Six Decades of Rural Landscape Transformation in Five Lebanese Villages
<p>Methodological approach to combine primary and secondary data collection for this study.</p> "> Figure 2
<p>Map of selected villages from five agroecological zones in Lebanon. (<b>a</b>) Tal Abbass (El Gharbi) in the northern zone; (<b>b</b>) El Abde in the coastal zone; (<b>c</b>) Mikrak in the Bekaa zone; (<b>d</b>) Batloun in the Mount Lebanon zone; (<b>e</b>) Sinay in the southern zone. Sources: Global Administrative Areas Database (GADM), Environmental Systems Research Institute (ESRI), and United States Geological Survey (USGS) assessed in August 2024 using ArcGIS Pro 3.2.0.</p> "> Figure 3
<p>LULC class variations in the five villages from 1962 to 2023 (percentage out of 100) in five agroecological zones of Lebanon.</p> "> Figure 4
<p>Spatial LULC change in Sinay village (Lebanon) based on high-resolution landscape maps (1962 and 2014) and 2023 Sentinel-2A satellite data: (<b>a</b>) 1962; (<b>b</b>) 2014; and (<b>c</b>) 2023.</p> "> Figure 5
<p>Urbanization rate in the five Lebanese villages studied.</p> "> Figure 6
<p>Sanky diagram showing the change in the number of patches in Tal Abbass, Lebanon (manual input via <a href="http://sankeymatic.com" target="_blank">sankeymatic.com</a>).</p> "> Figure 7
<p>LULC change in Mikrak village (Lebanon) derived from high-resolution landscape maps (1962 and 2014) and 2023 Sentinel-2A satellite data: (<b>a</b>) 1962; (<b>b</b>) 2014; and (<b>c</b>) 2023.</p> "> Figure 8
<p>Variation in farmers’ perceptions of the availability and accessibility of water resources across villages in Lebanon The box plot shows vertical lines (whiskers) representing the data range, horizontal lines for the median, and “x” marks for the mean of farmer perceptions.</p> "> Figure 9
<p>Predicted variation in land use change versus education in five villages of Lebanon. The blue line indicates the fitted regression line and the gray distances from the regression line show the respective confidence intervals.</p> "> Figure 10
<p>The variation in the logistic regression coefficients (n = 151) in five villages of Lebanon. The blue points represent the coefficient estimates for variables, while the horizontal lines indicate the confidence intervals around these estimates.</p> "> Figure 11
<p>Trends in the export value of fruits from Lebanon to global markets (source: Ministry of Economy and Trade (Lebanon) and the International Trade Center (ITC)).</p> "> Figure A1
<p>Spatial LULC change in Tal Abbass (Lebanon): (<b>a</b>) 1962; (<b>b</b>) 2014; and (<b>c</b>) 2023.</p> "> Figure A2
<p>Spatial LULC change in El Abde (Lebanon): (<b>a</b>) 1962; (<b>b</b>) 2014; and (<b>c</b>) 2023.</p> "> Figure A3
<p>Spatial LULC change in Batloun (Lebanon): (<b>a</b>) 1962; (<b>b</b>) 2014; and (<b>c</b>) 2023.</p> "> Figure A4
<p>Variation in the landscape metrics of five villages in Lebanon using Fragstat 4.0 (1962–2023): (<b>a</b>) number of patches (NP); (<b>b</b>) mean patch size (MPS).</p> ">
Abstract
:1. Introduction
- How have LULC patterns in rural Lebanon evolved in response to major events such as the Lebanese Civil War (1975), the Syrian conflict (2011), and the economic collapse (2019)? How have urbanization and agricultural trends in rural villages shifted over time? What happened to the natural land cover during that time?
- What are the dominant landscape change processes in rural Lebanon’s natural landscape, and what changes can landscape metrics reflect?
- How did local socio-economic and environmental pressures affect agricultural transformation in Lebanese villages?
2. Materials and Methods
2.1. Study Sites and Temporal Frame
- Tal Abbass (El Gharbi) is part of Central Akkar that expands along the Al-Estwan River. It covers an area of 400 hectares (ha), has a semi-arid climate at an altitude range of 30 to 60 m, an average total annual precipitation of 784 mm, and an average monthly temperature ranging from 15 to 32 °C. The main grown crops are potato (Solanum tuberosum L.), wheat (Triticum aestivum L.), vegetables, and fruits like olive (Olea europaea L.) and citrus (Citrus medica L.). In 2011, Syrian refugees settled in the region, adding to its socio-economic changes and environmental pressure.
- El Abde is in the northern coastal zone near the ancient Phoenician port of Ibirta. It hosts the Nahr el Bared Palestinian refugee camp. The village covers an administrative area of 400 ha at an elevation range of 2 to 51 m. The village receives an average annual precipitation of 750 mm and has an average monthly temperature from 16 to 33 °C. The village is known for its diverse agricultural production. Wheat is the major crop, but the village is also known for widespread greenhouses, where a variety of vegetables are grown. In addition, the village has a range of fruit orchards including citrus.
- Mikrak is a village located in the arid Bekaa zone. It covers an area of 1450 ha at an elevation of 961 to 1032 m. It has an average annual precipitation of 580 mm and an average monthly temperature range of 10 to 34 °C. Mikrak is renowned for hosting large sheep and goat flocks, as its vast rangelands and grasslands make it an ideal location for pastoral activities. The village has experienced urbanization along its main roads and has seen recent industrial growth.
- Batloun is located in the Chouf District of Mount Lebanon near Al Barouk River. The village spans 350 ha at an elevation of 950 to 1080 m and receives over 900 mm of precipitation annually, though it faces water shortages due to unsustainable management practices. The average monthly temperature ranges from 10 to 30 °C. It is known for its ancient agricultural terraces and historical significance. The area is particularly suitable for growing non-irrigated cereals, vine (Vitis vinifera L.), and apple (Malus domestica Borkh.).
- Sinay is located in the southern zone of the country at an elevation of 185 to 285 m. It covers an administrative area of 424 ha, has an average annual precipitation of 750 mm, and an average monthly temperature of 14 to 32 °C. The village has experienced the destructive consequences of several wars. It is known for its agricultural production and fertile lands suitable for wheat, barley (Hordeum vulgare L.), tobacco (Nicotiana tabacum L.), and olive.
2.2. LULC Mapping and Landscape Analysis
2.2.1. Data Sources
2.2.2. Digitization of High-Resolution Landscape Maps of 1962 and 2014
2.2.3. Classification of 2023 Sentinel-2A Satellite Images
2.2.4. Accuracy Assessment
2.2.5. Detection of Changes in and Transformation of LULC
2.2.6. Landscape Metrics
2.3. Primary Data
2.4. Additional Secondary Data
2.5. Data Analysis
3. Results
3.1. Accuracy Assessment of LULC Mapping
3.2. LULC Mapping Results and Landscape Analysis
3.3. Landscape Metrics and Process Identification
3.4. Results of the Household Survey on Land Use in the Last Decade
3.4.1. Socio-Economic Characteristics of Households
3.4.2. Water Access and Land Use
3.4.3. Results of the Logistic Regression Analysis
4. Discussion
4.1. Spatio-Temporal Transformation Across Lebanon’s Villages and AEZs
4.2. Socio-Economic and Environmental Drivers and Farmers’ Land Use Decisions in Rural Villages
4.3. Political Instability and Weak Governance as Drivers of LULC Change in Lebanon
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Land Cover Class | 1962 | 2014 | 2023 | % Δ Area (1962–2014) | % Δ Area (2014–2023) |
---|---|---|---|---|---|
Fruit Trees | 133 | 98.0 | 40.1 | −26.3 | −59.1 |
Protected Agriculture | 0 | 43.3 | 56.0 | +7.3 | +29.3 |
Olives | 0 | 50.0 | 35.0 | - | −30.0 |
Vineyards | 0 | 18.0 | 18.0 | +20 | - |
Field Crops | 51 | 290.5 | 327.2 | +469.6 | +12.6 |
Discontinuous Urban Fabric | 11 | 35.3 | 57.0 | +220.9 | +61.5 |
Continuous Urban Fabric | 0 | 0.2 | 2.2 | - | >100 |
Industrial | 0 | 0.2 | 0.2 | - | - |
Shrubland | 202 | 0.1 | 0.1 | −99.9 | - |
Grassland | 0 | 0 | 0 | - | - |
Land Cover Class | 1962 | 2014 | 2023 | % Δ Area (1962–2014) | % Δ Area (2014–2023) |
---|---|---|---|---|---|
Fruit Trees | 85.0 | 55.7 | 32.8 | −7.3 | −5.7 |
Protected Agriculture | 0 | 94.7 | 125.8 | 23.6 | 7.7 |
Olives | 0 | 6.2 | 6.2 | 1.5 | - |
Field Crops | 0 | 34.8 | 18.5 | 8.6 | −4.0 |
Discontinuous Urban Fabric | 17.9 | 126.9 | 129.9 | 27.2 | 0.7 |
Continuous Urban Fabric | 20.2 | 67.3 | 70.4 | 11.7 | 0.7 |
Industrial | 0 | 9.1 | 11.3 | 2.2 | 0.5 |
Shrubland | 220.7 | 5.6 | 5.6 | −53.6 | - |
Grassland | 56.4 | 0.04 | 0.04 | −14.0 | - |
Land Cover Class | 1962 | 2014 | 2023 | % Δ Area (1962–2014) | % Δ Area (2014–2023) |
---|---|---|---|---|---|
Vineyards | - | 1.03 | 1.03 | 0.00 | 0.00 |
Fruit Trees | 2.9 | 50.8 | 69.3 | >1000 | 36.4 |
Olives | - | 20.2 | 20.2 | - | - |
Field Crops | - | 302.8 | 321.8 | - | 6.2 |
Discontinuous Urban Fabric | 1.9 | 8.96 | 12.9 | 366.6 | 44.5 |
Continuous Urban Fabric | 3.65 | 61.7 | 61.7 | 1591.7 | 0.0 |
Industrial | 0 | 0 | 5.5 | 0.00 | New |
Shrubland | 80.4 | 63.1 | 54.7 | −21.5 | −13.2 |
Grassland | 1361 | 942.1 | 903 | −30.7 | −4.1 |
Land Cover Class | 1962 | 2014 | 2023 | % Δ Area (1962–2014) | % Δ Area (2014–2023) |
---|---|---|---|---|---|
Vineyards | 16.7 | 0 | 0 | −3.0 | - |
Fruit Trees | 33.6 | 46.6 | 35.6 | 2.3 | −2.0 |
Field Crops | 33.0 | 21.3 | 21.3 | −2.1 | −0.01 |
Discontinuous Urban Fabric | 9.3 | 139.4 | 141.2 | 23.4 | 0.2 |
Continuous Urban Fabric | 0 | 0 | 0.7 | - | 0.1 |
Clear Wooded Land | 34.4 | 151.6 | 151.6 | 21.1 | −0.1 |
Shrubland | 424.8 | 170.8 | 181.4 | −46.1 | 1.7 |
Grassland | 0 | 24.4 | 24.4 | 4.4 | −0.02 |
Land Cover Class | 1962 | 2014 | 2023 | % Δ Area (1962–2014) | % Δ Area (2014–2023) |
---|---|---|---|---|---|
Fruit Trees | 1.33 | 16 | 139.7 | +11.91 | +772.81 |
Protected Agriculture | - | 0.6 | 0.6 | +0.14 | 0 |
Olives | 3.7 | 7.3 | 7.4 | +0.84 | +0.04 |
Field Crops | 194.6 | 195.9 | 92.2 | +0.73 | −52.93 |
Discontinuous Urban Fabric | - | 0.2 | 1.0 | +0.05 | +1.35 |
Continuous Urban Fabric | 0.7 | 35.3 | 36.5 | +8.15 | +0.23 |
Industrial | 0 | 2.9 | 3.3 | +6.68 | +0.10 |
Shrubland | 36.1 | 29.4 | 13.9 | −1.64 | −52.72 |
Grassland | 186.2 | 138.3 | 130.3 | −11.6 | −1.67 |
Appendix B
Index | Description |
---|---|
Number of patches (NP) NP = 1 when the landscape contains only 1 patch. | Quantifies the number of patches in the landscape. NP is a crucial tool for analyzing the landscape processes in Table A7 [18]. |
Mean patch size (MPS) in ha | Quantifies the mean volume of patches within the landscape. Variations in MPS reflect changes in land fragmentation or aggregation. This is crucial for gauging the level of landscape fragmentation or connectivity [40]. |
Landscape Change Process | Patch Area | Number of Patches |
---|---|---|
Attrition | Decreased | Decreased |
Aggregation | Stays constant or increased | |
Creation | Increased | Increased |
Dissection | Decreased | |
Fragmentation | Strongly decreased |
Appendix C
Predictor | VIF Value |
---|---|
Education | 1.08 |
Age | 1.10 |
Farming_Area | 3.22 |
Land_Ownership | 1.03 |
Off_Farm_Income | 1.04 |
Labor_Count | 1.05 |
Resident_Status | 1.08 |
Water_Availability | 3.20 |
Irrigation | 1.09 |
References
- Meeus, J.H.A.; Wijermans, M.P.; Vroom, M.J. Agricultural landscapes in Europe and their transformation. Landsc. Urban Plan. 1990, 18, 289–352. [Google Scholar] [CrossRef]
- Firmino, A. Agriculture and landscape in Portugal. Landsc. Urban Plan. 1999, 46, 83–91. [Google Scholar] [CrossRef]
- Agergaard, J.; Kirkegaard, S.; Birch-Thomsen, T. Between village and town: Small-town urbanism in Sub-Saharan Africa. Sustainability 2021, 13, 1417. [Google Scholar] [CrossRef]
- Ellis, E.C.; Gauthier, N.; Goldewijk, K.K.; Bird, R.B.; Boivin, N.; Díaz, S.; Fuller, D.Q.; Gill, J.L.; Kaplan, J.O.; Kingston, N.N.; et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. USA 2021, 118, e2023483118. [Google Scholar] [CrossRef]
- Bürgi, M.; Celio, E.; Diogo, V.; Hersperger, A.M.; Kizos, T.; Lieskovsky, J.; Pazur, R.; Plieninger, T.; Prishchepov, A.V.; Verburg, P.H. Advancing the study of driving forces of landscape change. J. Land Use Sci. 2022, 17, 540–555. [Google Scholar] [CrossRef]
- Maher, L.A.; Richter, T.; Stock, J.T. The Pre-Natufian Epipaleolithic: Long-term behavioral trends in the Levant. Evol. Anthropol. Issues News Rev. 2012, 21, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Caballero, E.; Cantón, Y.; Moussa, M.; Solé-Benet, A. Irrigated land expansion since 1985 in Southern Tunisia. J. Afr. Earth Sci. 2017, 129, 146–152. [Google Scholar] [CrossRef]
- Ellis, E.C. Ecology in an anthropogenic biosphere. Ecol. Monogr. 2015, 85, 287–331. [Google Scholar] [CrossRef]
- IPBES. Chapter 2.2 Status and trends—Nature. In Assessment Report on Biodiversity and Ecosystem Services; Dirzo, R., Demissew, S.W., Eds.; IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services): Bonn, Germany, 2019. [Google Scholar] [CrossRef]
- UNDESA. World Urbanization Prospects; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2018; Available online: https://population.un.org/wup/assets/WUP2018-Report.pdf (accessed on 20 April 2022).
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2023; FAO (Food and Agriculture Organization of the United Nations): Rome, Italy, 2023; Available online: https://openknowledge.fao.org/handle/20.500.14283/cc7724en (accessed on 9 July 2024).
- Akram-Lodhi, A.H.; Kay, C. Surveying the agrarian question (part 1): Unearthing foundations, exploring diversity. J. Peasant Stud. 2010, 37, 177–202. [Google Scholar] [CrossRef]
- Jaad, A.; Abdelghany, K. The Story of five mena cities: Urban growth prediction modeling using remote sensing and video analytics. Cities 2021, 118, 103393. [Google Scholar] [CrossRef]
- Bahn, R.; Tell, T.; Zurayk, R. Social Life, from rural to urban. In The societies of the Middle East and North Africa; Routledge: London, UK, 2021; Available online: https://www.taylorfrancis.com/chapters/edit/10.4324/9780429507311-2/social-life-rural-urban-rachel-bahn-tariq-tell-rami-zurayk (accessed on 20 February 2024).
- Mohamed, M.A.; Anders, J.; Schneider, C. Monitoring of changes in land use/land cover in Syria from 2010 to 2018 using multitemporal landsat imagery and GIS. Land 2020, 9, 226. [Google Scholar] [CrossRef]
- Thomson, W.; Gharios, C.; Zurayk, R. From silk to concrete: Exploring the socio-spatial aspects of the agrarian question(s) in Mount Lebanon. J. Peasant Stud. 2022, 50, 1613–1635. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Errea, M.P. The footprint of marginal agriculture in the Mediterranean mountain landscape: An analysis of the Central Spanish Pyrenees. Sci. Total Environ. 2017, 599–600, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Baldini, C.; Marasas, M.E.; Drozd, A.A. Three decades of landscape change across the largest peri-urban horticultural region of Argentina: Urban growth, productive intensification and the need for resilient landscape management. J. Environ. Plan. Manag. 2022, 65, 1781–1820. [Google Scholar] [CrossRef]
- Li, Y.; Mi, W.; Ji, L.; He, Q.; Yang, P.; Xie, S.; Bi, Y. Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality. Sci. Total Environ. 2023, 878, 162559. [Google Scholar] [CrossRef]
- Kaminski, A.; Bauer, D.M.; Bell, K.P.; Loftin, C.S.; Nelson, E.J. Using Landscape metrics to characterize towns along an urban-rural gradient. Landsc. Ecol. 2021, 36, 2937–2956. [Google Scholar] [CrossRef]
- Wan, H.; Yoon, J.; Srikrishnan, V.; Daniel, B.; Judi, D. Landscape metrics regularly outperform other traditionally-used ancillary datasets in dasymetric mapping of population. Comput. Environ. Urban Syst. 2023, 99, 101899. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Bürgi, M.; Bieling, C.; von Hackwitz, K.; Kizos, T.; Lieskovský, J.; Martín, M.G.; McCarthy, S.; Müller, M.; Palang, H.; Plieninger, T.; et al. Processes and driving forces in changing cultural landscapes across Europe. Landsc. Ecol. 2017, 32, 2097–2112. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.S.; Jackson-Smith, D.B.; Wilson, R.S.; Ashenfarb, M.; Dayer, A.A.; Hillis, V.; Iacona, G.D.; Markowitz, E.M.; Marquart-Pyatt, S.T.; Treakle, T. Private land conservation decision-making: An integrative social science model. J. Environ. Manag. 2022, 302, 113961. [Google Scholar] [CrossRef] [PubMed]
- Eshetu, S.B.; Sieber, S.; Lana, M.; Löhr, K. Decision-making factors influencing land use transformation and its implication on forest landscape restoration in Ethiopia. J. Land Use Sci. 2024, 19, 211–229. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Müller-Hansen, F.; Schlüter, M.; Mäs, M.; Donges, J.F.; Kolb, J.J.; Thonicke, K.; Heitzig, J. Towards representing human behavior and decision making in earth system models—An overview of techniques and approaches. Earth Syst. Dyn. 2017, 8, 977–1007. [Google Scholar] [CrossRef]
- Starfinger, M. Financing smallholder tree planting: Tree collateral & thai ‘tree banks’—Collateral 2.0? Land Use Policy 2021, 111, 105765. [Google Scholar] [CrossRef]
- Mulu, S.; Asfaw, Z.; Alemu, A.; Teketay, D. Determinants of decision making by smallholder farmers on land allocation for small-scale forest management in Northwestern Ethiopian highlands. Land 2022, 11, 838. [Google Scholar] [CrossRef]
- Githinji, M.; van Noordwijk, M.; Muthuri, C.; Speelman, E.N.; Jan Hofstede, G. Farmer land-use decision-making from an instrumental and relational perspective. Curr. Opin. Environ. Sustain. 2023, 63, 101–303. [Google Scholar] [CrossRef]
- Karner, K.; Mitter, H.; Schönhart, M. A conceptualized land use system and data to support integrated landscape assessments in Austria. In Alpine Landgesellschaften Zwischen Urbanisierung und Globalisierung; Larcher, M., Schmid, E., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2022; pp. 211–227. [Google Scholar] [CrossRef]
- Kaufmann, K.; Kraay. Mastruzzi The Worldwide Governance Indicators: Methodology and Analytical Issues; World Bank: Washington, DC, USA, 2010; Available online: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/630421468336563314/The-worldwide-governance-indicators-methodology-and-analytical-issues (accessed on 10 August 2024).
- World Bank. Weak Governance in MENA Region Worsens Deepening Land Crisis. 2023. Available online: https://worldbank.org/en/news/press-release/2023/01/18/weak-governance-in-mena-region-worsens-deepening-land-crisis (accessed on 10 August 2024).
- EEA. CORINE Land Cover Nomenclature (CLC); European Environment Agency (EEA): Vienna, Austria, 2019; Available online: https://land.copernicus.eu/content/corine-land-cover-nomenclature-guidelines/docs/pdf/CLC2018_Nomenclature_illustrated_guide_20190510.pdf#page=7.22 (accessed on 21 June 2024).
- Davenport, A.E.; Davis, J.D.; Woo, I.; Grossman, E.E.; Barham, J.; Ellings, C.S.; Takekawa, J.Y. Comparing automated classification and digitization approaches to detect change in Eelgrass bed extent during restoration of a large river delta. Northwest Sci. 2017, 91, 272–282. [Google Scholar] [CrossRef]
- Tun, P.T.; Nguyen, T.T.; Buerkert, A. Transformation of agricultural landscapes and its consequences for natural forests in Southern Myanmar within the last 40 years. Remote Sens. 2023, 15, 1537. [Google Scholar] [CrossRef]
- Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic land-cover mapping using landsat time-series data based on Google Earth Engine. Remote Sens. 2019, 11, 3023. [Google Scholar] [CrossRef]
- Gharios, C.; El Nour, S.; Mundy, M.; Zurayk, R. Transformation rurale, paysage et conflit dans un village du Liban Sud, Sinay. Économie Rural. Agric. Aliment. Territ. 2016, 353-354, 9–26. [Google Scholar] [CrossRef]
- Cetin, M. A satellite based assessment of the impact of urban expansion around a Lagoon. Int. J. Environ. Sci. Technol. 2009, 6, 579–590. [Google Scholar] [CrossRef]
- Schlesinger, J. Agriculture Along the Urban-Rural Continuum: A GIS-Based Analysis of Spatio-Temporal Dynamics in Two Medium-Sized African Cities. Ph.D. Thesis, University of Freiburg, Freiburg im Breisgau, Germany, 2013. Available online: https://researchgate.net/profile/Johannes-Schlesinger-2/publication/283648245_Agriculture_along_the_urban-rural_continuum_a_GIS-based_analysis_of_spatio-temporal_dynamics_in_two_medium-sized_African_cities/links/56a9de5908ae7f592f0ded02/Agriculture-along-the-urban-rural-continuum-a-GIS-based-analysis-of-spatio-temporal-dynamics-in-two-medium-sized-African-cities.pdf (accessed on 10 March 2023).
- McGarigal, K.; Cushman, S.E.E. Fragstat v4: Spatial Pattern Analysis Program for Categorical Maps. Computer Software Program. Available online: https://fragstats.org/index.php/license (accessed on 21 July 2024).
- Cochran, W.G. Sampling techniques. In Wiley Series in Probability and Mathematical Statistics, 3rd ed.; Wiley: New York, NY, USA, 1977; Available online: https://scribd.com/document/444123201/William-G-Cochran-Sampling-Techniques-Third-Edition-pdf (accessed on 10 May 2022).
- Noble, H.; Heale, R. Triangulation in research, with examples. Evid. Based Nurs. 2019, 22, 67–68. [Google Scholar] [CrossRef]
- Hamade, K. Lebanon’s Agriculture: Dynamics of Contraction in the Absence of Public. Vision and Policies. In Arab NGO Network for Development, Arab Watch on Economic and Social Rights, Right to Food; The Arab NGO Network for Development: Beirut, Lebanon, 2019; pp. 256–271. Available online: https://annd.org/arabwatch2019/righttofood/en/index.pdf (accessed on 17 July 2022).
- Malek, Ž.; Verburg, P.H. Mapping global patterns of land use decision-making. Glob. Environ. Change 2020, 65, 102170. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Kupper, L.L.; Nizam, A.; Rosenberg, E.S. Applied Regression Analysis and Other Multivariable Methods; Cengage Learning: Boston, MA, USA, 2013; Available online: https://amazon.com/Applied-Regression-Analysis-Multivariable-Methods/dp/0495384968 (accessed on 20 June 2024).
- Surjanovic, N.; Lockhart, R.A.; Loughin, T.M. A Generalized Hosmer–Lemeshow Goodness-of-Fit Test for a family of generalized linear models. TEST 2024, 33, 589–608. [Google Scholar] [CrossRef]
- Hassan, H.E.H.; Ardillier-Carras, F.; Charbel, L. Les changements d’occupation des sols dans la Béqaa Ouest (Liban): Le rôle des actions anthropiques. Cah. Agric. 2019, 28, 10. [Google Scholar] [CrossRef]
- Al-Sayah, M.J.; Sarkissian, R.D.; Abdallah, C. Review of Recent Events in Lebanon (2011–2020) and Their Effect on Land Degradation. 2022. Available online: https://arablandinitiative.gltn.net/sites/default/files/2023-03/review-of-recent-events-in-lebanon-2011-20-and-their-effect-on-land-degradation_30nov2022.pdf (accessed on 15 June 2024).
- Cárceles Rodríguez, B.; Durán Zuazo, V.H.; Franco Tarifa, D.; Cuadros Tavira, S.; Sacristan, P.C.; García-Tejero, I.F. Irrigation alternatives for Avocado (Persea Americana Mill.) in the Mediterranean Subtropical region in the context of climate change: A Review. Agriculture 2023, 13, 1049. [Google Scholar] [CrossRef]
- Bogaert, J.; Farina, A.; Ceulemans, R. Entropy increase of fragmented habitats: A sign of human impact? Ecol. Indic. 2005, 5, 207–212. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, X.; Fensholt, R.; Jensen, P.R.D.; Li, S.; Larsen, M.N.; Reiner, F.; Tian, F.; Brandt, M. Global area boom for greenhouse cultivation revealed by satellite mapping. Nat. Food 2024, 5, 513–523. [Google Scholar] [CrossRef]
- Al-Shaar, W.; Bonin, O. Factors behind the dynamics of land use evolution: Case of Lebanon. SN Appl. Sci. 2021, 3, 677. [Google Scholar] [CrossRef]
- Harik, G.; Alameddine, I.; Zurayk, R.; El-Fadel, M. An integrated socio-economic agent-based modeling framework towards assessing farmers’ decision making under water scarcity and varying utility functions. J. Environ. Manag. 2023, 329, 117055. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.M.; Sobh, M.T.; Ali, Z.; Nashwan, M.S.; Shahid, S. Aridity shifts in the MENA Region under the Paris agreement climate change scenarios. Glob. Planet. Change 2024, 238, 104483. [Google Scholar] [CrossRef]
- Rachid, G. Evolution of Natural Resource Management in Mount Lebanon: The Case of Batloun 1935–2005. Master’s Thesis, American University of Beirut, Beirut, Lebanon, 2007. Available online: https://scholarworks.aub.edu.lb/handle/10938/7560 (accessed on 19 June 2022).
- Zurayk, R. The writing on the walls: Adonis, Ishtar and the terraces of Mount Lebanon. Eflux. 2021. Available online: https://e-flux.com/architecture/exhausted/379297/the-writing-on-the-walls-adonis-ishtar-and-the-terraces-of-mount-lebanon/ (accessed on 19 September 2023).
- Ghodieh, A. Urban built-up area estimation and change detection of the occupied West Bank, Palestine, using multi-temporal aerial photographs and satellite images. J. Indian Soc. Remote Sens. 2020, 48, 235–247. [Google Scholar] [CrossRef]
- Güneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Hobbs, N.T.; Galvin, K.A.; Stokes, C.J.; Lackett, J.M.; Ash, A.J.; Boone, R.B.; Reid, R.S.; Thornton, P.K. Fragmentation of rangelands: Implications for humans, animals, and landscapes. Glob. Environ. Change 2008, 18, 776–785. [Google Scholar] [CrossRef]
- Jiao, J.; Li, S.; Wang, W.; Qi, L.; Degen, A.A.; Bai, Y.; Jiao, T.; Shang, Z. Land parcellation reduced spatial redundancy resulting in grassland degradation. People Nat. 2024, 6, 2528–2542. [Google Scholar] [CrossRef]
- Li, W.; Huntsinger, L. China’s grassland contract policy and its impacts on herder ability to benefit in inner Mongolia: Tragic feedbacks. Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef]
- UNESCWA. Arab Horizon 2030: Prospects for Enhancing Food Security in the Arab Region; UNESCWA (United Nations Economic and Social Commission for Western Asia): Beirut, Lebanon, 2017; Available online: https://www.unescwa.org/publications/arab-horizon-2030-prospects-enhancing-food-security-arab-region (accessed on 5 December 2024).
- MoET (Ministry of Economy and Trade) Lebanon’s Fresh Fruit and Vegetable Exporters Shine at Fruit Attraction. 2023. Available online: https://lebfresh.org/lebanons-fresh-fruit-and-vegetable-exporters-shine-at-fruit-attraction-2023/ (accessed on 10 November 2024).
- Seyfert, K.; Chaaban, J.; Ghattas, H. Food security and the supermarket transition in the Middle East: Two case studies. In Food Security in the Middle East; Babar, Z., Mirgani, S., Eds.; C Hurst & Co Publishers Ltd.: London, UK, 2014; pp. 185–219. [Google Scholar] [CrossRef]
- El Yaacoubi, A.; Malagi, G.; Oukabli, A.; Hafidi, M.; Legave, J.-M. Global warming impact on floral phenology of fruit trees species in Mediterranean region. Sci. Hortic. 2014, 180, 243–253. [Google Scholar] [CrossRef]
- Fernandez, E.; Mojahid, H.; Fadón, E.; Rodrigo, J.; Ruiz, D.; Egea, J.A.; Ben Mimoun, M.; Kodad, O.; El Yaacoubi, A.; Ghrab, M.; et al. Climate change impacts on winter chill in Mediterranean temperate fruit orchards. Reg. Environ. Change 2022, 23, 7. [Google Scholar] [CrossRef]
- Jaafar, H.; Kharroubi, S.A. Views, practices and knowledge of farmers regarding smart irrigation apps: A national cross-sectional study in Lebanon. Agric. Water Manag. 2021, 248, 106759. [Google Scholar] [CrossRef]
- Gérard, J.; Nehmé, C. Lebanon: A geography of contrasts. J. Mediterr. Geogr. 2020, 131. [Google Scholar] [CrossRef]
- Traboulsi, F. A History of Modern Lebanon, 2nd ed.; Pluto Press: London, UK, 2007; Available online: https://plutobooks.com/9780745332741/a-history-of-modern-lebanon/ (accessed on 19 June 2024).
- Blázquez Salom, M. More villas and more barriers: Gentrification and the enclosure of rural land on Majorca. Méditerranée Rev. Géographique Pays Méditerranéens J. Mediterr. Geogr. 2013, 120, 25–36. [Google Scholar] [CrossRef]
- Woertz, E. Agriculture and development in the wake of the Arab spring. Int. Dev. Policy Rev. Int. Polit. Dév. Online 2017, 7, 144–169. [Google Scholar] [CrossRef]
- Yeddiou, M.; Guessoum, D.-E. Constantine—Algeria- informal expansion, private lands value at stake. towards a preventive approach to informal land use. Land Use Policy 2023, 134, 106930. [Google Scholar] [CrossRef]
- Salem, M.; Tsurusaki, N. Impacts of rapid urban expansion on peri-urban landscapes in the Global South: Insights from landscape metrics in Greater Cairo. Sustainability 2024, 16, 2316. [Google Scholar] [CrossRef]
- Yehya, A.A.K.; Nguyen, T.T.; Wiehle, M.; Buerkert, A. Drivers of urbanization effects in five countries of the MENA region—A review. J. Land Use Sci. 2024, 19, 304–320. [Google Scholar] [CrossRef]
- Burra, D.D.; Parker, L.; Than, N.T.; Phengsavanh, P.; Long, C.T.M.; Ritzema, R.S.; Sagemueller, F.; Douxchamps, S. Drivers of land use complexity along an agricultural transition gradient in Southeast Asia. Ecol. Indic. 2021, 124, 107402. [Google Scholar] [CrossRef]
- Riad, P.; Graefe, S.; Hussein, H.; Buerkert, A. Landscape Transformation processes in two large and two small cities in Egypt and Jordan over the last five decades using remote sensing data. Landsc. Urban Plan. 2020, 197, 103766. [Google Scholar] [CrossRef]
Data Source | Description | Scale | Year | Data Source Link |
---|---|---|---|---|
Carte Du Liban (1962) | LULC map as soft copy for digitalization | 1:20,000 | 1962 | https://geolyon.mom.fr/seriesCartes/7a46704a-9527-4cc3-a34a-7de3605eb206 (Accessed on 22 January 2023) |
Google Earth (Airbus Imagery) | High-resolution imagery from various data providers, used for detailed visual interpretation | ≤0.65 m | 2014, 2023 | https://airbus.com/en/products-services/space/earth-observation/satellite-imagery (Accessed on 12 March 2023) |
National Council for Scientific Research—Lebanon (CNRS-L) | LULC maps available at CNRS-L, used to support and validate the classification process | Vector files | 2013–2017 | https://cnrs.edu.lb/site/SubPage.aspx?pageid=111 (Accessed on 2 October 2023) |
Sentinel-2A Images | Satellite imagery, imported into ArcGIS Pro 3.2.0 for mapping and analysis | 10 m | 2023 | https://sentiwiki.copernicus.eu/web/sentinel-2 (Accessed on 12 Febraury 2024 via Google Earth Engine) |
LULC Class | Description | Example Image in April 2023 | |
---|---|---|---|
Urban landscapes | Continuous urban fabric | Densely built-up areas, such as cities and urban centers | |
Discontinuous urban fabric | Less densely built areas, often including suburban regions with some green spaces | ||
Industrial or commercial | Public and private service facilities or factories | ||
Agricultural landscapes | Field crops | General agricultural purposes like grains, tubers, and vegetable farming | |
Olives | Cultivation of olive trees | ||
Fruit trees | Orchard of growing various fruit trees other than olives such as citrus, peach, and avocado | ||
Vineyards | Vine | ||
Protected agriculture | Greenhouses | ||
Natural landscapes | Grassland | Semi-natural vegetation with very low shrubs (mostly used for pasture) | |
Shrubland | Dense and tall shrubland (with rocks) | ||
Clear wooded land | Vegetation pattern of native or exotic coniferous and/or broad-leaved trees |
Coefficients | Estimate | Standard Error | Z-Value | p Value |
---|---|---|---|---|
Intercept | 0.72 | 1.11 | 0.65 | 0.52 |
Education | −0.45 | 0.13 | −3.41 | 0.001 *** |
Age | −0.01 | 0.01 | −0.53 | 0.59 |
Farming Area | 0.05 | 0.02 | 2.61 | 0.01 ** |
Land Ownership | 0.41 | 0.38 | 1.08 | 0.28 |
Off-Farm Income | 0.27 | 0.92 | 0.29 | 0.77 |
Labor Count | 0.04 | 0.07 | 0.64 | 0.52 |
Resident Status | 0.42 | 0.23 | 1.88 | 0.06. |
Water Availability | −0.03 | 0.01 | −2.54 | 0.01 ** |
Irrigation | 0.04 | 0.48 | 0.09 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yehya, A.A.K.; Nguyen, T.T.; Wiehle, M.; Zurayk, R.; Buerkert, A. Six Decades of Rural Landscape Transformation in Five Lebanese Villages. Land 2025, 14, 262. https://doi.org/10.3390/land14020262
Yehya AAK, Nguyen TT, Wiehle M, Zurayk R, Buerkert A. Six Decades of Rural Landscape Transformation in Five Lebanese Villages. Land. 2025; 14(2):262. https://doi.org/10.3390/land14020262
Chicago/Turabian StyleYehya, Abed Al Kareem, Thanh Thi Nguyen, Martin Wiehle, Rami Zurayk, and Andreas Buerkert. 2025. "Six Decades of Rural Landscape Transformation in Five Lebanese Villages" Land 14, no. 2: 262. https://doi.org/10.3390/land14020262
APA StyleYehya, A. A. K., Nguyen, T. T., Wiehle, M., Zurayk, R., & Buerkert, A. (2025). Six Decades of Rural Landscape Transformation in Five Lebanese Villages. Land, 14(2), 262. https://doi.org/10.3390/land14020262