors for risk prediction. Each decision tree is trained on a
different subset of the data, and the final prediction result is determined through a majority
voting mechanism among all decision trees. The application of the RF algorithm enables
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effective quantification and spatial evaluation of flood hazard risks so as to reinforce the
accuracy and robustness of flood risk assessment [44].

During the data preparation stage, Bootstrap sampling is first conducted. This process
involves randomly selecting multiple subsets from the original dataset with replacement
and forming training sets. This procedure is repeated T times to generate T training subsets.
In flood hazard prediction, information gain and the Gini index are commonly used as
splitting criteria. Information gain measures the reduction in uncertainty (entropy) after a
feature is split to identify the most critical factors contributing to flood occurrence [44]. The
formula for information gain is expressed as the following:

Information Gain(IG) = H(D)−
m

∑
i=1

| Di |
| D | H(Di) (1)

where H(D) represents the uncertainty of dataset D; Di denotes the subsets generated after
splitting by a given feature; | D | and | Di | embody the number of samples in the original
dataset and the subset, respectively. The Gini index measures the impurity of a dataset,
and its calculation formula is

Gini(D) = 1 −
k

∑
i=1

p2
i (2)

where pi indicates the proportion of samples belonging to the ith class in the dataset, and k
stands for the total number of classes. At each decision tree node, the feature that either
minimizes the Gini index or maximizes information gain is selected in the Random Forest
algorithm to perform data splitting.

Once the decision trees are trained, the model enters the ensemble learning stage.
The Random Forest algorithm generates the final prediction by aggregating the results
of multiple decision trees [45]. Suppose there are T decision trees, and each tree predicts
the outcome

Land 2025, 14, x FOR PEER REVIEW 10 of 25 
 

algorithm enables effective quantification and spatial evaluation of flood hazard risks so 
as to reinforce the accuracy and robustness of flood risk assessment [44]. 

During the data preparation stage, Bootstrap sampling is first conducted. This pro-
cess involves randomly selecting multiple subsets from the original dataset with replace-
ment and forming training sets. This procedure is repeated T times to generate T training 
subsets. In flood hazard prediction, information gain and the Gini index are commonly 
used as splitting criteria. Information gain measures the reduction in uncertainty (en-
tropy) after a feature is split to identify the most critical factors contributing to flood oc-
currence [44]. The formula for information gain is expressed as the following: 

Information GainሺIGሻ = HሺDሻ − ෍ ∣ D୧ ∣∣ D ∣୫
୧ୀଵ HሺD୧ሻ (1) 

where HሺDሻ represents the uncertainty of dataset D; D୧ denotes the subsets generated 
after splitting by a given feature; ∣ D ∣ and ∣ D୧ ∣ embody the number of samples in the 
original dataset and the subset, respectively. The Gini index measures the impurity of a 
dataset, and its calculation formula is 

𝐺𝑖𝑛𝑖ሺ𝐷ሻ = 1 − ෍ 𝑝௜ଶ௞
௜ୀଵ  (2) 

where 𝑝௜ indicates the proportion of samples belonging to the 𝒾 th class in the dataset, 
and 𝑘 stands for the total number of classes. At each decision tree node, the feature that 
either minimizes the Gini index or maximizes information gain is selected in the Random 
Forest algorithm to perform data splitting. 

Once the decision trees are trained, the model enters the ensemble learning stage. The 
Random Forest algorithm generates the final prediction by aggregating the results of mul-
tiple decision trees [45]. Suppose there are T decision trees, and each tree predicts the out-
come ŷ௧ for a given sample x. Following a majority voting mechanism, the final predic-
tion ŷ  is determined by selecting the class with the highest occurrence frequency, ex-
pressed as the following: ŷ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒ሺŷଵ, ŷଶ, ⋯ , ŷ௧ሻ (3) 

For regression issues, the Random Forest algorithm determines the final prediction 
by computing the average of all decision trees’ predictions, expressed as follows: 

ŷ = 1𝑇 ෍ ŷ𝑡்
௧ୀଵ  (4) 

The predictions of all decision trees are aggregated, and the final output is deter-
mined by voting (for classification) or averaging (for regression). 

Regarding model evaluation, the Random Forest algorithm adopts out-of-bag (OOB) 
samples to assess performance. During training, some samples are not selected for a given 
decision tree and serve as OOB samples. These samples are employed for model valida-
tion, allowing for the computation of the OOB error. The formula for the OOB error rate 
is 

𝑂𝑂𝐵 𝐸𝑟𝑟𝑜𝑟 = 1𝑁ை௎் ෍ Ⅱሺŷ௜௢௨௧ ≠ 𝑦௢௨௧ሻே೚ೠ೟
௜ୀଵ  (5) 

where 𝑁௢௨௧ represents the number of out-of-bag samples; ŷ௜௢௨௧ designates the predicted 
result for the i th out-of-bag sample; 𝑦௢௨௧ describes the true label of that sample; II indi-
cates an indicator function that equals 1 if the predicted result differs from the true value 
and 0 otherwise. 

t for a given sample x. Following a majority voting mechanism, the final
prediction

Land 2025, 14, x FOR PEER REVIEW 10 of 25 
 

algorithm enables effective quantification and spatial evaluation of flood hazard risks so 
as to reinforce the accuracy and robustness of flood risk assessment [44]. 

During the data preparation stage, Bootstrap sampling is first conducted. This pro-
cess involves randomly selecting multiple subsets from the original dataset with replace-
ment and forming training sets. This procedure is repeated T times to generate T training 
subsets. In flood hazard prediction, information gain and the Gini index are commonly 
used as splitting criteria. Information gain measures the reduction in uncertainty (en-
tropy) after a feature is split to identify the most critical factors contributing to flood oc-
currence [44]. The formula for information gain is expressed as the following: 

Information GainሺIGሻ = HሺDሻ − ෍ ∣ D୧ ∣∣ D ∣୫
୧ୀଵ HሺD୧ሻ (1) 

where HሺDሻ represents the uncertainty of dataset D; D୧ denotes the subsets generated 
after splitting by a given feature; ∣ D ∣ and ∣ D୧ ∣ embody the number of samples in the 
original dataset and the subset, respectively. The Gini index measures the impurity of a 
dataset, and its calculation formula is 

𝐺𝑖𝑛𝑖ሺ𝐷ሻ = 1 − ෍ 𝑝௜ଶ௞
௜ୀଵ  (2) 

where 𝑝௜ indicates the proportion of samples belonging to the 𝒾 th class in the dataset, 
and 𝑘 stands for the total number of classes. At each decision tree node, the feature that 
either minimizes the Gini index or maximizes information gain is selected in the Random 
Forest algorithm to perform data splitting. 

Once the decision trees are trained, the model enters the ensemble learning stage. The 
Random Forest algorithm generates the final prediction by aggregating the results of mul-
tiple decision trees [45]. Suppose there are T decision trees, and each tree predicts the out-
come ŷ௧ for a given sample x. Following a majority voting mechanism, the final predic-
tion ŷ  is determined by selecting the class with the highest occurrence frequency, ex-
pressed as the following: ŷ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒ሺŷଵ, ŷଶ, ⋯ , ŷ௧ሻ (3) 

For regression issues, the Random Forest algorithm determines the final prediction 
by computing the average of all decision trees’ predictions, expressed as follows: 

ŷ = 1𝑇 ෍ ŷ𝑡்
௧ୀଵ  (4) 

The predictions of all decision trees are aggregated, and the final output is deter-
mined by voting (for classification) or averaging (for regression). 

Regarding model evaluation, the Random Forest algorithm adopts out-of-bag (OOB) 
samples to assess performance. During training, some samples are not selected for a given 
decision tree and serve as OOB samples. These samples are employed for model valida-
tion, allowing for the computation of the OOB error. The formula for the OOB error rate 
is 

𝑂𝑂𝐵 𝐸𝑟𝑟𝑜𝑟 = 1𝑁ை௎் ෍ Ⅱሺŷ௜௢௨௧ ≠ 𝑦௢௨௧ሻே೚ೠ೟
௜ୀଵ  (5) 

where 𝑁௢௨௧ represents the number of out-of-bag samples; ŷ௜௢௨௧ designates the predicted 
result for the i th out-of-bag sample; 𝑦௢௨௧ describes the true label of that sample; II indi-
cates an indicator function that equals 1 if the predicted result differs from the true value 
and 0 otherwise. 

is determined by selecting the class with the highest occurrence frequency,
expressed as the following:

Land 2025, 14, x FOR PEER REVIEW 10 of 25 
 

algorithm enables effective quantification and spatial evaluation of flood hazard risks so 
as to reinforce the accuracy and robustness of flood risk assessment [44]. 

During the data preparation stage, Bootstrap sampling is first conducted. This pro-
cess involves randomly selecting multiple subsets from the original dataset with replace-
ment and forming training sets. This procedure is repeated T times to generate T training 
subsets. In flood hazard prediction, information gain and the Gini index are commonly 
used as splitting criteria. Information gain measures the reduction in uncertainty (en-
tropy) after a feature is split to identify the most critical factors contributing to flood oc-
currence [44]. The formula for information gain is expressed as the following: 

Information GainሺIGሻ = HሺDሻ − ෍ ∣ D୧ ∣∣ D ∣୫
୧ୀଵ HሺD୧ሻ (1) 

where HሺDሻ represents the uncertainty of dataset D; D୧ denotes the subsets generated 
after splitting by a given feature; ∣ D ∣ and ∣ D୧ ∣ embody the number of samples in the 
original dataset and the subset, respectively. The Gini index measures the impurity of a 
dataset, and its calculation formula is 

𝐺𝑖𝑛𝑖ሺ𝐷ሻ = 1 − ෍ 𝑝௜ଶ௞
௜ୀଵ  (2) 

where 𝑝௜ indicates the proportion of samples belonging to the 𝒾 th class in the dataset, 
and 𝑘 stands for the total number of classes. At each decision tree node, the feature that 
either minimizes the Gini index or maximizes information gain is selected in the Random 
Forest algorithm to perform data splitting. 

Once the decision trees are trained, the model enters the ensemble learning stage. The 
Random Forest algorithm generates the final prediction by aggregating the results of mul-
tiple decision trees [45]. Suppose there are T decision trees, and each tree predicts the out-
come ŷ௧ for a given sample x. Following a majority voting mechanism, the final predic-
tion ŷ  is determined by selecting the class with the highest occurrence frequency, ex-
pressed as the following: ŷ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒ሺŷଵ, ŷଶ, ⋯ , ŷ௧ሻ (3) 

For regression issues, the Random Forest algorithm determines the final prediction 
by computing the average of all decision trees’ predictions, expressed as follows: 

ŷ = 1𝑇 ෍ ŷ𝑡்
௧ୀଵ  (4) 

The predictions of all decision trees are aggregated, and the final output is deter-
mined by voting (for classification) or averaging (for regression). 

Regarding model evaluation, the Random Forest algorithm adopts out-of-bag (OOB) 
samples to assess performance. During training, some samples are not selected for a given 
decision tree and serve as OOB samples. These samples are employed for model valida-
tion, allowing for the computation of the OOB error. The formula for the OOB error rate 
is 

𝑂𝑂𝐵 𝐸𝑟𝑟𝑜𝑟 = 1𝑁ை௎் ෍ Ⅱሺŷ௜௢௨௧ ≠ 𝑦௢௨௧ሻே೚ೠ೟
௜ୀଵ  (5) 

where 𝑁௢௨௧ represents the number of out-of-bag samples; ŷ௜௢௨௧ designates the predicted 
result for the i th out-of-bag sample; 𝑦௢௨௧ describes the true label of that sample; II indi-
cates an indicator function that equals 1 if the predicted result differs from the true value 
and 0 otherwise. 

= majority_vote
(

Land 2025, 14, x FOR PEER REVIEW 10 of 25 
 

algorithm enables effective quantification and spatial evaluation of flood hazard risks so 
as to reinforce the accuracy and robustness of flood risk assessment [44]. 

During the data preparation stage, Bootstrap sampling is first conducted. This pro-
cess involves randomly selecting multiple subsets from the original dataset with replace-
ment and forming training sets. This procedure is repeated T times to generate T training 
subsets. In flood hazard prediction, information gain and the Gini index are commonly 
used as splitting criteria. Information gain measures the reduction in uncertainty (en-
tropy) after a feature is split to identify the most critical factors contributing to flood oc-
currence [44]. The formula for information gain is expressed as the following: 

Information GainሺIGሻ = HሺDሻ − ෍ ∣ D୧ ∣∣ D ∣୫
୧ୀଵ HሺD୧ሻ (1) 

where HሺDሻ represents the uncertainty of dataset D; D୧ denotes the subsets generated 
after splitting by a given feature; ∣ D ∣ and ∣ D୧ ∣ embody the number of samples in the 
original dataset and the subset, respectively. The Gini index measures the impurity of a 
dataset, and its calculation formula is 

𝐺𝑖𝑛𝑖ሺ𝐷ሻ = 1 − ෍ 𝑝௜ଶ௞
௜ୀଵ  (2) 

where 𝑝௜ indicates the proportion of samples belonging to the 𝒾 th class in the dataset, 
and 𝑘 stands for the total number of classes. At each decision tree node, the feature that 
either minimizes the Gini index or maximizes information gain is selected in the Random 
Forest algorithm to perform data splitting. 

Once the decision trees are trained, the model enters the ensemble learning stage. The 
Random Forest algorithm generates the final prediction by aggregating the results of mul-
tiple decision trees [45]. Suppose there are T decision trees, and each tree predicts the out-
come ŷ௧ for a given sample x. Following a majority voting mechanism, the final predic-
tion ŷ  is determined by selecting the class with the highest occurrence frequency, ex-
pressed as the following: ŷ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒ሺŷଵ, ŷଶ, ⋯ , ŷ௧ሻ (3) 

For regression issues, the Random Forest algorithm determines the final prediction 
by computing the average of all decision trees’ predictions, expressed as follows: 

ŷ = 1𝑇 ෍ ŷ𝑡்
௧ୀଵ  (4) 

The predictions of all decision trees are aggregated, and the final output is deter-
mined by voting (for classification) or averaging (for regression). 

Regarding model evaluation, the Random Forest algorithm adopts out-of-bag (OOB) 
samples to assess performance. During training, some samples are not selected for a given 
decision tree and serve as OOB samples. These samples are employed for model valida-
tion, allowing for the computation of the OOB error. The formula for the OOB error rate 
is 

𝑂𝑂𝐵 𝐸𝑟𝑟𝑜𝑟 = 1𝑁ை௎் ෍ Ⅱሺŷ௜௢௨௧ ≠ 𝑦௢௨௧ሻே೚ೠ೟
௜ୀଵ  (5) 

where 𝑁௢௨௧ represents the number of out-of-bag samples; ŷ௜௢௨௧ designates the predicted 
result for the i th out-of-bag sample; 𝑦௢௨௧ describes the true label of that sample; II indi-
cates an indicator function that equals 1 if the predicted result differs from the true value 
and 0 otherwise. 

1,

Land 2025, 14, x FOR PEER REVIEW 10 of 25 
 

algorithm enables effective quantification and spatial evaluation of flood hazard risks so 
as to reinforce the accuracy and robustness of flood risk assessment [44]. 

During the data preparation stage, Bootstrap sampling is first conducted. This pro-
cess involves randomly selecting multiple subsets from the original dataset with replace-
ment and forming training sets. This procedure is repeated T times to generate T training 
subsets. In flood hazard prediction, information gain and the Gini index are commonly 
used as splitting criteria. Information gain measures the reduction in uncertainty (en-
tropy) after a feature is split to identify the most critical factors contributing to flood oc-
currence [44]. The formula for information gain is expressed as the following: 

Information GainሺIGሻ = HሺDሻ − ෍ ∣ D୧ ∣∣ D ∣୫
୧ୀଵ HሺD୧ሻ (1) 

where HሺDሻ represents the uncertainty of dataset D; D୧ denotes the subsets generated 
after splitting by a given feature; ∣ D ∣ and ∣ D୧ ∣ embody the number of samples in the 
original dataset and the subset, respectively. The Gini index measures the impurity of a 
dataset, and its calculation formula is 

𝐺𝑖𝑛𝑖ሺ𝐷ሻ = 1 − ෍ 𝑝௜ଶ௞
௜ୀଵ  (2) 

where 𝑝௜ indicates the proportion of samples belonging to the 𝒾 th class in the dataset, 
and 𝑘 stands for the total number of classes. At each decision tree node, the feature that 
either minimizes the Gini index or maximizes information gain is selected in the Random 
Forest algorithm to perform data splitting. 

Once the decision trees are trained, the model enters the ensemble learning stage. The 
Random Forest algorithm generates the final prediction by aggregating the results of mul-
tiple decision trees [45]. Suppose there are T decision trees, and each tree predicts the out-
come ŷ௧ for a given sample x. Following a majority voting mechanism, the final predic-
tion ŷ  is determined by selecting the class with the highest occurrence frequency, ex-
pressed as the following: ŷ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒ሺŷଵ, ŷଶ, ⋯ , ŷ௧ሻ (3) 

For regression issues, the Random Forest algorithm determines the final prediction 
by computing the average of all decision trees’ predictions, expressed as follows: 

ŷ = 1𝑇 ෍ ŷ𝑡்
௧ୀଵ  (4) 

The predictions of all decision trees are aggregated, and the final output is deter-
mined by voting (for classification) or averaging (for regression). 

Regarding model evaluation, the Random Forest algorithm adopts out-of-bag (OOB) 
samples to assess performance. During training, some samples are not selected for a given 
decision tree and serve as OOB samples. These samples are employed for model valida-
tion, allowing for the computation of the OOB error. The formula for the OOB error rate 
is 

𝑂𝑂𝐵 𝐸𝑟𝑟𝑜𝑟 = 1𝑁ை௎் ෍ Ⅱሺŷ௜௢௨௧ ≠ 𝑦௢௨௧ሻே೚ೠ೟
௜ୀଵ  (5) 

where 𝑁௢௨௧ represents the number of out-of-bag samples; ŷ௜௢௨௧ designates the predicted 
result for the i th out-of-bag sample; 𝑦௢௨௧ describes the true label of that sample; II indi-
cates an indicator function that equals 1 if the predicted result differs from the true value 
and 0 otherwise. 

2, . . . ,

Land 2025, 14, x FOR PEER REVIEW 10 of 25 
 

algorithm enables effective quantification and spatial evaluation of flood hazard risks so 
as to reinforce the accuracy and robustness of flood risk assessment [44]. 

During the data preparation stage, Bootstrap sampling is first conducted. This pro-
cess involves randomly selecting multiple subsets from the original dataset with replace-
ment and forming training sets. This procedure is repeated T times to generate T training 
subsets. In flood hazard prediction, information gain and the Gini index are commonly 
used as splitting criteria. Information gain measures the reduction in uncertainty (en-
tropy) after a feature is split to identify the most critical factors contributing to flood oc-
currence [44]. The formula for information gain is expressed as the following: 

Information GainሺIGሻ = HሺDሻ − ෍ ∣ D୧ ∣∣ D ∣୫
୧ୀଵ HሺD୧ሻ (1) 

where HሺDሻ represents the uncertainty of dataset D; D୧ denotes the subsets generated 
after splitting by a given feature; ∣ D ∣ and ∣ D୧ ∣ embody the number of samples in the 
original dataset and the subset, respectively. The Gini index measures the impurity of a 
dataset, and its calculation formula is 

𝐺𝑖𝑛𝑖ሺ𝐷ሻ = 1 − ෍ 𝑝௜ଶ௞
௜ୀଵ  (2) 

where 𝑝௜ indicates the proportion of samples belonging to the 𝒾 th class in the dataset, 
and 𝑘 stands for the total number of classes. At each decision tree node, the feature that 
either minimizes the Gini index or maximizes information gain is selected in the Random 
Forest algorithm to perform data splitting. 

Once the decision trees are trained, the model enters the ensemble learning stage. The 
Random Forest algorithm generates the final prediction by aggregating the results of mul-
tiple decision trees [45]. Suppose there are T decision trees, and each tree predicts the out-
come ŷ௧ for a given sample x. Following a majority voting mechanism, the final predic-
tion ŷ  is determined by selecting the class with the highest occurrence frequency, ex-
pressed as the following: ŷ = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝑣𝑜𝑡𝑒ሺŷଵ, ŷଶ, ⋯ , ŷ௧ሻ (3) 

For regression issues, the Random Forest algorithm determines the final prediction 
by computing the average of all decision trees’ predictions, expressed as follows: 

ŷ = 1𝑇 ෍ ŷ𝑡்
௧ୀଵ  (4) 

The predictions of all decision trees are aggregated, and the final output is deter-
mined by voting (for classification) or averaging (for regression). 

Regarding model evaluation, the Random Forest algorithm adopts out-of-bag (OOB) 
samples to assess performance. During training, some samples are not selected for a given 
decision tree and serve as OOB samples. These samples are employed for model valida-
tion, allowing for the computation of the OOB error. The formula for the OOB error rate 
is 

𝑂𝑂𝐵 𝐸𝑟𝑟𝑜𝑟 = 1𝑁ை௎் ෍ Ⅱሺŷ௜௢௨௧ ≠ 𝑦௢௨௧ሻே೚ೠ೟
௜ୀଵ  (5) 

where 𝑁௢௨௧ represents the number of out-of-bag samples; ŷ௜௢௨௧ designates the predicted 
result for the i th out-of-bag sample; 𝑦௢௨௧ describes the true label of that sample; II indi-
cates an indicator function that equals 1 if the predicted result differs from the true value 
and 0 otherwise. 

t

)
(3)

For regression issues, the Random Forest algorithm determines the final prediction by
computing the average of all decision trees’ predictions, expressed as follows:
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Regarding model evaluation, the Random Forest algorithm adopts out-of-bag (OOB)
samples to assess performance. During training, some samples are not selected for a given
decision tree and serve as OOB samples. These samples are employed for model validation,
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where Nout represents the number of out-of-bag samples;
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an indicator function that equals 1 if the predicted result differs from the true value and
0 otherwise.

Additionally, Random Forest can compute feature importance. The algorithm can
assign an importance score to each feature by analyzing each feature’s contribution to
model performance during the tree-splitting process. Feature importance is generally
calculated upon the decrease in the Gini index, expressed as the following:

Feature Importancej =
T

∑
t=1

∑
n∈t

(
Nn

N

)
∆Ginin (6)

where Nn represents the number of samples in node n; ∆Ginin denotes the decrease in the
Gini index provoked by the splitting of feature j at node n; and N embodies the total number
of samples. Through these calculations, Random Forest can identify the most influential
features affecting flood hazard prediction results. This capability assists in effective feature
selection and model optimization for flood risk assessment.

3.4. SCS-CN Model

The SCS-CN model (Soil Conservation Service Curve Number method) is a hydrolog-
ical model utilized to estimate runoff volume based on factors such as rainfall, soil type,
land use, and vegetation cover. In this study, the SCS-CN model is applied. Specifically,
the Curve Number (CN) values to different regions of Huangshan City are assigned, and
runoff volume is calculated based on rainfall data to assess flood risk. The fundamental
equation is

Q =
(P − Ia)

2

P − Ia + S
(7)

where Q represents the runoff volume (mm), which is the surface runoff generated by
rainfall during a storm event; P denotes the precipitation (mm), indicating the total rainfall
depth; and Ia embodies the initial abstraction, namely, the amount of rainfall intercepted,
evaporated, or infiltrated by soil and vegetation before runoff occurs, typically assumed
to be 20% of the potential maximum retention S, i.e., Ia = 0.2 S. Additionally, S stands for
the potential maximum retention (mm), revealing the maximum amount of water that can
be absorbed by soil and vegetation during a rainfall event. It is determined by the Curve
Number (CN). The equation for S is

S =
25, 400

CN
− 254 (8)

where CN denotes the Curve Number, ranging from 0 to 100, indicating the combined effects
of soil permeability, land use type, and vegetation cover within the watershed. A higher
CN value suggests greater runoff generation and lower infiltration and retention capacity.
Conversely, a lower CN value reflects that more rainfall is absorbed and intercepted by the
soil, resulting in less runoff.

In this study, the SCS-CN model is applied to flood hazard risk assessment in Huang-
shan City. The model calculates runoff volumes for different areas by collecting regional
precipitation data and integrating soil type, land use, and vegetation cover information.
These calculations help identify flood-prone regions, providing a scientific basis for flood
prevention and disaster response planning.
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4. Results
4.1. Weighting of the Flood Hazard Evaluation Indicator System

As analyzed above, flood disasters stem from the interaction of multiple factors.
In recent years, researchers have proposed various flood hazard evaluation indicator
systems, typically incorporating factors such as precipitation intensity and frequency,
meteorological conditions, hydrographic density, land use changes, population distribution,
and infrastructure vulnerability. In this study, flood characteristics in Huangshan City,
Anhui Province, are examined to analyze the influencing factors of flood subsystems from
the perspectives of driving forces, pressures, states, impacts, and responses. Following
this analysis, expert consultations are conducted, and then 11 indicators are selected for
constructing the flood hazard evaluation system (Table 2). The selection of these indicators
is based on the following considerations. First, Huangshan City experiences frequent and
heavy rainfall, making precipitation intensity and annual rainfall crucial flood-inducing
factors. Where there is a dense network of rivers and a large watershed coverage, the water
basin covers a high area, and thus there are more users. It has high mountains and areas
where water may accumulate, increasing the chances of flooding even more. Urbanization
can change the capacity of water discharge, while flood control concrete (reservoir capacity,
drainage) acts as a barrier to flooding. Furthermore, population density, vulnerability of
infrastructure, and economic losses are included to evaluate the more general effects of
floods concerning society and the economy. Through the combination of these factors, the
multi-factor evaluation system provides a comprehensive assessment of flood hazard risk
in Huangshan City.

In disaster risk assessment, the selection of evaluation indicators typically depends on
four key assessment factors: hazard, exposure, vulnerability, and response capacity [46].
These factors reflect the probability of disaster occurrence, the affected population and
assets, the extent of social and economic damage, and the ability of communities and
governments to respond to disasters, respectively. With these four key factors, the 11 indi-
cators selected by the DPSIR framework are categorized accordingly, and their weights are
determined. In addition, indicators at the same level are compared in pairs to assign values
upon their relative importance. The weight of each indicator is calculated through the
Analytic Hierarchy Process (AHP) to ultimately derive the composite weights for different
levels (Table 3) [36].

Table 3. Flood hazard risk assessment indicators and weights for Huangshan City.

Major Factor Major Factor
Weight

Impact on
Flood Risk Indicator Level

Indicator Weight
Within Major

Factor
Overall Weight

Hazard
Factor 0.36

+

Precipitation 1 0.36

Exposure
Factor 0.35

Water area ratio 0.25 0.0875
Elevation 0.22 0.077

Urbanization rate 0.35 0.1225
Vegetation coverage 0.18 0.063

Vulnerability
Factor

0.17
Population density 0.25 0.0425
Arable land ratio 0.30 0.0510

Direct economic losses 0.55 0.0935

Response
Capacity

Factor
0.12

−
GDP 0.36 0.0432

Road network density 0.49 0.0588
Municipal flood control
investment per unit area 0.15 0.0180
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Huangshan City’s 2020 flood disaster data (training set) are analyzed by the Random
Forest (RF) algorithm to effectively measure the significance of each indicator in flood
hazard assessment and to construct a more scientific urban flood risk evaluation system.
The RF model training parameters include the number of classification trees and node
branches. As the number of trees increases, the model becomes more stable. As suggested
through multiple rounds of testing, the model achieves optimal performance when the
number of classification trees is set to 300 and the number of node branches is set to three.

As revealed by analyzing the contribution of each factor to flood hazard risk, precip-
itation during the flood season and direct economic losses from disasters exhibited the
strongest significance and had the greatest impact. In contrast, elevation, urbanization rate,
GDP, per capita arable land area, water area ratio, vegetation coverage, and municipal flood
control investment per unit area were of relatively lower importance (Figure 4). Moreover,
urban flood disasters were less influenced by population density and road network density
in built-up areas, with their combined impact on actual flood risk accounting for less
than 10%.
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4.2. Hazard Analysis Results

Watershed delineation and SCS model results, as well as historical rainfall data, river
network information, and hydrological records, demonstrate that the potential flood inun-
dation areas were identified, and risk levels were classified (Figure 5). The flood inundation
risk was categorized into five levels: high risk, moderately high risk, moderate risk, moder-
ately low risk, and low risk.
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4.3. Exposure Analysis Results

With precipitation, water body proximity, slope, and vegetation coverage as weighted
indicators, the raster calculation function in ArcGIS (10.8) was applied to generate a compre-
hensive weighted zoning map. Afterward, the Natural Breaks (Jenks) classification method
was employed to categorize Huangshan City’s environmental exposure to flood hazards
into five levels: low exposure, moderately low exposure, moderate exposure, moderately
high exposure, and high exposure (Figure 6).
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4.4. Vulnerability Analysis Results

With population density and arable land ratio as the primary indicators, the raster
calculation function in ArcGIS 10.8 was applied for weighted overlay analysis. By the
Natural Breaks (Jenks) classification method, the vulnerability of the disaster environment
was categorized into five levels: low vulnerability, moderately low vulnerability, moderate
vulnerability, moderately high vulnerability, and high vulnerability (Figure 7).
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4.5. Response Capacity Analysis Results

With per capita GDP and road network density distribution data for Huangshan City,
the raster calculation function in ArcGIS 10.8 was applied to perform weighted overlay
analysis. By the Natural Breaks (Jenks) classification method, the disaster prevention and
mitigation capacity were categorized into five levels (Figure 8).
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4.6. Comprehensive Rainstorm and Flood Hazard Analysis Results

With the flood hazard risk assessment model and the weighted comprehensive evalu-
ation method, the four assessment factors were assigned weights and combined through
weighted calculation. Finally, the rainstorm and flood hazard risk levels in Huangshan City
were classified into five levels (Figure 9) [47].

4.7. Validation of the Flood Risk Assessment Model Accuracy

The accuracy of the flood hazard risk assessment was verified by comparing the
spatial distribution of flood risk levels in Huangshan City (Figures 5–9) with the im-
pact of the “7 July 2020” flood event (Figure 10) [48]. Significant variations in flood
risk levels across different regions of Huangshan City can be observed from the “Di-
rect Economic Loss Distribution Map” (top-left corner of Figure 10). Among them, the
northern areas of Huangshan District, Huizhou District, and Shexian County (deep red
areas) suffered the most severe economic losses, reaching a value of 21.64, which was
markedly higher than that in other regions. This distribution closely aligns with the spatial
patterns of other influencing factors, further validating the reliability of the flood risk
assessment model.
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5. Discussion
5.1. Results of Random Forest Algorithm and SCS-Based Rain and Flood Hazard Risk Assessment
and Zoning

Hazard analysis is a core step in flood risk assessment and zoning using GIS and
the SCS model. First, a Digital Elevation Model (DEM) was used to delineate watersheds
within the study area. Watershed analysis was conducted through the hydrological analysis
module in GIS, and Huangshan City was divided into six watersheds [36].

Next, an SCS model database was established. The CN values corresponding to
different areas in Huangshan City were determined following the Curve Number (CN)
lookup table from the SCS model (Table 4). Additionally, the 5-year, 10-year, 20-year,
50-year, and 100-year return period rainfall amounts were calculated as 80.2 mm, 98.6 mm,
118.5 mm, 144.7 mm, and 165.8 mm, respectively, based on the Pearson Type III distribution
curve [36]. The area-weighted average CN value for each watershed was calculated with the
rainfall data for different return periods and the six delineated watersheds in Huangshan
City. Finally, with the runoff calculation formula from the SCS model, the rainwater runoff
volume, and total water volume for each watershed were determined by the corresponding
CN values and rainfall data for different return periods.

Table 4. SCS model parameters.

Soil Type Farmland Grassland Forest Urban
Built-Up Area

Type A Soil 65 39 30 77
Type B Soil 75 61 55 85
Type C Soil 83 74 70 90
Type D Soil 87 80 77 95
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The hazard classification was obtained from the watershed delineation and SCS model
results. The analysis suggests that moderate-risk areas account for 26.64%, while moder-
ately high-risk areas occupy 14.23%. High-risk areas have the smallest proportion of 4.86%
and are mainly distributed in southern Xiuning County and Shexian County, as well as
northern Qimen County and central Yixian County. Low-risk areas account for 23.83%.
Flood inundation zones are concentrated along the Xin’an River Basin, primarily affecting
Tunxi District, Shexian County, Qimen County, Xiuning County, and Yixian County.

Additionally, exposure analysis was conducted. Proximity to water bodies is a key
indicator for evaluating flood exposure because areas near rivers and water bodies are
more vulnerable to flooding, especially during heavy rainfall or rising river levels. With
ArcGIS 10.8, buffer zones for major rivers and lakes in Huangshan City were generated to
create a water body proximity distribution map (Figure 6a). The results imply that Xiuning
County and Yixian County are primarily located near rivers and water bodies, allowing
them to be more susceptible to flood impacts during heavy rainfall events. Furthermore,
precipitation levels were analyzed as another critical factor. Figure 8b demonstrates that
the southern and central parts of Huangshan City are subject to significant precipitation,
leading to their increased flood risk potential.

Slope directly influences rainfall runoff velocity and accumulation processes. A slope
distribution map was generated by slope analysis (Figure 6c). The results unveil that central
Huangshan City, as well as parts of the southeastern and northern regions, have relatively
low slopes and are close to rivers. These areas are vulnerable to increased river levels and
subsequent flooding during long periods of rainfall. In contrast, southern parts, especially
Shexian County and Qimen County, have more pedestrians and greater susceptibility to
flash floods and debris flow owing to steep slopes.

Lastly, the distribution of vegetation coverage is also crucial in the retention of soil
water and the formation of floods. Areas with good vegetation are adopted to reduce
surface runoff, assisting in mitigating the risk of flooding. Meanwhile, areas with little
vegetation are more susceptible to flooding. An NDVI distribution map was generated
by calculating the Normalized Difference Vegetation Index (NDVI) from remote sensing
imagery (Figure 6d). Huangshan City maintains a relatively high vegetation coverage rate
and good vegetation, which can protect the soil, maintain water and soil, and regulate the
hydrological process. Nevertheless, complex terrain, soil saturation, and other conditions
play a counterproductive role in the regional cover vegetation, so as to exacerbate flood
disaster risk.

As exhibited in the exposure classification map (Figure 6), moderate-high-risk and
high-risk areas are mainly concentrated in the southeastern, northern, and part of the
central region of Huangshan City, which is included in Qimen County, Shexian County,
and Huangshan District. With a dense river network and relatively low slopes, these areas
are very sensitive to prompt flood disasters.

Furthermore, the vulnerability analysis was conducted. The vulnerability of the
affected areas is directly proportional to population density and the proportion of cultivated
land [36]. Figure 7a,b illustrate the distribution of population density and cultivated
land ratio in Huangshan City. As observed from the vulnerability classification map
(Figure 7), areas with high and relatively high vulnerability are primarily concentrated in
the southeastern part of Huangshan City, including Tunxi District, Shexian County, and
Huizhou District. These areas have high population density and a larger proportion of
cultivated land. From another perspective, regions with low and relatively low vulnerability
are located in the northern and southwestern parts of the city, where population density
is low and cultivated land proportion is smaller, such as Qimen County, Yi County, and
Huangshan District.
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Finally, the response capacity was analyzed with per capita GDP and road density as
quantitative variables that can indicate the capacity of the university region to respond to
disasters in relevant forms such as infrastructure and economic circumstances. The stronger
the ability to provide economic support for disaster response, the higher the per capita
GDP, and the denser the road network, contributing to improving disaster prevention and
mitigation capacity. In Huangshan City, per capita GDP and road density distributions are
plotted in Figure 8a,b. The response capacity classification map (Figure 8) demonstrates
that regions such as Tunxi District, Huizhou District, and parts of Qimen County and Yi
County have higher per capita GDP and denser road networks, indicating a strong disaster
response capacity. In contrast, the southeastern part of Shexian County and most of the
western areas of Huangshan City are economically underdeveloped, with relatively weaker
infrastructure and poor disaster response capacity.

After the quantitative analysis of the four evaluation factors, each factor was reclas-
sified by ArcGIS 10.8. With the disaster risk evaluation model and the weighted com-
prehensive evaluation method, the raster calculator was employed to perform weighted
calculations according to the weights of the four factors. By the Natural Breaks classification
method, the rainstorm flood disaster risk in Huangshan City is classified into five levels:
low risk, low-medium risk, medium risk, high-medium risk, and high risk (Figure 11).
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5.2. Regulation Countermeasures

The severity of urban flood disasters is closely related to factors such as rainfall,
topography, economic level, land use, flood control investment, and emergency capabilities.
A single flood control strategy is insufficient to address complex environmental challenges.
Modern flood management emphasizes basin water resource planning and multi-level
policy coordination [49]. Countries such as the Netherlands and Mexico are exploring new
models of integrated flood management [19,50] while advocating for flood control measures
that align with the principle of multi-dimensional, multi-factor coordinated development
across social, economic, and ecological domains. Through the flood disaster risk assessment
results for Huangshan City, this study effectively reduces flood risks in Huangshan City by
improving urban infrastructure, promoting regional ecological and economic development,
and strengthening disaster prevention and emergency rescue capabilities [51].

Firstly, infrastructure improvements in Huangshan City suggest that factors such as
municipal flood control investment and vegetation coverage significantly impact urban
waterlogging. Drainage facilities should be built to form a rainwater drainage system in
Huangshan City with converging pipelines, pumping stations, and other facilities to pump
out excess water. In addition, a drainage well with city storm drainage should be repaired to
ensure that drainage is unobstructed. Impervious surface coverage should be limited. Per-
meable pavements and building materials as well as reductions in hardened areas should
be encouraged. Moreover, it is also a response to sponge city, which advocates for the de-
velopment of green infrastructure featuring permeable surfaces, greenways, watercourses,
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and wetlands to improve flood control and drainage. Furthermore, it is a cross-disciplinary
work that should cooperate with various sectors to safeguard the ecosystem.

Per capita GDP, population density, urbanization rate, land use, and other indicators
are important for the coordination of the economy and ecology regarding the sustainable
development of the economy and ecology in regions. As a resources-based city, Huangshan
is more confronted with the contradiction of eco-protection and econo-development, which
requires green development and ecological civilization. The government must promote
unique industries including eco-tourism, agriculture, and green industries. They will also
facilitate regional economic connections by enhancing transport links to surrounding cities
and strengthening transportation in mountain and remote areas. Flooding will become
more severe because of urban sprawl with increasing land development pressure. Thus,
reasonable land use planning should be implemented, and large-scale development of
flood-prone areas should be avoided. Urban waterlogging can potentially be avoided
through adequate land-use planning and better drainage systems [52].

Concerning ecological protection, the mountainous areas are ecologically fragile, with
severe soil erosion and overdevelopment in some regions. The government should inten-
sify ecological restoration efforts by converting farmland to forests, planning ecological
land use carefully, combating soil erosion, and focusing on green development. Opti-
mizing infrastructure and industrial layout will contribute to sustainable development
and effective flood disaster prevention. Factors such as rainfall during the flood season,
low-lying topography, and emergency response capabilities are critical in disaster pre-
vention and response. At present, non-structural flood control measures in Huangshan
are underdeveloped, particularly in addressing sudden urban waterlogging events. It is
necessary to strengthen waterlogging monitoring and early warning systems, develop
real-time monitoring platforms, and improve public awareness and self-rescue capabili-
ties. The government should also enhance the emergency management system, promote
inter-departmental collaboration, and invest in infrastructure development in flood-prone
areas to better manage extreme weather events. Huangshan City can effectively reduce
flood risks and safeguard the lives and property of its citizens by improving emergency
management, disaster monitoring, and public disaster preparedness.

6. Conclusions
In 2021, the People’s Government of Anhui Province approved the Huangshan City

Land Spatial Master Plan (2021–2035), marking a new phase in the accelerated urban
integration of Huangshan. However, the city is encountering increasing pressure in flood
disaster management with global climate change and rapid urbanization. In this study, a
flood disaster risk management system was constructed based on the DPSIR framework,
and Random Forest analysis was performed to identify 11 key indicators for assessing flood
risk in Huangshan. GIS and the SCS model were applied for zoning and verification, and
the “7 July 2020” flood event served as a case study to validate the accuracy of the model’s
results. The assessment results are presented by ArcGIS. The main research conclusions are
summarized as follows.

The findings suggest that seasonal rainfall and topographical diversity are the primary
driving factors for flood disasters in Huangshan, particularly in low-lying areas where
heavy rainfall generally induces severe waterlogging. The conflict between population
growth and land resource scarcity has intensified with the acceleration of urbanization.
Flood risks are aggravated by the slow construction of flood control infrastructure and
low drainage capacity. Additionally, there are still weak flood control capabilities in small
and medium-sized rivers in the Huangshan watershed, and the slow construction of flood
detention areas has not effectively mitigated flood disasters.
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Three main methods were proposed to prevent and reduce the risk of flood dis-
asters: (1) optimizing urban infrastructure, reflecting that drainage systems should be
improved and maintained to strengthen the flood control capacity of the city; (2) pro-
moting regional ecological economic development, indicating that peasants should be
supported for their investments in ecological agriculture and that local eco-tourism should
be promoted to increase green areas and help optimize the urban ecological environment;
(3) strengthening disaster prevention and emergency response mechanisms, implying that
emergency response plans should be revised to improve response capabilities and optimize
resource allocation.

In the future, with the advancement of data technology and climate models, research
can further expand evaluation indicators by incorporating factors such as land use changes,
soil types, and long-term climate trends, while exploring advanced methods like deep
learning to improve the accuracy of risk prediction and the interpretability of mechanisms.
Urban planners can utilize the research findings to optimize the design of drainage systems
and flood control infrastructure. Environmental scientists can build on the assessment
methods to study the impacts of climate change. Emergency management personnel can
refine contingency plans and response mechanisms, while policymakers can formulate
scientifically informed flood control policies based on the conclusions.

However, this study has certain limitations. First, the selection of evaluation indica-
tors remains somewhat constrained. Additional factors, such as land use changes, soil
types, and long-term climate change trends, should be considered in future research to
enhance the comprehensiveness and accuracy of the assessment. Second, the Random
Forest and SCS-CN models, though they performed well in risk evaluations, have limita-
tions in revealing the underlying mechanisms of flood occurrence. Thus, more advanced
machine learning techniques, such as deep learning, could be explored in future studies
to improve the accuracy of risk predictions and the explanatory power of flood mecha-
nisms. With the continuous advancement of data technology and climate models, these
limitations should be overcome to more precisely support flood disaster risk management
in Huangshan.
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Appendix A

Table A1. Historical Flood Disaster Statistics in Huangshan City.

Event Time Impact Description

1954 Flood May–July

Rainfall reached 1620 mm, accounting for 67% of the annual total.
Affected 256 townships in Huizhou Prefecture, with a disaster area
of 147,000 mu. Destroyed 3068 hydraulic engineering structures
and 710 houses, washing away 52,000 cubic meters of timber. The
peak flood response involved 61,000 people.

“5 July 1969” Flood July

The most severe flood disaster in Huizhou Prefecture since the
founding of the People’s Republic of China. The flood affected
252,000 mu of land, with peak flood response mobilization reaching
183,100 people. Shexian County suffered the most severe losses,
including damage to ancient bridges and the destruction of several
hydraulic projects, such as the Lianchuan Reservoir.

July 1991 Flood July

Concentrated around the Huangshan area, where the scenic region
experienced an exceptionally rare torrential downpour, with
cumulative rainfall exceeding 700 mm in seven days. Yixian County
recorded the second-highest rainfall, ranging from 500 to 700 mm.

July 1996 Flood June–July

The entire city experienced extreme rainfall, with precipitation
exceeding 450 mm in all areas. The highest recorded rainfall was
663 mm in Sanyang, Shexian County, followed by 602 mm in Jilian,
Yixian County, 568 mm in Qimen County, and 583 mm in
Huangshan District. Extensive flooding along both banks of the
Xin’an River.

May 2006 Flood May–May A once-in-50-year torrential rain event affected 670,000 people and
caused direct economic losses of 366 million yuan.

June 2011 Flood June–June

Four consecutive heavy rainfall events led to an average citywide
precipitation of 661.1 mm. The heaviest rainfall occurred in
southern Xiuning County (Wangcun, Banqiao, Chenxia, Tunxi, and
Wangcun in Shexian County). The highest recorded station,
Banqiao Town in Xiuning, reached 959.7 mm, with eight other
stations exceeding 800 mm.

“30 June 2013” Flood June

The flood center was located upstream of Fengle Reservoir in
Huizhou District. Affected 133,000 people citywide. Torrential
rains caused 10 reservoirs, including Fengle Reservoir, to exceed
flood control limits, with six reservoirs overflowing. Mountain
floods and landslides occurred in Huizhou District, leading to
severe damage.

“7 July 2020” Flood June–July

The city endured five consecutive heavy rain and flood events, with
precipitation reaching 2.2 times the historical average for the same
period. The 484-year-old Zhenhai Bridge (Old Bridge) in Tunxi was
severely damaged by floodwaters. Shexian County experienced a
once-in-50-year flood event, trapping over 1000 students in various
parts of the county, leading to the postponement of the Chinese and
Mathematics Gaokao exams originally scheduled for July 7.

“20 June 2024” Flood June–June
Huangshan City upgraded its flood emergency response to Level II.
Over 206,000 people were affected, with 164,000 mu of farmland
suffering flood damage.
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