Spatial-Temporal Variation and Driving Forces of Carbon Storage at the County Scale in China Based on a Gray Multi-Objective Optimization-Patch-Level Land Use Simulation-Integrated Valuation of Ecosystem Services and Tradeoffs-Optimal Parameter-Based Geographical Detector Model: Taking the Daiyun Mountain’s Rim as an Example
<p>Overview of the Daiyun Mountain’s Rim.</p> "> Figure 2
<p>Spatial distribution characteristics of land-use types in the Daiyun Mountain’s Rim from 1992 to 2032: (<b>a</b>–<b>g</b>) represent the spatial distribution of land-use types in 1992, 1997, 2002, 2007, 2012, 2017, and 2022 in the Daiyun Mountain’s Rim, respectively; (<b>h</b>–<b>k</b>) represent the 2032 nature development scenario, 2032 economic priority development scenario, 2032 ecological priority development scenario, and 2032 coordinated economic and ecological development scenario in the Daiyun Mountain’s Rim, respectively.</p> "> Figure 3
<p>The spatial distribution pattern and change trend of carbon storage in the Daiyun Mountain’s Rim from 1992 to 2032.</p> "> Figure 4
<p>Spatial changes in land use in the Daiyun Mountain’s Rim from 1992 to 2022.</p> "> Figure 5
<p>Changes in land uses and carbon stocks in the Daiyun Mountain’s Rim from 1992 to 2022: (<b>a</b>) changes in land uses in the Daiyun Mountain’s Rim from 1992 to 2022; (<b>b</b>) changes in carbon stocks in the Daiyun Mountain’s Rim from 1992 to 2022.</p> "> Figure 6
<p>Impacts of major land type shifts on carbon stocks in different counties of the Daiyun Mountain’s Rim.</p> "> Figure 7
<p>Distributional differentiation of carbon stocks in multi-dimensional topographic environments: (<b>a</b>) carbon storage changes at different elevations; (<b>b</b>) carbon storage changes across slope gradients; (<b>c</b>) carbon storage changes across topographic wetness index categories; (<b>d</b>) average carbon storage changes at different elevations; (<b>e</b>) average carbon storage changes across slope gradients; (<b>f</b>) average carbon storage changes across topographic wetness index categories.</p> "> Figure 8
<p>Results of the interactive detection of carbon stock drivers in the Daiyun Mountain’s Rim from 1992 to 2002: (<b>a</b>–<b>g</b>) represent the results of the interactive detection of carbon stock drivers in 1992, 1997, 2002, 2007, 2012, 2017, and 2022 in the Daiyun Mountain’s Rim, respectively, and the legend is below figure (<b>g</b>); (<b>h</b>) represent the value changes in the Daiyun Mountain’s Rim from 1992 to 2022, and the legend is below figure (<b>h</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. GMOP Model
2.3.1. Land-Use Value Coefficient
2.3.2. Objective Function Construction
2.3.3. Constraint Condition
2.4. PLUS Simulating Future Multi-Scenario Land-Use Patterns
2.4.1. LEAS Module
2.4.2. CARS Module
2.4.3. PLUS Model Accuracy
2.5. InVEST Model of Carbon Storage Assessment
2.6. Carbon Density Calculation
2.7. The Topographic Position Index Calculation
2.8. Optimal Parameter Geographic Detector (OPGD)
2.8.1. Parameter Optimization
2.8.2. Geodetector
3. Results
3.1. Land-Use Change
3.2. Carbon Storage
3.3. Influence of Land-Use Type Transfers on Carbon Storage Changes
3.4. Topographic Distribution Patterns of Carbon Storage
3.5. Carbon Stock Driving Mechanisms
3.5.1. Optimal Parameter Identification
3.5.2. Driving Detection Analysis
- Factor analysis
- 2.
- Interaction detection
4. Discussion
4.1. Feasibility Analysis of Carbon Storage Estimation
4.2. Drivers of Spatiotemporal Patterns in Land-Use Change and Carbon Storage
4.3. Suggestions for Ecosystem Synergy and Co-Benefits
4.4. Limitations and Future Enhancements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hodson, R. Climate Change. Nature 2017, 550, S53. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Gao, Y.; Wen, D.; Li, S.; Niu, S.; Ge, J. Carbon Storage in China’s Terrestrial Ecosystems: A Synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, Y.; Zhang, H.; Liu, X.; Zheng, Y.; Gong, H. The Trajectory of Carbon Emissions and Terrestrial Carbon Sinks at the Provincial Level in China. Sci. Rep. 2024, 14, 5828. [Google Scholar] [CrossRef]
- Paruke, W.; Ai, D.; Ji, Z.X.; Duan, W.K.; Wang, N.; Hao, J.M. The spatial transition of “production-living-ecological” space in Beijing and its effect on carbon storage under the perspective of human-land relation. China Environ. Sci. 2023, 44, 1–17. [Google Scholar] [CrossRef]
- Malik, A.A.; Puissant, J.; Buckeridge, K.M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gweon, H.S.; Peyton, J.M.; Mason, K.E.; van Agtmaal, M.; et al. Land Use Driven Change in Soil pH Affects Microbial Carbon Cycling Processes. Nat. Commun. 2018, 9, 3591. [Google Scholar] [CrossRef] [PubMed]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-Use Futures in the Shared Socio-Economic Pathways. Glob. Environ. Chang. 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Su, K.; Wei, D.Z.; Lin, W.X. Evaluation of Ecosystem Services Value and Its Implications for Policy Making in China—A Case Study of Fujian Province. Ecol. Indic. 2020, 108, 105752. [Google Scholar] [CrossRef]
- Arneth, A.; Sitch, S.; Pongratz, J.; Stocker, B.D.; Ciais, P.; Poulter, B.; Bayer, A.D.; Bondeau, A.; Calle, L.; Chini, L.P.; et al. Historical Carbon Dioxide Emissions Caused by Land-Use Changes Are Possibly Larger than Assumed. Nat. Geosci. 2017, 10, 79–84. [Google Scholar] [CrossRef]
- Solomon, S. IPCC (2007): Climate Change The Physical Science Basis. Am. Geophys. Union 2007, 9, 123–124. [Google Scholar]
- Fu, Y.; He, Y.; Chen, W.; Xiao, W.; Ren, H.; Shi, Y.; Hu, Z. Dynamics of Carbon Storage Driven by Land Use/Land Cover Transformation in Coal Mining Areas with a High Groundwater Table: A Case Study of Yanzhou Coal Mine, China. Environ. Res. 2024, 247, 118392. [Google Scholar] [CrossRef] [PubMed]
- Kauppi, P.E.; Mielikäinen, K.; Kuusela, K. Biomass and Carbon Budget of European Forests, 1971 to 1990. Science 1992, 256, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Tans, P.P.; Fung, I.Y.; Takahashi, T. Observational Contrains on the Global Atmospheric CO2 Budget. Science 1990, 247, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Harris, N.L.; Gibbs, D.A.; Baccini, A.; Birdsey, R.A.; de Bruin, S.; Farina, M.; Fatoyinbo, L.; Hansen, M.C.; Herold, M.; Houghton, R.A.; et al. Global Maps of Twenty-First Century Forest Carbon Fluxes. Nat. Clim. Chang. 2021, 11, 234–240. [Google Scholar] [CrossRef]
- Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Baasansuren, J.; Fukuda, M.; Troxler, T.G. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Hiraishi, T.; Krug, T.; Tanabe, K.; Srivastava, N.; Baasansuren, J.; Fukuda, M.; Troxler, T.G. 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- United Nations Climate Change Conference UK Glasgow Leaders’ Declaration on Forests and Land Use. Available online: https://casaclimate.org/glasgow-leaders-declaration-on-forests-and-land-use/ (accessed on 10 December 2024).
- Xinhua China Maps Path to Carbon Peak, Neutrality Under New Development Philosophy. Available online: https://english.www.gov.cn/policies/latestreleases/202110/24/content_WS61755fe9c6d0df57f98e3bed.html (accessed on 23 December 2023).
- Lin, S.; Yu, F.W.; Liu, Y.Q. Philosophical Foundation, Ecological Implication and Practice Promotion of the “Dual Carbon” Goal under Marxist Practice View. Res. Econ. Manag. 2023, 142–155. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.W.; Chen, B.Y.; Shang, Y.P.; Song, M.L. Challenges toward Carbon Neutrality in China: Strategies and Countermeasures. Resour. Conserv. Recycl. 2022, 176, 105959. [Google Scholar] [CrossRef]
- Lu, F.X.; Zhang, Y.; Qin, Y.C.; Chen, Z.L.; Wang, G.H. Spatial patterns of provincial carbon source and sink in China. Prog. Geogr. 2013, 32, 1751–1759. [Google Scholar] [CrossRef]
- Zhao, M.M.; Zhao, N.; Liu, Y.; Liu, Y.; Yue, T.X. An overview of forest carbon measurement methods. Acta Ecol. Sin. 2019, 39, 3797–3807. [Google Scholar] [CrossRef]
- Lipatov, D.N.; Shcheglov, A.I.; Manakhov, D.V.; Brekhov, P.T. Spatial Variation of Organic Carbon Stocks in Peat Soils and Gleyzems in the Northeast of Sakhalin Island. Eurasian Soil Sci. 2021, 54, 226–237. [Google Scholar] [CrossRef]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote Sensing of the Terrestrial Carbon Cycle: A Review of Advances over 50 Years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Wang, C.W.; Luo, J.J.; Tang, H.H. Analysis on the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in the Taihang Mountains Based on InVEST Model. Ecol. Environ. 2023, 32, 10662. [Google Scholar] [CrossRef]
- Lu, L.; Xue, Q.; Zhang, X.; Qin, C.; Jia, L. Spatiotemporal Variation and Quantitative Attribution of Carbon Storage Based on Multiple Satellite Data and a Coupled Model for Jinan City, China. Remote Sens. 2023, 15, 4472. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and Prediction of Carbon Sequestration Using Markov Chain and InVEST Model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and Spatial Variation Analysis of Habitat Quality on the PLUS-InVEST Model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.-M.; Li, S.; Zhu, J. Carbon Dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data. Remote Sens. 2020, 12, 528. [Google Scholar] [CrossRef]
- Bacani, V.M.; Machado da Silva, B.H.; Ayumi de Souza Amede Sato, A.; Souza Sampaio, B.D.; Rodrigues da Cunha, E.; Pereira Vick, E.; Ribeiro de Oliveira, V.F.; Decco, H.F. Carbon Storage and Sequestration in a Eucalyptus Productive Zone in the Brazilian Cerrado, Using the Ca-Markov/Random Forest and InVEST Models. J. Clean. Prod. 2024, 444, 141291. [Google Scholar] [CrossRef]
- Yu, Z.L.; Zhao, M.S.; Gao, Y.F.; Wang, T.; Zhao, Z.D.; Wang, S. Multiscenario Simulation and Prediction of Land Use in Huaibei City Based on CLUE-S and PLUS Models. Appl. Sci. 2023, 13, 7142. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, X.; Mao, Y.T.; Li, L.; Wang, X.R.; Lin, Q. Dynamic Simulation of Land Use Change and Assessment of Carbon Storage Based on Climate Change Scenarios at the City Level: A Case Study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Lyu, R.F.; Mi, L.N.; Zhang, J.M.; Xu, M.Q.; Li, J.J. Modeling the Effects of Urban Expansion on Regional Carbon Storage by Coupling SLEUTH-3r Model and InVEST Model. Ecol. Res. 2019, 34, 380–393. [Google Scholar] [CrossRef]
- Xia, Q.S.; Hong, X.; Gui, X.; Shen, G.P.; Deng, L.; Yao, Z.H.; Peng, P.; Chu, Y.Z.; Xu, S.; Xu, W. A Study on Carbon Fixation Capacity and Its Influencing Factors Based on InVEST Model at Wuhu City. Bull. Soil Water Conserv. 2023, 43, 385–394. [Google Scholar] [CrossRef]
- Zhang, G.L. Spatial Distribution Characteristics of Carbon Storage of Urban Forests in Shanghai Based on Remote Sensing Estimation. Ecol. Environ. 2021, 30, 1777–1786. [Google Scholar] [CrossRef]
- Zou, T.H.; Chen, P.; Liu, J.F.; Du, H.S. Spatio-temporal dynamics of territorial ecosystem carbon storage under different land use scenarios in Siping City. China Environ. Sci. 2023, 43, 5508–5518. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.Y.; Jiang, D.; Lin, G.; Cao, C.L. Land Use Optimization in Ningbo City with a Coupled GA and PLUS Model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar] [CrossRef]
- Li, Y.H.; Yao, S.; Jiang, H.Z.; Wang, H.R.; Ran, Q.C.; Gao, X.Y.; Ding, X.Y.; Ge, D.D. Spatial-Temporal Evolution and Prediction of Carbon Storage: An Integrated Framework Based on the MOP–PLUS–InVEST Model and an Applied Case Study in Hangzhou, East China. Land 2022, 11, 2213. [Google Scholar] [CrossRef]
- Huang, H.; Xue, J.; Feng, X.; Zhao, J.; Sun, H.; Hu, Y.; Ma, Y. Thriving Arid Oasis Urban Agglomerations: Optimizing Ecosystem Services Pattern under Future Climate Change Scenarios Using Dynamic Bayesian Network. J. Environ. Manag. 2024, 350, 119612. [Google Scholar] [CrossRef] [PubMed]
- Huang, T. Evaluation of Land Use Change and Carbon Storage in Fujian Province Based on PLUS-InVEST Model. J. Soil Water Conserv. 2024, 38, 246–257. [Google Scholar] [CrossRef]
- Yang, L.; Xie, Y.W.; Zong, L.L.; Qiu, T.; Jiao, J.Z. Land Use Optimization Configuration based on Multi-Objective Genetic Algorithm and FLUS Model of Agro-pastoral Ecotone in Northwest China. J. Geo-Inf. Sci. 2020, 22, 568–579. [Google Scholar] [CrossRef]
- Ji, X.H.; Cao, Y.Q.; Yao, J.Q.; Zhai, H.R.; Fan, J. Land use and ecosystem carbon storage change and prediction in the Haihe River basin. South-North Water Transf. Water Sci. Technol. 2023, 21, 985–995. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, H. Multi-Scenario Simulation of Urban–Rural Land Use Spatial Reconstruction in Highly Urbanized Areas: A Case Study from the Southern Jiangsu Region. Land. 2024, 13, 2199. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, Y.; Han, S. Multi-Scenario Simulation of Land Use/Land Cover Change and Water Yield Evaluation Coupled with the GMOP-PLUS-InVEST Model: A Case Study of the Nansi Lake Basin in China. Ecol. Indic. 2023, 155, 110926. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Meng, L.; Li, L.; Fang, X.; Qing, L. Multi-scenario simulation of land use and ecosystem services in Beijing under the background of low-carbon development. Acta Ecol. Sin. 2023, 43, 3571–3581. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.P.; Li, D.; Zhao, H.; Chen, G.Z. Urban Growth Simulation by Incorporating Planning Policies into a CA-Based Future Land-Use Simulation Model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H. Assessment and prediction of ecosystem services and their trade-offs and synergies in Gansu Province based on the GMMOP-PLUS model. China Environ. Sci. 2023, 11, 1–15. [Google Scholar] [CrossRef]
- Fu, K.X.; Jia, G.D.; Yu, X.X.; Chen, L.X. Analysis of Temporal and Spatial Carbon Stock Changes and Driving Mechanism in Xinjiang Region by Coupled PLUS-InVEST-Geodector Model. Environ. Sci. 2024, 45, 5416–5430. [Google Scholar] [CrossRef]
- Mu, F.Y.; Huang, Q.; Chen, L. Eco-environmental Quality Driving Force Detection Using Optimized Geographic Detector. Res. Soil Water Conserv. 2024, 31, 440–449. [Google Scholar] [CrossRef]
- Dai, E.F.; Wang, Y.H. Spatial heterogeneity and driving mechanisms of water yield service in the Hengduan Mountain region. Acta Geogr. Sin. 2020, 75, 607–619. [Google Scholar] [CrossRef]
- Lü, W.B.; Xu, Z.J.; Qi, G.; Wang, J.J.; Li, Z. Research on the Temporal Evolution and Spatial Differentiation Characteristics of Carbon Storage in Terrestrial Ecosystems on the Loess Plateau. Res. Soil Water Conserv. 2024, 31, 252–263. [Google Scholar] [CrossRef]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Wang, L.J.; Ma, S.; Xu, J.C.; Zhu, D.Z.; Zhang, J.C. Selection of priority protected region based on ecosystem service trade-offs: A case study of the southern hill and mountain belt, China. Acta Ecol. Sin. 2021, 41, 1716–1727. [Google Scholar] [CrossRef]
- Liang, M.X. The Ecosystem Service Valuation of Daiyunshan Nature Reserve in Fujian. J. Northwest For. Univ. 2014, 29, 263–268. [Google Scholar] [CrossRef]
- Si, X.Q.; Wang, X.J.; Lin, Y.B.; Liu, G.X. Spatiotemporal Characteristics of Carbon Storage and Its Response to Land Use Change in Fujian Province. Bull. Soil Water Conserv. 2023, 43, 355–364. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Liu, X.G.; Zeng, J.F. Spatio-temporal change and prediction of carbon storage in Dongjiang River source watershed based on InVEST-PLUS model. Acta Sci. Circumstantiae 2024, 44, 419–430. [Google Scholar] [CrossRef]
- Xing, X.C.; Zhi, L.; Xie, Y.M.; Yuan, Z. Estimation of Ecological Service Value in Western Natural Forest Protection Project Area Based on Equivalent Factor Approach of Unit Area Value:Taking Six Western Provinces as an Example. Ecol. Econ. 2017, 33, 195–199. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.M.; Zhang, Q.; Li, J.F.; Zhou, X.W. Projections of Future Land Use Changes: Multiple Scenarios-Based Impacts Analysis on Ecosystem Services for Wuhan City, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Moreira, M.; Fonseca, C.; Vergílio, M.; Calado, H.; Gil, A. Spatial Assessment of Habitat Conservation Status in a Macaronesian Island Based on the InVEST Model: A Case Study of Pico Island (Azores, Portugal). Land Use Policy 2018, 78, 637–649. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Hou, S.; Liu, T.; Li, X.; Li, Y.; Du, Z.; Li, C.; Wu, H.; Gao, G.; et al. Unraveling Carbon Stock Dynamics and Their Determinants in China’s Loess Plateau over the Past 40 Years. Ecol. Indic. 2024, 159, 111760. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, J.J.; Qi, Y.; Peng, F.L. Review of Ecosystem Management Based on the InVEST Model. Chin. J. Ecol. 2015, 34, 3526–3532. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhou, C.H. Estimating soil carbon reservior of terrestrial ecosystem in China. Geogr. Res. 1999, 18, 349–356. [Google Scholar]
- Han, Y.; Ding, S.T.; Yang, T.B. Spatial and temporal distribution and driving factors of carbon storage in Zhongtiao Mountain ecosystem in southern Shanxi Province. China Environ. Sci. 2023, 43, 1298–1306. [Google Scholar] [CrossRef]
- Lyu, J.H.; Qiao, Y.; Wang, Y.; Lyu, X.Y. Analysis of Spatial Spillover Effect and Threshold Effect of Forest Carbon Stocks in China. J. Agro-For. Econ. Manag. 2023, 23, 1–14. [Google Scholar]
- Mugagga, F.; Kakembo, V.; Buyinza, M. Land Use Changes on the Slopes of Mount Elgon and the Implications for the Occurrence of Landslides. Catena 2012, 90, 39–46. [Google Scholar] [CrossRef]
- Xu, C.X.; Gong, J.; Li, Y.; Yan, L.L.; Gao, B.L. Spatial distribution characteristics of typical ecosystem services based on terrain gradients of Bailongjiang Watershed in Gansu. Acta Ecol. Sin. 2020, 40, 4291–4301. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Yang, K.; Xin, G.X.; Jiang, H.Y.; Yang, C.X. Study on Spatiotemporal Changes of Landscape Ecological Risk Based on the Optimal Spatial Scale: A Case Study of Jiangjin District, Chongqing City. J. Ecol. Rural Environ. 2021, 37, 576–586. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Yang, L.; Zhu, Z. Variations in Ecosystem Service Value and Its Driving Factors in the Nanjing Metropolitan Area of China. Forests 2023, 14, 113. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Wang, Q.F.; Zhang, H.T.; Chen, Z.P.; Zhang, L. Temporal and Spatial Variations of Arbor Forest Carbon Storage of Gansu Province Based on InVEST Model in the Forest Area of the Qilian Mountains. J. Northwest For. Univ. 2023, 38, 233–240. [Google Scholar] [CrossRef]
- Tong, R.X.; Liang, X.; Guan, Q.F.; Song, Y.; Chen, Y.L.; Wang, Q.Y.; Zheng, L.N.; Jin, Q.; Yu, Y.P.; He, J. Estimation of soil carbon storage change from land use and management at a high spatial resolution in China during 2000–2020. Acta Geogr. Sin. 2023, 78, 2209–2222. [Google Scholar] [CrossRef]
- Wang, W.J. Reserve Estimation, Spatiotemporal Distribution and Its Influencing Factors of Soil Organic Carbon in Fujian Province, China. Geoscience 2019, 33, 1295. [Google Scholar] [CrossRef]
- Zeng, H.D.; Xu, H.Q.; Liu, Z.C.; Huang, X.H.; Xiao, S.L. Variability of Soil Organic Carbon and Factors Affecting It in Residential Lands in a Rapidly Urbanizing Area: A Case Study of Nantai Island of Fuzhou City, China. Acta Ecol. Sin. 2018, 38, 1427–1435. [Google Scholar] [CrossRef]
- Li, Y.S. On the change of reginal economic development pattern in Fujian province. World Reg. Stud. 2001, 10, 71–77. [Google Scholar]
- Wang, Z.Y.; Zhang, J.Y.; Li, H.Y.; Su, W.C. Multi-scale spatio-temporal evolution and multi-scenario simulation of land use conflict in Chongqing. Acta Ecol. Sin. 2024, 44, 1024–1039. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Min, M. Mapping for Terrestrial Ecosystem Services: A Review. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–6. [Google Scholar]
- Daly, H.E.; Farley, J. Ecological Economics, Second Edition: Principles and Applications; Island Press: Washington, DC, USA, 2011; ISBN 978-1-59726-991-9. [Google Scholar]
- Li, P.; Jiang, L.G.; Feng, Z.M.; Yu, X.B. Research progress on trade-offs and synergies of ecosystem services:an overview. Acta Ecol. Sin. 2012, 32, 5219–5229. [Google Scholar] [CrossRef]
- Ma, Q.H.; Yang, Z. Cultivation Status of European Hazelnuts and Their Introducing Utilization in China. J. Plant Genet. Resour. 2022, 24, 599–614. [Google Scholar] [CrossRef]
Dimension | Dataset Name | Spatial Resolution | Data Source |
---|---|---|---|
Land use | 7 periods of land-use data | 30 m | The 30-m annual land cover datasets and the dynamics in China from 1985 to 2022 (https://zenodo.org/records/8176941, accessed on 2 July 2024) |
Soil data | FOA (www.fao.org, accessed on 3 July 2024) | ||
Natural factors | Digital elevation models (DEMs) (X1) | 30 m | Geospatial data cloud (https://www.gscloud.cn/, accessed on 3 July 2024) |
Slope (X2) | 30 m | ||
Aspect (X3) | 30 m | ||
Annual precipitation (X4) | 1000 m | Chinese Academy of Sciences (https://www.resdc.cn, accessed on 5 July 2024) | |
Average annual temperature (X5) | 1000 m | ||
Soil type (X6) | 1000 m | ||
Soil erosion intensity (X7) | 1000 m | ||
Net Primary Production (NPP) (X8) | 500 m | NASA (https://www.earthdata.nasa.gov/, accessed on 5 July 2024) | |
Socioeconomic factors | Gross domestic product (GDP) (X9) | 1000 m | Chinese Academy of Sciences (https://www.resdc.cn, accessed on 8 July 2024) |
Population density (X10) | 1000 m | ||
Night light index (X11) | 500 m | ||
Locational factors | Distance to highway (X12) | 500 m | National catalog service for geographic information (https://www.webmap.cn, accessed on 8 July 2024) |
Distance to primary roads (X13) | 500 m | ||
Distance to secondary roads (X14) | 500 m | ||
Distance to tertiary roads (X15) | 500 m | ||
Distance to class quaternary roads (X16) | 500 m | ||
Distance to water (X17) | 500 m | ||
Distance to county and township government offices (X18) | 500 m |
Land-Use Type | Cultivated Land | Forest Land | Shrub | Grassland | Water Bodies | Barren | Construction Land |
---|---|---|---|---|---|---|---|
Economic value coefficients | 18.35 | 0.93 | 0.93 | 5623.54 | 38.06 | 0 | 2862.44 |
Ecological value coefficients | 4.38 | 26 | 17.14 | 22.17 | 141.44 | 0.23 | 0 |
Constraint type | Formulas | Formula Interpretation |
---|---|---|
Total area | The total area of all land-use types should remain constant. | |
Cultivated land demand | According to the Fujian Provincial Land-use Master Plan (2006–2020), the lower limit of presumed cultivated land area | |
Forest land demand | Following the “Implementation Opinions” issued by the Fujian Provincial Party Committee and Provincial Government, a 0.19% increase in forest land area by 2020 is set as the lower bound for forest land area in 2032. | |
Shrub demand | As grassland area has exhibited a declining trend over the past decade, the grassland area in 2022 is designated as the upper limit. | |
Grassland demand | Grassland areas have shown a downward trend over the past 10 years; therefore, 2022 was used as the upper limit for grassland areas. | |
Water bodies’ demand | As this region serves headwater bodies for numerous rivers, and the water body area has exhibited a decreasing trend over the past 10 years, the water body area in 2022 is set as the lower limit. | |
Construction land demand | Construction land is generally more stable and less susceptible to conversion to other land-use types; therefore, the 2022 built-up land area is used as a lower bound. | |
Barren land demand | The barren land area has surged over the past 10 years. Under various scenarios, barren land requires rational development and utilization, aiming to restore it to the 2012 level. Therefore, the upper limit for barren land area is set at the 2022 level, while the lower limit is set at the 2012 level. | |
Model accuracy | For land-use types with undetermined upper and lower limits across scenarios, the baseline is set as the projection from the Markov model, with a fluctuation range of 20%. | |
Variables non-negative constraints | The decision variables must be non-negative, with xi and yi representing the areas of cultivated, forest, shrub, grassland, water bodies, barren land, and construction land under the optimized scenarios and natural development scenario, respectively. |
Land-Use Type | Cabove/t·hm−2 | Cbelow/t·hm−2 | Csoil/t·hm−2 | Cdead/t·hm−2 |
---|---|---|---|---|
Forest land | 65.87 | 12.25 | 51.05 | 2.11 |
Cultivated land | 3.91 | 1.53 | 50.37 | 0 |
Shrub | 5.41 | 1.79 | 53.45 | 1.01 |
Grassland | 1.63 | 4.11 | 53.56 | 1.81 |
Water bodies | 0.00 | 0.00 | 45.34 | 0 |
Barren | 0.67 | 9.37 | 45.84 | 0 |
Construction land | 0.93 | 0.25 | 45.23 | 0 |
Classification | Elevation/m | Slope/(°) | Topographic Position Index |
---|---|---|---|
I | 0–307 | 0–9.56 | 0–0.3 |
II | 307–536 | 9.56–16.63 | 0.3–0.48 |
III | 536–742 | 16.63–23.70 | 0.48–0.61 |
IV | 742–990 | 23.70–32.08 | 0.61–0.74 |
V | 990–1833 | 32.08–73.84 | 0.74–1.22 |
Year | Cropland | Forest | Shrub | Grassland | Water Bodies | Barren | Impervious |
---|---|---|---|---|---|---|---|
1992 | 108,270.09 | 1,220,328.18 | 219.42 | 281.79 | 3207.33 | 0.18 | 3493.35 |
1997 | 104,427.72 | 1,222,148.52 | 252.99 | 194.31 | 3582.36 | 0.09 | 5194.35 |
2002 | 114,892.47 | 1,209,449.25 | 312.75 | 204.30 | 3713.67 | 0.09 | 7227.81 |
2007 | 104,654.79 | 1,217,775.78 | 275.94 | 288.36 | 4083.21 | 0.36 | 8721.90 |
2012 | 99,680.13 | 1,219,302.81 | 192.24 | 377.91 | 4590.72 | 4.14 | 11,652.39 |
2017 | 122,465.34 | 1,192,885.20 | 155.52 | 406.44 | 4777.83 | 10.35 | 15,099.66 |
2022 | 135,422.19 | 1,178,438.04 | 136.80 | 280.89 | 4402.98 | 13.68 | 17,105.76 |
2032 (ND) | 165,165.57 | 1,142,040.69 | 681.39 | 276.84 | 4381.02 | 12.42 | 23,242.41 |
2032 (ED) | 118,143.54 | 1,183,781.97 | 87.93 | 280.89 | 4933.71 | 4.14 | 28,568.16 |
2032 (EP) | 99,829.8 | 1,213,293.96 | 87.93 | 221.49 | 5256.54 | 4.86 | 17,105.76 |
2032 (CD) | 99,829.8 | 1,201,772.16 | 87.93 | 280.89 | 5257.26 | 4.14 | 28,568.16 |
Year | Cropland | Forest | Shrub | Grassland | Water Bodies | Barren | Impervious | Total |
---|---|---|---|---|---|---|---|---|
1992 | 6.04 | 160.20 | 0.01 | 0.02 | 0.15 | 0.00 | 0.16 | 166.59 |
1997 | 5.83 | 160.44 | 0.02 | 0.01 | 0.16 | 0.00 | 0.24 | 166.70 |
2002 | 6.41 | 158.78 | 0.02 | 0.01 | 0.17 | 0.00 | 0.34 | 165.72 |
2007 | 5.84 | 159.87 | 0.02 | 0.02 | 0.19 | 0.00 | 0.40 | 166.33 |
2012 | 5.56 | 160.07 | 0.01 | 0.02 | 0.21 | 0.00 | 0.54 | 166.42 |
2017 | 6.83 | 156.60 | 0.01 | 0.02 | 0.22 | 0.00 | 0.70 | 164.39 |
2022 | 7.56 | 154.71 | 0.01 | 0.02 | 0.20 | 0.00 | 0.79 | 163.28 |
2032 (ND) | 9.22 | 149.93 | 0.04 | 0.02 | 0.20 | 0.00 | 1.08 | 160.48 |
2032 (ED) | 6.59 | 155.41 | 0.01 | 0.02 | 0.22 | 0.00 | 1.33 | 163.57 |
2032 (EP) | 5.57 | 159.28 | 0.01 | 0.01 | 0.24 | 0.00 | 0.79 | 165.90 |
2032 (CD) | 5.57 | 157.77 | 0.01 | 0.02 | 0.24 | 0.00 | 1.33 | 164.93 |
Factors | 0.5 km | 1 km | 1.5 km | 2 km | 2.5 km | 3 km | 3.5 km | 4 km |
---|---|---|---|---|---|---|---|---|
X1 | 0.3519 | 0.4238 | 0.4755 | 0.4729 | 0.5257 | 0.5142 | 0.5377 | 0.5143 |
X2 | 0.5483 | 0.5935 | 0.6023 | 0.5961 | 0.5705 | 0.5557 | 0.5047 | 0.5319 |
X3 | 0.0400 | 0.0392 | 0.0412 | 0.0387 | 0.0337 | 0.0471 | 0.0464 | 0.0222 |
X4 | 0.0995 | 0.1489 | 0.1770 | 0.2066 | 0.2282 | 0.2307 | 0.2791 | 0.2757 |
X5 | 0.3014 | 0.4060 | 0.4782 | 0.5154 | 0.5501 | 0.5696 | 0.6158 | 0.5889 |
X6 | 0.1494 | 0.1586 | 0.1906 | 0.1899 | 0.2035 | 0.2092 | 0.1939 | 0.2024 |
X7 | 0.0052 | 0.0090 | 0.0162 | 0.0195 | 0.0241 | 0.0462 | 0.0488 | 0.0585 |
X8 | 0.0738 | 0.0961 | 0.0971 | 0.1082 | 0.1096 | 0.1023 | 0.0551 | 0.1383 |
X9 | 0.0891 | 0.1215 | 0.1631 | 0.1652 | 0.1967 | 0.2004 | 0.2217 | 0.2493 |
X10 | 0.1531 | 0.2131 | 0.2903 | 0.3017 | 0.3123 | 0.3299 | 0.3587 | 0.1633 |
X11 | 0.3530 | 0.4679 | 0.5362 | 0.5694 | 0.6142 | 0.6056 | 0.6707 | 0.6616 |
X12 | 0.0320 | 0.0425 | 0.0523 | 0.0596 | 0.0662 | 0.0675 | 0.0920 | 0.0901 |
X13 | 0.0436 | 0.0657 | 0.0894 | 0.1061 | 0.1181 | 0.1268 | 0.1767 | 0.1675 |
X14 | 0.1157 | 0.1534 | 0.1761 | 0.1827 | 0.1909 | 0.1961 | 0.2030 | 0.2358 |
X15 | 0.0509 | 0.0624 | 0.0700 | 0.0709 | 0.0717 | 0.0932 | 0.0802 | 0.0796 |
X16 | 0.0267 | 0.0275 | 0.0271 | 0.0228 | 0.0226 | 0.0277 | 0.0160 | 0.0274 |
X17 | 0.0701 | 0.0678 | 0.0628 | 0.0545 | 0.0579 | 0.0612 | 0.0307 | 0.0403 |
X18 | 0.1173 | 0.1616 | 0.1928 | 0.2040 | 0.2113 | 0.2303 | 0.2235 | 0.2712 |
90% quartile | 0.373 | 0.48 | 0.543 | 0.572 | 0.575 | 0.573 | 0.621 | 0.596 |
Factors | 1992 | 1997 | 2002 | 2007 | 2012 | 2017 | 2022 | 1992–2022 |
---|---|---|---|---|---|---|---|---|
X1 | 0.5311 | 0.5347 | 0.5225 | 0.5153 | 0.5363 | 0.5196 | 0.5377 | 0.5282 |
X2 | 0.4996 | 0.5006 | 0.4984 | 0.4931 | 0.5015 | 0.5255 | 0.5047 | 0.5033 |
X3 | 0.0447 | 0.0474 | 0.0439 | 0.0452 | 0.0446 | 0.0448 | 0.0464 | 0.0453 |
X4 | 0.2849 | 0.2839 | 0.2701 | 0.2635 | 0.2765 | 0.2581 | 0.2791 | 0.2737 |
X5 | 0.6577 | 0.6559 | 0.6359 | 0.6230 | 0.6288 | 0.5991 | 0.6158 | 0.6309 |
X6 | 0.2137 | 0.2101 | 0.2154 | 0.2118 | 0.2100 | 0.2192 | 0.1939 | 0.2106 |
X7 | 0.0644 | 0.0675 | 0.0683 | 0.0561 | 0.0469 | 0.0436 | 0.0488 | 0.0565 |
X8 | 0.0593 | 0.0634 | 0.0616 | 0.0570 | 0.0548 | 0.0556 | 0.0551 | 0.0581 |
X9 | 0.2733 | 0.2600 | 0.2486 | 0.2449 | 0.2295 | 0.2182 | 0.2217 | 0.2423 |
X10 | 0.4423 | 0.4335 | 0.4215 | 0.4156 | 0.4010 | 0.3614 | 0.3587 | 0.4049 |
X11 | 0.5727 | 0.5820 | 0.5668 | 0.5885 | 0.6283 | 0.6413 | 0.6707 | 0.6072 |
X12 | 0.0671 | 0.0632 | 0.0661 | 0.0681 | 0.0730 | 0.0765 | 0.0920 | 0.0723 |
X13 | 0.1703 | 0.1749 | 0.1629 | 0.1514 | 0.1490 | 0.1457 | 0.1767 | 0.1615 |
X14 | 0.1732 | 0.1727 | 0.1628 | 0.1775 | 0.1930 | 0.1957 | 0.2030 | 0.1825 |
X15 | 0.0653 | 0.0665 | 0.0735 | 0.0769 | 0.0793 | 0.0822 | 0.0802 | 0.0748 |
X16 | 0.0259 | 0.0250 | 0.0261 | 0.0232 | 0.0244 | 0.0246 | 0.0160 | 0.0236 |
X17 | 0.0371 | 0.0369 | 0.0373 | 0.0416 | 0.0427 | 0.0424 | 0.0307 | 0.0384 |
X18 | 0.2132 | 0.2160 | 0.2200 | 0.2229 | 0.2254 | 0.2378 | 0.2235 | 0.2227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Peng, Q.; Fan, Q.; Lin, W.; Su, K. Spatial-Temporal Variation and Driving Forces of Carbon Storage at the County Scale in China Based on a Gray Multi-Objective Optimization-Patch-Level Land Use Simulation-Integrated Valuation of Ecosystem Services and Tradeoffs-Optimal Parameter-Based Geographical Detector Model: Taking the Daiyun Mountain’s Rim as an Example. Land 2025, 14, 14. https://doi.org/10.3390/land14010014
Chen G, Peng Q, Fan Q, Lin W, Su K. Spatial-Temporal Variation and Driving Forces of Carbon Storage at the County Scale in China Based on a Gray Multi-Objective Optimization-Patch-Level Land Use Simulation-Integrated Valuation of Ecosystem Services and Tradeoffs-Optimal Parameter-Based Geographical Detector Model: Taking the Daiyun Mountain’s Rim as an Example. Land. 2025; 14(1):14. https://doi.org/10.3390/land14010014
Chicago/Turabian StyleChen, Gui, Qingxia Peng, Qiaohong Fan, Wenxiong Lin, and Kai Su. 2025. "Spatial-Temporal Variation and Driving Forces of Carbon Storage at the County Scale in China Based on a Gray Multi-Objective Optimization-Patch-Level Land Use Simulation-Integrated Valuation of Ecosystem Services and Tradeoffs-Optimal Parameter-Based Geographical Detector Model: Taking the Daiyun Mountain’s Rim as an Example" Land 14, no. 1: 14. https://doi.org/10.3390/land14010014
APA StyleChen, G., Peng, Q., Fan, Q., Lin, W., & Su, K. (2025). Spatial-Temporal Variation and Driving Forces of Carbon Storage at the County Scale in China Based on a Gray Multi-Objective Optimization-Patch-Level Land Use Simulation-Integrated Valuation of Ecosystem Services and Tradeoffs-Optimal Parameter-Based Geographical Detector Model: Taking the Daiyun Mountain’s Rim as an Example. Land, 14(1), 14. https://doi.org/10.3390/land14010014