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Abstract: Water quality indices (WQIs) are customarily associated with heavy data input demand,
making them more rigorous and bulky. Such burdensome attributes are too taxing, time-consuming,
and command a significant amount of resources to implement, which discourages their application
and directly influences water resource monitoring. It is then imperative to focus on developing
compatible, simpler, and less-demanding WQI tools, but with equally matching computational ability.
Surrogate models are the best fitting, conforming to the prescribed features and scope. Therefore,
this study attempts to provide a surrogate WQI as an alternative water quality monitoring tool that
requires fewer inputs, minimal effort, and marginal resources to function. Accordingly, multivariate
statistical techniques which include principal component analysis (PCA), hierarchical clustering
analysis (HCA) and multiple linear regression (MLR) are applied primarily to determine four proxy
variables and establish relevant model coefficients. As a result, chlorophyll-a, electrical conductivity,
pondus Hydrogenium and turbidity are the final four proxy variables retained. A vital feature of the
proposed surrogate index is that the input parameters qualify for inclusion into remote monitoring
systems; henceforth, the model can be applied in remote monitoring programs. Reflecting on the
model validation results, the proposed surrogate WQI is considered scientifically stable, with a
minimum magnitude of divergence from the ideal water quality values. More importantly, the model
displayed a predictive pattern identical to the ideal graph, matching on both index scores and
classification values. The established surrogate model is an important milestone with the potential of
promoting water resource monitoring and assisting in capturing of spatial and temporal changes in
South African river catchments. This paper aims at outlining the methods used in developing the
surrogate water quality index and document the results achieved.

Keywords: water quality index (WQI); surrogate model; proxy model; principal component analysis
(PCA); hierarchical cluster analysis (HCA); multivariate statistical analysis; multiple linear regression
(MLR)

1. Introduction

Regular water quality sampling and analysis is a costly and demanding task, hence acquiring
large volumes of water quality data is often a challenge and requires a significant amount of financial
resources [1,2]. The challenge has initiated a common duty to examine alternative water monitoring
techniques that are concise, and possibly relieve sampling assignments. The ultimate goal is to put
forward cost-effective and flexible water assessment models, emphasis being given to optimization of
parameter input and mathematical simplicity.

Often, water quality index (WQI) models are heavily parameterized, requiring extensive amount
of data thereby limiting their application due to input parameter demand. To govern such tendencies,

Water 2020, 12, 1584; doi:10.3390/w12061584 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-0037-6441
https://orcid.org/0000-0003-1612-190X
http://www.mdpi.com/2073-4441/12/6/1584?type=check_update&version=1
http://dx.doi.org/10.3390/w12061584
http://www.mdpi.com/journal/water


Water 2020, 12, 1584 2 of 23

a surrogate WQI is proposed. A surrogate model is an abridged version of an outright WQI, thereto
function with limited input data. It represents a quick and easy method of translating complex
water quality data into simple, but yet testable measure. Though less-detailed, proxy models are
equally competent and fundamentally identical to the original unbridged models, but with reduced
computational precision [3]. Although having less accurate arithmetic aptitude, the advantages of
surrogate models outbalance such unfavorable attributes and compensate for the numerical divergence.
Based upon the review by Razavi, et al. [3], Asher, et al. [4] and Bhosekar and Ierapetritou [5], a variety
of surrogate models exist and are documented in the literature, with those of Schultz Martin, et al. [6],
Shamir and Salomons [7], Castelletti, et al. [8], Preis, et al. [9] and Sreekanth and Datta [10] being
practical examples of proxy models developed for water resource management functions.

The proposed proxy WQI has been established to be rationally implemented in lieu of the
high-fidelity model for surface water pollution control and river basin planning functions, referred
here as the universal water quality index (UWQI). The primary objective of developing and applying
the suggested surrogate WQI is to make better use of typically restricted water resource monitoring
budgets [3]. Therefore, the proposed surrogate WQI aims to provide a simpler and cost-effective
model that simulates the output of a complex high-fidelity model [4]. Undoubtedly, the success of the
surrogate WQI and its advantages will ultimately intensify regular water resource monitoring in South
Africa. In the same context, thirteen variables applicable to UWQI have been subjected to multivariate
statistical analysis to select the most meaningful proxy variables for the surrogate WQI. Based on
the study results, surrogate WQI(a) which includes SO4 as an input variable, struggles to assess
water quality datasets with excessive parameter concentration levels. In this regard, pH performed
much better than SO4, hence the inclusion of pH among the model input variables. Subsequently,
chlorophyll-a, electrical conductivity, pondus Hydrogenium and turbidity are the final four proxy
parameters. Minimizing the input parameters can significantly reduce time, effort and cost required to
evaluate water resources, thereby making the process more feasible and economically viable [5,11,12].
It is then vital for water quality scientists to consider the application of surrogate WQIs, with the aim of
reducing parameter input demand, thereby lowering water quality monitoring resource requirements.
Despite that, the suggested proxy WQI is developed for surface water pollution control and river
basin planning functions, the application range of surrogate WQIs matches that of high-fidelity
models. It can extend to any other water body and serve a diverse range of water uses. In this study,
the terms “low-fidelity model,” “surrogate model,” and “proxy model” bear the same meaning and
are used interchangeably.

2. Methods

2.1. Research Data and Study Area

Water quality data from Umgeni Water Board (UWB) was used to achieve specific objectives of
the current study. The study utilized water quality samples tested weekly for a period of six and
half years spanning from January 2012 to July 2018. All the water quality variables were sampled in
accordance with standard methods prescribed by the Department of Water and Sanitation (DWS), and
further analyzed according to international standards in an ISO 9001 accredited laboratory owned and
operated by UWB [13]. The research dataset from UWB satisfactorily provided all the required thirteen
water quality variables and these are, ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a
(Chl-a), electrical conductivity (EC), fluoride (F), hardness (CaCO3), magnesium (Mg), manganese
(Mn), nitrate (NO3), pondus hydrogenium (pH), sulphate (SO4) and turbidity (Turb).

Inconsistency in the frequency of sampling was observed; some variables were tested on varying
intervals of weekly, monthly and quarterly basis. The degree of consistency on the original dataset is
63% with a greater effect on Ca, F, CaCO3 and Mg. Where possible, estimation of missing data was
done using interpolation, with a back-and-forward filling of the data gaps. Approximation of the
missing data in-between measured intervals was achieved by linear interpolation using the available
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last set of measurements before and after the data gaps. Whilst missing data at the end or beginning
of the period were back or forward filled [14]. For the current study, the data samples considered
for establishing the proxy model are those with at least twelve variables measured per sample/case
and they amount to 638 samples (refer to Table 1). For this particular curtailed dataset, the degree
of consistency is almost 93% with 638 observed samples consisting of 7741 measured tests out the
maximum possible 8294 tests. The missing tests are 553 accounting to nearly 7% of the overall dataset,
owing to CaCO3 with about 87% missing data.

Table 1. Descriptive Statistics for Observed Water Quality Data for Umgeni Water Board Used to
Develop the Surrogate Water Quality Index (WQI) Model.

Variables a
Statistical Summary of Umgeni Water Quality Data

Minimum Average Maximum Standard
Deviation Total Tests Percentage of

Missing Data

1 NH3 0.040 0.097 1.350 0.091 638 0.000%
2 Ca 1.000 9.171 30.500 6.078 638 0.000%
3 Cl 1.821 25.215 79.000 13.765 638 0.000%
4 Chl-a 0.140 5.071 158.230 9.374 638 0.000%
5 EC 6.220 19.398 144.400 9.840 638 0.000%
6 F 0.100 0.136 0.544 0.048 638 0.000%
7 CaCO3 0.000 3.518 79.000 9.499 85 86.677%
8 Mg 1.000 5.724 16.300 2.535 638 0.000%
9 Mn 0.010 0.074 1.210 0.172 638 0.000%
10 NO3 0.050 0.571 19.900 0.984 638 0.000%
11 pH 0.000 7.747 9.100 0.529 638 0.000%
12 SO4 0.160 7.497 24.200 5.980 638 0.000%
13 Turb 0.430 15.019 367.000 29.638 638 0.000%

Source: Umgeni Water Board (2012 to 2018). Notes: parameters are listed according to alphabetic, other than the
order of importance. Although the data received from Umgeni has more water quality variables, Table 1 shows only
thirteen water quality parameters considered in this study. a Water quality variables measured in mg/L, except for
chlorophyll-a (µg/L), electrical conductivity (µS/m), pondus Hydrogenium (unitless), and turbidity (NTU).

Water quality data provided by Umgeni Water Board is for eight sampling stations which
fall under the jurisdiction of four different catchment areas; that is, three stations situated in
Umgeni River catchment (U20) and located at Henley, Inyanda and Midmark Dams respectively; one
station at Hazelmere Dam located within Umdloti River catchment (U30); one station at Nungwane
Dam under Nungwane River catchment (U70); and lastly one station at Umzinto Dam found in
Umzinto/uMuziwezinto River catchment (U80). Details of the sampling stations are further presented
in Table 2 and Figure 1.

Table 2. Details of Sampling Stations Relevant to the Study.

Sampling Station Identity Identity Codes Sampling Location Coordinates (DMS)*

Station Catchment Latitude Longitude

1 Henley Dam DHL003 U20 S 29◦ 37’ 25.734” E 30◦ 14’ 49.754”
2 Hazelmere Dam DHM003 U30 S 29◦ 35’ 53.722” E 31◦ 02’ 32.121”
3 Inanda Dam 0.3 km DIN003 U20 S 29◦ 42’ 27.403” E 30◦ 52’ 03.352”
4 Inanda Dam 7.5 km DIN013 U20 S 29◦ 40’ 37.002” E 30◦ 49’ 52.881”
5 Inanda Dam 14 km DIN017 U20 S 29◦ 40’ 11.420” E 30◦ 48’ 45.824”
6 Midmar Dam DMM003 U20 S 29◦ 29’ 47.332” E 30◦ 12’ 05.655”
7 Umzinto Dam DMZ009 U80 S 30◦ 18’ 40.676” E 30◦ 35’ 34.580”
8 Nungwane Dam DNW003 U70 S 30◦ 00’ 24.473” E 30◦ 44’ 36.150”

Source: Umgeni Water Board. Notes: * location coordinates based on the World Geodetic System 84 (WGS 84); DMS
degrees, minutes and seconds (DMS). Although UWB has more water quality monitoring stations, Table 2 shows
only the eight water quality monitoring stations considered in this study.
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At least one or more stations were considered for each of the four drainage basins applicable
to the study. Testing the model with data from these four river catchments supports the objective
of establishing a water quality index (WQI) applicable to the greater part of the country, if not the
whole of South Africa. Over and above the availability of data from UWB, the economic significance of
KwaZulu-Natal Province [15,16], the distinctiveness of its inter-basin arrangements, the scope of the
transfer schemes involved and extensive water demand [17–19]; all these, uniquely encouraged the
choice of the study area, which falls under Pongola-Mtamvuna water management area (WMA) [20,21].
The project data was adequate to examine the model and complement the objective of developing a
nationally acceptable proxy water quality index.Water 2020, 12, x FOR PEER REVIEW 4 of 22 
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Figure 1. Locality map for sampling stations: (a) all eight sampling stations, (b) Henley Dam,
(c) Hazelmere Dam, (d) Inanda Dam, (e) Midmar Dam, (f) Umzinto Dam, and (g) Nungwane Dam.
The underlying map used for the production of the locality map was downloaded from Google Earth
and station coordinates are from UWB as presented in Table 2. Notes: Sampling Stations identity
(1) Henley Dam DHL003, (2) Hazelmere Dam DHM003, (3) Inanda Dam 0.3 km DIN003, (4) Inanda
Dam 7.5 km DIN013, (5) Inanda Dam 14.0 km DIN017, (6) Midmar Dam DMM003, (7) Umzinto Dam
DMZ009, and (8) Nungwane Dam DNW003.

2.1.1. Umgeni River Catchment

Umgeni River catchment is a sub-humid drainage basin located along the Indian Ocean coastline
in KwaZulu-Natal Province in the Republic of South Africa [16,22,23]. Umgeni River catchment has
surface area nearing 4432 km2, with Umgeni River being the major water channel of the drainage
basin [13,15,21,24]. The 232-km long river originates from the Drakensberg mountains and flows
eastwards towards the Indian Ocean with four main cardinal tributaries namely Lions, Karkloof,
Impolweni and Umsunduzi Rivers [21,23]. Lions River is the most contributing tributary on the
upstream of Midmar Dam and it serves as the transfer channel conveying water resources from
the adjacent Mooi River Catchment [13]. The basin land cover is characterized as heterogeneous
mostly consisting of urban areas, natural forest, commercial sugarcane plantations, small-scale to
commercial agricultural farms and the Port City of Durban [13,15,16,22]. Notably, Umgeni River
supports the livelihood of informal settlers residing along the river course. They rely on the river for
various household activities, irrigation and livestock production [25]. The rainfall pattern of Umgeni
basin is seasonal, with rains concentrated in the summer months (October to March). The amount of
precipitation is highly variable, increasing from the western side to the eastern part of the river catchment.
The highest rainfall occurs in coastal areas with a range of 1000 mm/yr to 1500 mm/yr [15,23]. The inland
parts of Umgeni basin generally receive rainfall ranging from 800 mm/yr to 1000 mm/yr [15,22,26].
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The average annual temperature ranges from 12 ◦C to 22 ◦C; leading to evaporation rates between
1567 mm/yr and 1737 mm/yr [13]. Four major dams are used to regulate and preserve the water
resources in Umgeni drainage region and these are, Midmar, Albert Falls, Nagle and Inanda [13,18].
Midmar Dam supplies Pietermaritzburg and some portions of Durban, whereas Albert Falls, Nagle
and Inanda Dams cater for the greater part of Durban Metropolitan [21–23]. In addition to the four
major dams, there is Henley Dam situated south of Midmar Dam along Msunduzi River, a tributary of
Umgeni River. Apart from that, there are about 300 farm dams utilized for irrigating nearly 185 km2 of
commercial farms in Umgeni catchment area [22,27].

2.1.2. Umdloti River Catchment

Umdloti catchment is situated north-east of Umgeni basin, adjacent to Nagle and Inanda Dams.
The catchment has an estimated area of 597 km2 with Umdloti River as the main watercourse of the
basin [28]. The river source is found in the Noodberg area and stretches for nearly 88 km, flowing
eastwards towards the Indian Ocean. The river estuary is approximately 25 km north-east of Durban
Central [24,29]. A considerable portion of the catchment is utilized for commercial farming, dominated
by sugarcane and banana plantations with minimal of vegetable and citrus farming. Apart from
these, other establishments include residential, Verulam Town, game reserves, Hazelmere Dam and
Hazelmere wastewater treatment plant [29]. Similar to Umgeni basin, the catchment experiences
summer rainfall with mean annual precipitation ranging between 800 and 1125 mm. Temperatures
varying from 9 ◦C in winter to 38 ◦C in summer [29]. Hazelmere Dam is the major water impoundment
in Umdloti catchment [28]. The dam was established to service the domestic, industrial and agricultural
needs of the Durban area, including the new Durban International Airport [24,27,29].

2.1.3. Nungwane River Catchment

Located south-west of Umgeni drainage region, Nungwane River catchment has a mean annual
precipitation of 938 mm/yr and annual evaporation close to 1200 mm/yr. The significant impoundment
in the quaternary catchment is the Nungwane Dam situated along Nungwane River, which is a
tributary of Lovu River [30]. The impoundment was built in 1977 with catchment area of 58 km2 and
raw from Nungwane Dam is treated at Amazimtoti water treatment plant and supply eThekwini
Municipality [27,30].

2.1.4. Umzinto/uMuziwezinto River Catchment

Umzinto River catchment also known as UMuziwezinto River catchment lies further south
of Nungwane Dam. According to Umgeni Water [30], the river basin receives rainfall averaging
985 mm/yr, with an evaporation rate of 1200 mm/yr. In 1983, Umzinto Dam was constructed along
Umzinto/uMuziwezinto River with catchment coverage of about 52 km2 [27]. Together with EJ Smith
Dam, raw water from Umzinto Dam is treated at Umzinto water treatment plant (WTP) and distributed
to Ugu District Municipality [30,31]. Both dams, EJ Smith and Umzinto, supply raw water towards the
operation of Umzinto WTP [30,31].

2.2. Water Quality Assessment

In order to perform multiple linear regression (MLR) analysis, two variables are necessary; thus,
the independent and dependent variables. In this study, water quality index (WQI) scores were
regarded as the dependent variable and the measured parameter values of the physicochemical water
quality variables were considered as the independent variables. Water quality index is a simple, but
yet intelligible rating score that provides the composite influence of various water quality variables
in a given water body [32–34]. The index number is normally measured against a relative scale to
explain the quality of water based on categories ranging from zero to hundred [35]. In a similar fashion,
the newly established universal water quality index (UWQI) was utilized for WQI assessment and the
model constitute the following:
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(a) Variables: thirteen predefined explanatory water quality parameters (NH3, Ca, Cl, Chl-a, EC,
F, CaCO3, Mg, Mn, NO3, pH, SO4 and Turb), which are listed based on expert opinion [27].
Rand Corporation’s Delphi Technique was applied to incorporate expert opinion from a panel
of thirty water specialists from government parastatals, private sector and academia. Delphi
Questionnaires were circulated to the participants and were asked to consider twenty-one water
quality parameters for their possible inclusion in the UWQI. The panelists were instructed to
designate each variable as: “Include” and “Exclude” and further assign a relative significance
rating against each variable elected as “Include.” The rating scale ranged from one to five, whereby
“scale 1” denoted the uppermost significance and “scale 5” represented a comparatively low
significance. In addition to the prescribed twenty-one parameters, the experts were allowed to
add at most five more variables if desired. A total of twenty-one questionnaires were returned
out of the thirty questionnaires circulated. The Rand Corporation’s Delphi Technique is described
in detail by Horton [36], Brown, et al. [37] and Linstone and Turoff [38,39], and the method
is applied in several studies which include Kumar and Alappat [40], Nagels, et al. [41] and
Almeida, et al. [42].

(b) Weight coefficients: weight ratings (bi) ranging from one (minimum impact) to five (maximum
impact) were assigned to each parameter upon aggregating significance ratings derived from the
participatory based Delphi method together with significance ratings extracted from literature.
Thereafter, weightage coefficients (wi) were obtained from the following Equation (1) [27,43]:

wi = bi/(b1 + b2 + . . . + bn) (1)

where: bi is the assigned significance rating of the ith water parameter (one being the lowest
rating and five the highest rating); wi is the weighted coefficient for the ith water parameter
(decimal value); and n total number of the rated water quality parameters. The coefficients are
represented as decimal numbers and the sum of all coefficients is one, thereby guaranteeing
that the overall index value does not exceed hundred percent (w1 + w2 + w3 + . . . + wn = 1 for
Equations (1)). Otherwise, aggregation of sub-indices will be compromised, and deem the index
model dysfunctional. The weight coefficients are presented in Table 3.

(c) Sub-index rating curves and functions: Sub-indices (si) and sub-index rating curves; considering
that water quality parameters are monitored in different scientific units; sub-indices are applied
to convert the different units of measure into a single common non-dimensional scale [44]. This is
a common practice and the conventional method involves sub-index rating curves which are
later transformed into mathematical functions commonly known as sub-indices. For practical
purposes, fixed key points of the rating curves were graphically established with reference to
the permissible concentration limits. Straight-line graphs were used to converge the plotted
points and produce a series of linear graphs, which were further converted into linear sub-index
functions. Target Water Quality Ranges (TWQRs) as prescribed by DWAF [45–47] were consulted
in the process. Due to the nature of the article, only the sub-index rating curve and mathematical
function for NH3 are presented herein as Figure 2 and Equation (2).

SIa =


−56.627xa + 97.609, if xa ≤ 1.4
−140xa + 216, if 1.4 < xa ≤ 1.5
−12xa + 24, if 1.5 < xa ≤ 2.0

0, otherwise

. (2)

where: SIa is the sub-index for ammonia (NH3) and xa is the observed water quality reading of
the respective water quality parameter.

(d) Aggregation formula: weighted arithmetic sum model (UWQI), which is an improved version of
the weighted sum method. Scenario-based analysis was used to modify and align the model with
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local conditions to develop the final universal water quality index (UWQI) model as shown with
Equation (3) [27]:

WQI =
2
3

 n∑
i=1

siwi

1.0880563

(3)

where: UWQI is the aggregated index value ranging from zero to hundred, with zero representing
water of poor quality and hundred denoting water of the highest quality; si is the sub-index value
of the ith water quality parameter obtained from the sub-index linear functions and the values
range from zero to hundred, similar to WQI values; wi is the weight coefficient value for the ith

parameter represented as a decimal number and the sum of all coefficients is one, (w1 + w2 +

w3 + . . . + wn = 1); n is the total number of sub-indices and in this case n = 13. WQI scores are
presented as numerical value ranging from 0 to 100, where zero denotes poor water quality and
hundred signifies excellent water quality.
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parameter rating curves.

Table 3. Universal Water Quality Index (UWQI) Input Parameters and Relevant Weightage Coefficients.

Water Quality Variable Symbol Unit of
Measure

Impact Ratings and Weightage Coefficients

Delphi
Rating

Literature
Rating

Aggregated
Impact (bi)

Weight
Coefficients (wi)

1 Ammonia NH3 mg/L 4.3684 3.5033 3.9358 0.1035
2 Calcium Ca mg/L 3.5263 1.9961 2.7612 0.0726
3 Chloride Cl mg/L 3.7143 1.9249 2.8196 0.0742
4 Chlorophyll-a Chl-a µg/L 1.7222 1.0000 1.3611 0.0358
5 Electrical Conductivity EC µS/m 2.9474 2.3136 2.6305 0.0692
6 Fluoride F mg/L 3.7500 3.4619 3.6059 0.0949
7 Hardness CaCO3 mg/L 2.5714 1.8943 2.2329 0.0587
8 Magnesium Mg mg/L 3.4667 1.9334 2.7000 0.0710
9 Manganese Mn mg/L 3.8125 3.1093 3.4609 0.0910

10 Nitrate NO3 mg/L 3.9048 3.0072 3.4560 0.0909
11 pondus Hydrogenium pH Unitless 4.3333 2.5949 3.4641 0.0911
12 Sulphate SO4 mg/L 2.9167 2.9712 2.9439 0.0774
13 Turbidity Turb NTU 2.6667 2.6226 2.6446 0.0696

Totals 38.0167 1.0000

Source: Rand Corporation’s Delphi Procedure and Literature Review. Notes: the total sum of all weights is equal
to one whole number and parameters are listed according to alphabetic. Using aggregated weighted coefficients,
the following order of importance is achieved: NH3 > F > pH > Mn > NO3 > SO4 > Cl > Ca > Mg > Turb > EC >
CaCO3 > Chl-a.

2.3. Surrogate Water Quality Index (WQI)

For this particular model, water quality parameters were defined using a two-stage screening
process as follows, (i) Delphi method conducted for the universal water quality index (UWQI), where
twenty-one parameters were deduced to thirteen variables, then (ii) further reduced the parameters to
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four proxy variables using statistical assessment. During this procedure, principal component analysis
(PCA) was used for pattern recognition and explaining the structure of the underlying dataset [48,49].
It aided in identifying intercorrelated parameters and provided important statistical information on
the most significant parameters that can be used as proxy variables. Further to this, hierarchical cluster
analysis (HCA) was performed to provide instinctive similarity relationships that exist among water
quality parameters and in the process, HCA yielded a dendrogram (tree diagram) that illustrated the
cluster arrangement and parameter proximity to one another [50,51].

Thereafter, multivariate regression analysis was adopted to estimate the relationship between
WQI (dependent variable) and independent variables (predictors/covariates) which are the final four
proxy parameters. The resulting regression equation and coefficients represent the surrogate WQI
model. Figure 3 illustrates the model architecture applied in developing the surrogate WQI.
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Figure 3. Model architecture applied in the development of the surrogate water quality index model
using four proxy water quality variables. A model outline displaying the structure of the surrogate
WQI with four proxy water quality input variables x1, x2, x3 and x4; their corresponding coefficients b1

to b4, intercept term b0, error term for the regression model symbolized as ε, and the regression model
function f (x) = b0 + b1x1 + b2x2 + . . . + b4x4 + ε as the surrogate WQI.

The advantage of this method is that optimum selected parameters can still describe water quality
in the absence of the entire dataset [50,52]. It provides an important quick-guide identical to the
outcome of high-fidelity model and conforms to the requirements of the study. All the statistical
computations were performed using IBM SPSS Statistics Version 24 for MacOS [53].

2.4. Water Classification

In the interest of simplifying the interpretation of water quality index (WQI) values, mostly
to accommodate non-technical individuals, an index categorization schema was established.
The classification mechanism is based on an increasing scale index and the advantage of this system is
that it is identical to a normal percentage hierarchy [43], therefore the public can easily relate to its
function and interpretation. Both models applicable to this study yields WQI values between zero and
hundred. Accordingly, the WQI scores are categorized using classes ranging from one to five; with
“Class 1” representing water of the highest degree of purity with a possible maximum score of hundred
and vice versa, “Class 5” denotes water quality of the poorest degree with index scores nearing or equal
to zero. In order to close gaps identified in some of the existing classification scales [44], appropriate
mathematical functions with logical linguistic descriptors which includes but not limited to, “greater
than,” “less than,” “equal to,” are used to appraise WQI scores and respectively assigned them to the
corresponding category.
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3. Results and Discussion

3.1. Rationale for Developing Surrogate Water Quality Index (Multiple Linear Regression Model)

Consider a range of data comprising of n statistical units (observations) of the response variable
y (dependent variable) and p-vector of regressors x (independent explanatory variable); then, their
mathematical relationship is designated as a linear regression model in the form [54,55]:

y = b0 + b1x1 + b2x2 + . . . + bpxp + ε (4)

The observations are assumed to be the result of random deviations from an underlying relationship
between the dependent variable (y) and the independent variable (x). With regards to observed data,
the linear function is defined as [54,55]:

yi = b0 + b1xi1 + b2xi2 + . . . + bpxip + εi (5)

where i = 1, 2, . . . , n and variables εi symbolize unobservable regression model errors, which are presumed
to be independent and identically distributed random variables; with a distribution function F and density
f. Of which, the density is unknown and expected to be symmetric at zero (0). The corresponding
coefficients b1 to bp and intercept term b0, are unknown values calculated based on the dependent variable
y = (y1, y2, . . . , yn) and independent variable x = (xi1, xi2, . . . , xip). Besides the orthodox least-squares
method, various statistical estimators of model coefficient (b) exist and they are documented in literature.
Some of the methods are distributionally robust (less sensitive to deviations from the assumed distribution
factors), whilst others are resistant to the leverage points in the design matrix and have a high breakdown
point [54]. Following the above rationale, linear regression was considered in the development of the
proxy water quality index model and the results are documented in the following subsections.

3.2. Significant Parameters Applicable to the Surrogate Water Quality Index (WQI)

A combination of two methods has been adopted in the selection of the most suitable explanatory
variables for the suggested proxy model. The methods include, (1) the Rand Corporation’s Delphi
Technique (Delphi method) and, (2) multivariate statistical analysis. The Delphi method has been
employed to abridge the list of parameters from twenty-one to thirteen variables which are applicable
to the universal water quality index (UWQI). Furthermore, statistical analysis assisted in reducing the
parameters to four proxy variables applicable to the surrogate WQI. Principal component analysis
(PCA) have been performed for pattern recognition and outlining the framework of the project data.
Whereas hierarchical cluster analysis (HCA) helped to establish the degree of similarity among water
quality parameters. Accordingly, electrical conductivity, chlorophyll-a, pH turbidity are the final
four proxy parameters considered for the surrogate WQI. Figure 4 illustrates the two-stage screening
process established to select significant water quality parameters.
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Additional information relating to the selection of these input variables is discussed and presented
in the succeeding sections.

3.3. Multivariate Statistical Analysis

3.3.1. Principal Component Analysis (PCA)

Considering that water quality is generally described using multiple physicochemical and
biological variables; principal component analysis (PCA) can ideally transform complex multivariate
datasets to a minimal and manageable number of factors without loss of information [56,57]. More
importantly, PCA preserves the structure and pattern of the original dataset to the maximum extent
possible [11,12]. PCA is an accurate and extensive method for parameter reduction; which is significant
and can drastically lower assessment cost, time and effort, thereby promoting routine monitoring.

The rationale behind PCA is centered on decreasing dimensions of multivariate dataset through
summarizing information dispersed in several dimensions into reduced number of dimensions that
are not correlated [11,58,59]. The technique eliminates collinearity amongst explanatory variables,
discard redundant or extremely correlated variables and develop new uncorrelated variables known
as principal components (PCs) [60,61]. The application of statistical techniques in the development of
water quality indices (WQIs) lessens biasness and makes them more objective in nature [11].

The first step in performing PCA involves delineating the number of PCs that can adequately
explain the structure and pattern of a given dataset. This process is accomplished by the use of (a)
scree-plot, (b) real data eigenvalues, and (c) randomly generated eigenvalues. It should be noted
that, although it is common practice to disregard low-variance PCs, sometimes they can be useful in
their own right; for instance, they can assist in identifying outliers and enhance quality control [56].
Ideally for PCA to draw purposeful and reliable conclusions, the standard advice is to retain factors
characterized by the following [62]:

(a) Related eigenvalues that are greater than one (>1.0);
(b) Initial eigenvalues percentage of variance of greater than ten percent (>10%); and
(c) Cumulative percentage of variance of greater than sixty percent (>60%).

However, these are just suggestive figures and should be regarded as indicative of the ideal
situation. Notably, different opinions exist in literature, especially on the cumulative percentage of
variance contribution. Tripathi and Singal [62] suggest a minimum of 60%, whereas Jolliffe [56] and
Gradilla-Hernández, et al. [63] propose a range between 70% and 90% with an acknowledgment that
the value can be higher or lower depending on the context of the dataset.

Figure 5 represents a scree-plot developed using real data eigenvalues assisted in identifying
the number of principal components to be extracted. Corresponding to the scree-plot sagging point;
principal components with eigenvalues greater than one (latent-root-one) were considered significant
to explain the underlying structure of the dataset [12,62,64–67]. Complementary, Parallels Analysis
Engine (PAE) aided in confirming the number of factors retained. Using research data, PAE computed
eigenvalues from randomly generated correlation matrices, which were used to intercept the cut-off

point on the scree-plot diagram. Both PCA and PAE eigenvalues were presented graphically as two
different plots, and their intercept point established the number of factors retained during multivariate
statistical analysis [64,68]. All the principal components above the PAE graph were considered; in this
case, the first five factors were deemed statistically important.
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Figure 5. Determination of Principal Components (PCs) to be extracted using eigenvalues from
Principal Component Analysis (PCA) and randomly generated eigenvalues from Parallel Analysis
Engine (PAE). Source: PCA results from IBM SPSS Statistics [53] and Parallel Analysis Engine [68].
Notes: randomly generated eigenvalues were established using PEA, whereas PCA eigenvalues were
established using dataset from Umgeni Water Board.

In order to obtain meaningful and more accurate results, the dataset subjected to principal
component analysis should have a minimum of 150–300 test cases [11,12,62,69]. Accordingly, the current
study used 638 test cases monitored from eight sampling stations observed weekly for a period of six
and half years (refer to Table 1). The case study surpasses the recommended threshold, thus satisfying
the stated criterion.

The study performed Kaiser-Meyer-Olkin (KMO) and Bartlett’s test of sphericity to authenticate
the suitability of the dataset to effectively handle principal component analysis (PCA) and factor
analysis (FA). KMO is the measure of sampling adequacy that signifies the degree of variance caused
by underlying principal components (PCs) [65]. Generally, KMO values below 0.5 are undesirable,
whereas values ranging from 0.5 to 0.7 are considered sufficient and higher values (above 0.7) are
exceptionally good [11,59,67,70]. The current study achieved KMO value of 0.510, which is satisfactory.

Bartlett’s test examines the possibility of the correlation matrix being an identity matrix. If such a
possibility exists; Bartlett’s test of sphericity assumes that all variables are unrelated and dimensionality
reduction is not feasible, thus making PCA and FA inapplicable. Bartlett’s test scores less than 0.050
are favorable and suggest that significant relationships exist among variables [11]. In the current
case, Bartlett’s significance level is 0.000, thus confirming the appropriateness to perform principal
component analysis and factor analysis.

Correlation matrix assisted in evaluating inter-relationships between the thirteen water quality
variables shortlisted for statistical analysis. Similar to Nnorom, et al. [59], Patil, et al. [67], Ustaoğlu,
et al. [70], and Wang [71], the classification adopted is defined as follows: (a) r < 0.3, considered of
no relevance; (b) 0.3 ≤ r < 0.5, less relevance; (c) 0.5 ≤ r < 0.8, median relevance; and (d) r ≥ 0.8, high
relevance. Considering such groupings, the analysis indicates that Mg is highly related to Ca and
CaCO3. Though with less relevance, the results suggest that NH3 is correlated with EC and NO3.

As a common practice, rotation (Oblimin with Kaiser Normalization) was executed to ensure
that variables with higher loading values are not considered on the same factor. Rotation transforms
the factorial axes into a structure where each of the retained factors are preferably loaded with only
one variable. Furthermore, especially where few principal components (PCs) exist, rotation restricts
variables to overlay factor loadings on more than one principal component (PC) [62]. Post rotation,
the leading parameters with the highest loadings are grouped as intermediate composites and assigned
weights. The weights are then aggregated and their compound effect is proportional to the percentage
of variance explained by a particular component [62].
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Considering that water quality parameters have different units, standardization (z-scores) harmonized
the dataset to a common scale with zero mean and unit standard deviation [11,12,56,60,61,72].

Table 4 presents the correlation matrix, KMO and Bartlett’s test results, whereas the five extracted
principal components (PCs) are presented in Table 5.

Table 4. Correlation Matrix, Kaiser-Meyer-Olkin (KMO) and Bartlett’s Test Results for Thirteen
Physico-Chemical Variables Shortlisted for Multivariate Statistical Analysis.

Variable NH3 Ca Cl Chl-a EC F CaCO3 Mg Mn NO3 pH SO4 Turb

NH3 1.000
Ca 0.077 1.000
Cl 0.092 −0.012 1.000

Chl-a −0.090 −0.061 −0.178 1.000
EC 0.359 0.186 0.153 −0.078 1.000
F 0.021 −0.019 −0.006 −0.042 0.057 1.000

CaCO3 0.066 0.998 −0.005 −0.071 0.170 −0.028 1.000
Mg 0.050 0.987 0.003 −0.086 0.149 −0.041 0.995 1.000
Mn 0.196 −0.054 0.031 0.024 0.201 −0.022 −0.046 −0.033 1.000

NO3 0.399 −0.020 0.223 −0.125 0.256 0.012 −0.023 −0.028 −0.066 1.000
pH 0.006 0.032 −0.194 −0.018 0.070 0.034 0.024 0.014 −0.170 0.012 1.000
SO4 0.115 0.138 0.091 −0.078 0.126 0.028 0.128 0.115 −0.226 0.215 0.066 1.000
Turb 0.173 0.113 0.191 −0.090 0.183 0.272 0.109 0.101 0.125 −0.006 −0.070 −0.134 1.000

Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 0.510
Bartlett’s Test of Sphericity Significance 0.000

Source: Umgeni Dataset, PCA results IBM SPSS Statistics [53]. Notes: Kaiser-Meyer-Olkin (KMO) measure of
sampling adequacy is 0.510 which is satisfactory and Bartlett’s Test of Sphericity is 0.000, thus confirming the
appropriateness of the dataset.

Table 5. Principal Component Analysis Vector of Coefficients for First Five Principal Components (PCs)
with Eigenvalues Greater Than One (>1.0) for Umgeni Water Quality Data.

Variable
Principal Components (PCs) a and Communalities

PC 1 PC 2 PC 3 PC 4 PC 5 Communalities

Calcium (Ca) 0.979 −0.175 0.035 −0.019 −0.003 0.991
Hardness (CaCO3) 0.979 −0.184 0.043 −0.027 −0.020 0.995
Magnesium (Mg) 0.972 −0.194 0.053 −0.035 −0.043 0.987
Ammonia (NH3) 0.191 0.681 −0.042 −0.223 0.308 0.647

Nitrate (NO3) 0.080 0.636 −0.428 −0.124 −0.012 0.609
Electrical Conductivity (EC) 0.313 0.593 0.029 −0.120 0.321 0.569

Sulphate (SO4) 0.215 0.182 −0.654 0.069 −0.105 0.523
Manganese (Mn) −0.033 0.277 0.624 −0.408 0.195 0.671
Turbidity (Turb) 0.188 0.372 0.522 0.472 0.008 0.669

Floride (F) 0.001 0.188 0.171 0.763 0.188 0.682
Chloride (Cl) 0.067 0.492 0.039 0.042 −0.629 0.646

pondus Hydrogenium (pH) 0.042 −0.110 −0.395 0.261 0.610 0.610
Chlorophyll-a (Chl-a) −0.148 −0.296 0.118 −0.260 0.345 0.310

Eigenvalues (>1.0) 3.118 1.948 1.482 1.195 1.171
% Variance 23.949 14.986 11.397 9.192 9.008

% Cumulative Variance 23.949 38.935 50.332 59.525 68.533

Source: PCA results from IBM SPSS Statistics [53]. Notes: a five PCs extracted using PCA as the extraction method.
Rotation method: Oblimin with Kaiser Normalization and rotation converged in seven iterations.

PCA helped in reducing the dimensionality of the dataset and summarized the variables to five
important components. The first five PCs retained accounted for about 69% of the total variance with
eigenvalues greater than one (>1.0). For ease reference and factor interpretation, factor loadings are
classified as “weak,” “moderate,” and “strong” corresponding to absolute loading values of 0.3 to 0.5,
0.5 to 0.8 and >0.8 respectively [59,67,70]. Having strong positive loadings of 0.979, 0.972 and 0.979
for Ca, Mg and CaCO3 respectively, the first component (PC 1) accounts for almost 24% of the total
variance with eigenvalue of 3.118. The second PC features moderate loadings of −0.681, 0.624 and 0.522
corresponding to NH3, NO3 and EC with eigenvalue of 1.948 and variance of nearly 15%. Moderate
factor loadings of SO4 (−0.654), Mn (0.624), and Turb (0.522) dominate the third component (PC 3)
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which represents about 11% of the original variability with eigenvalue of 1.482. Signifying just about
9% variance and eigenvalue of 1.195, the fourth factor (PC 4) contains fluoride as the most significant
variable with a strong positive factor loading of 0.763. Lastly, the fifth component (PC 5) accounts for
approximately 9% of the total variance with eigenvalue of 1.171. This component is dominated by two
parameters, thus pH and Cl, with moderate factor loadings of 0.610 and −0.629 respectively.

Principal component analysis (PCA) is the most used tool in exploratory data analysis and
provides a real interpretation of multi-constituent measurements which enables a better understanding
of water quality composition [11,56,63,67]. PCA is a common primary method used for pattern
recognition and the technique is regarded as the simplest of the true eigenvector-based multivariate
analyses. One of the most effective and informative graphical illustrations of multivariate analysis is
through the use of biplots. They optimally represent relationships between variables and principal
components. Biplots suggest groups of highly correlated variables using an approximation of the
original multidimensional space [63,68]. Biplots are illustrated in either two or three-dimensional
subspace. On that basis, the statistical results of the current study are further explained using 2D and
3D biplots in Figures 6 and 7, respectively.
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Figure 6. 2D biplot showing the relationship between highly correlated variables and the first five
retained principal components (PCs). The five principal components (PCs) are denoted as PC 1, PC 2,
PC 3, PC 4 and PC 5. Variables are ammonia (NH3), calcium (Ca), chloride (Cl), chlorophyll-a (Chl-a),
electrical conductivity (EC), fluoride (F), hardness (CaCO3), magnesium (Mg), manganese (Mn), nitrate
(NO3), pondus Hydrogenium (pH), sulphate (SO4) and turbidity (Turb). Source: PCA results from IBM
SPSS Statistics [53].
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3.3.2. Hierarchical Cluster Analysis (HCA)

Hierarchical cluster analysis (HCA) essentially outlined the hierarchical relationships between
variables and assisted in arranging thirteen variables into corresponding clusters. Various hierarchical
clustering methods exist, but in this study, centroid based clustering algorithms and Ward’s hierarchical
clustering methods were examined. Eventually, Ward’s technique was preferred amongst the two
methods. Ward’s procedure generates approximately identical grouped clusters, unlike the other
methods, where groupings are not equally proportional [63].

Cluster analysis uses distance matrix and the model intervals were calculated using squared
Euclidean distance technique [63,73]. The method is regarded as the best option and most
appropriate measure of distance in the physical world. Since variables are measured in different units,
standardization was performed to transform the observed measurements into a common scale. The tree
diagram in Figure 8 represents the hierarchical clustering dendrogram for the thirteen explanatory
variables considered in the analysis.
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As expected, extremely correlated variables are clustered together. For example, variables from
principal component one are all grouped together under ‘Hierarchical Cluster A.’ Likewise, variables
in principal component two are included in the second group of the hierarchical cluster dendrogram.
The four clusters assisted in selecting the final four proxy variables incorporated in the surrogate index.
At this stage, two sets of variables were considered as input parameters for the surrogate WQI. The sets
are grouped as:
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(a) Turb, Chl-a, EC and SO4 —proxy WQI(a); and
(b) Turb, Chl-a, EC and pH—proxy WQI(b).

Multivariate statistical analyses are highly objective in nature, and their application in WQI
development makes the process unbiased [11,12,62,67]. However, the process does not incorporate
local conditions and or expert opinion. Nevertheless, this study integrated professional judgment
through the decision to include pH as input parameter, even though the variable is extremely correlated
to EC; the individual importance of pH could not be neglected, hence the need to evaluate the
performance of proxy WQI(b).

3.3.3. Multiple Linear Regression (MLR)

As previously stated, multiple linear regression (MLR) analysis was performed to establish
regression coefficients of the two preliminary surrogate index models. MLR is a statistical procedure that
predicts the values of the dependent (response) variable from a multiple of independent (exploratory)
variables. More precisely, MLR analysis enables the estimation of y-value for specified values of x1,
x2, . . . , xk [55,72]. Durbin-Watson (DW) method was employed considering that water quality data
is time-series; each case or test is time-based. DW technique uses the “line of best fit” technique to
establish the linear regression equation. All the significant proxy variables were subjected to MLR
to determine optimal linear fitting and generate the best regression coefficients used to establish an
empirical mathematical equation applicable in evaluating the purity of surface water. Following the
results of the multiple linear regression, the subsequent mathematical coefficients in Table 6 have been
suggested for the two preliminary proxy models.

Table 6. Multiple Linear Regression (MLR) Coefficients for Two Preliminary Surrogate Models, Proxy
WQI(a) and Proxy WQI(b).

M
od

el

Multiple Linear Regression Coefficientsa

Var.

Unstandardized
Coefficients

Std.
Coeff.

t Sig.

95% Confidence
Interval for B Correlations Collinearity

Statistics

B Std.
Error Beta Lower

Bound
Upper
Bound

Zero
Order Partial Part Tol. VIF

Pr
ox

y
W

Q
I(

a) Const. 87.047 0.474 183.490 0.000 86.116 87.979
Turb −0.088 0.007 −0.452 −12.644 0.000 −0.101 −0.074 −0.424 −0.449 −0.433 0.918 1.090
EC −0.196 0.028 −0.336 −7.049 0.000 −0.251 −0.141 −0.173 −0.270 −0.241 0.516 1.940
SO4 0.108 0.046 0.113 2.346 0.019 0.018 0.198 −0.028 0.093 0.080 0.510 1.961

Chl-a −0.042 0.021 −0.069 −1.978 0.048 −0.084 0.000 −0.152 −0.078 −0.068 0.963 1.038

Pr
ox

y
W

Q
I(

b) Const. 85.273 2.969 28.726 0.000 79.444 91.102
Chl-a −0.042 0.022 −0.068 −1.921 0.055 −0.084 0.001 −0.152 −0.076 −0.066 0.946 1.057

EC −0.151 0.020 −0.259 −7.375 0.000 −0.191 −0.111 −0.173 −0.281 −0.254 0.959 1.043
pH 0.224 0.378 0.021 0.593 0.553 −0.518 0.966 0.003 0.024 0.020 0.977 1.024

Turb −0.090 0.007 −0.462 −12.964 0.000 −0.103 −0.076 −0.424 −0.458 −0.446 0.930 1.075

Source: MLR results from IBM SPSS Statistics [53]. Notes: a Dependent variable: WQI (water quality index value).
Statistical abbreviations are defined follows, variables (Var.), constant (Const.), turbidity (Turb), chlorophyll-a
(Chl-a), electrical conductivity (EC), sulphate (SO4), standardized (Std.), significance (Sig.), tolerance (Tol.) and
variance inflation factor (VIF).

Once the multiple regression equation is developed, the appropriateness and predictive ability of
the model can be examined using values of known scenarios. Therefore, with the aim of validating the
selection of four key proxy variables, the two preliminary surrogate water quality indices were subjected
to a scenario-based analysis. The outcome of the procedure is documented in the following subsection.

3.4. Scenario-Based Model Validation Analysis

Scenario-based analysis helps identify potential data-processing gaps, which in turn enlighten
on the necessary precautions imperative to minimize the impact, or perhaps eliminate the problem.
To determine such, ideal sets of predictive variables have been established under a variety of scenarios
to calculate specific water quality variables. Considering increments of five scores, nine probable
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scenarios have been examined to demonstrate the model’s ability to predict scores of all ranges, from
class one (excellent) to class five (worse). The nine forecasts are founded on three-level-grading, which
comprise of (i) worst-case scenario, 0 ≤ Index ≤ 10; (ii) base-case scenario, 45 ≤ Index ≤ 55; and lastly
(iii) best-case scenario, 90 ≤ Index ≤ 100. Purposefully, the groupings provided a complete change of
circumstances with each scenario, thereby widening the range of analysis and include a considerable
array of possibilities. With reference to permissible concentration limits and developed linear sub-index
functions (see Figure 2 and Equation (2)); definite assumptions about all nine cases have been carefully
considered. Accordingly, parameter values corresponding to each scenario have been established
and applied to perform the analysis [27]. Following this procedure, the two proxy WQIs have been
examined to delineate their proficiency and ability to analyze water quality data. The nine scenarios
and parameter values used herein, are identical to those applied for UWQI, and the scenario-based
analysis results for the surrogate WQIs are included as Table 7 and Figure 9.

Table 7. Comparison of the Developed Proxy Water Quality Indices (a) and (b) Using Scenario-Based
Analysis to Establish the Functionality and Predictive Capacity of the Models.

Sample
Identity

Water Quality Index Results from Scenario-Based Analysis

Ideal WQI Results Proxy WQI(a) Results Proxy WQI(b) Results

Index Score WQI Class Index Score WQI Class Index Score WQI Class

Maximum 100.00 1.00 85.09 1.00 85.44 1.00
Average 50.00 4.00 49.82 4.00 45.19 4.00

1 0.00 5.00 23.09 5.00 6.16 5.00
2 5.00 5.00 24.70 5.00 11.28 5.00
3 10.00 5.00 26.29 4.00 16.26 5.00
4 45.00 4.00 39.39 4.00 39.89 4.00
5 50.00 4.00 42.69 4.00 43.25 4.00
6 55.00 3.00 46.00 4.00 46.61 4.00
7 90.00 2.00 77.03 2.00 75.84 2.00
8 95.00 2.00 84.12 2.00 81.98 2.00
9 100.00 1.00 85.09 2.00 85.44 2.00

Notes: Samples used for scenario analysis are predictive values ideal for establishing a specific set of results as
demonstrated with the ideal water quality (WQI) results columns. With increments of five scores, nine probable
scenarios have been considered to demonstrate the model’s ability to predict scores of all ranges, from class one
(good water quality) to class five (very bad water quality).
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Figure 9. Plot diagram showing the results of the scenario-based analysis of the developed proxy water
quality indices (a) and (b) against ideal water quality values derived from nine probable scenarios.
The nine cases presented herein, are similar to those applied for UWQI and they are represented
as samples 1, 2, . . . , n, which corresponds respectively to water quality (WQI) values of 0, 5, 10
(worst-cases); 45, 50, 55 (base cases); and 90, 95, 100 (best cases).



Water 2020, 12, 1584 17 of 23

Both proxy WQIs have comparable predictive patterns, which are consistent with the ideal
graph. Furthermore, both models have corresponding water quality scores for base-case and best-case
scenarios. Except for the worst-case scenario, the two indices have different results, with proxy WQI(b)
being much closer to the ideal graph than proxy WQI(a). Ultimately, the analysis proved that surrogate
WQI(a) struggles to evaluate water quality samples with higher parameter concentrations. Against
this background, proxy WQI(b) is then considered as the most appropriate surrogate index developed
for this study. The model, as represented by Equation (6), functions with four input variables, namely
turbidity, chlorophyll-a, electrical conductivity and pondus Hydrogenium. This aligns with the
objective of the study, which involves establishing four proxy determinants for the surrogate WQI and
assign relative coefficients for the model:

WQI = 85.273 − 0.042Chl-a + 0.224pH − 0.090Turb − 0.151EC (6)

where WQI is the calculated index value ranging from zero to hundred, with zero representing water
of poor quality and hundred denoting water of the highest quality; Chl-a is the observed chlorophyll-a
concentration in micrograms per litre (µg/L); pH is the observed pondus Hydrogenium levels which
are unitless; Turb is the observed turbidity concentration measured in Nephelometric Turbidity Units
(NTU); and EC is the electrical conductivity concentration in micro Siemens per meter (µS/m).

Umgeni water quality data have been examined to further demonstrate the applicability of the
proposed surrogate index, and the results are presented in the following plot diagram (Figure 10).
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Figure 10. Water quality index results calculated using the proposed surrogate water quality index for
Umgeni water quality data for a period of six and half years from January 2012 to July 2018. The Umgeni
Dataset is from eight sampling stations which fall under four different catchment areas namely, Umgeni
River catchment (Henley, Inanda and Midmar Dams); Umdloti River catchment (Hazelmere Dam);
Nungwane River catchment (Nungwane Dam); and lastly Umzinto/uMuziwezinto River catchment
(Umzinto Dam).

In view of the curtailed 638 water quality samples, spatial and temporal changes in water quality
for Umgeni Water Board are evident over the past six and half years, with a much varying sequence
comprising of index scores as high as 85.8 (class two), an average of 82.5 (class two) and the lowest
score of 52.9 (class three).

Of great importance, the surrogate WQI model responded remarkably to the variation of water
quality parameter values, with the index output graph confirming to the fluctuations. This advocates
the readiness of the proxy WQI to interpret water quality data and provide a simple non-dimensional
score that is justifiable and in a repeatable manner. Such success fulfills the objective of the study and
more importantly presents a “yardstick” that can be applied in most, if not all the distinct watersheds
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in South Africa. This accomplishment is a critical milestone, not only for the authors but to most of the
stakeholders directly or indirectly involved in water quality science.

Index scores from water quality index model are classified using a common index categorization
schema. The focus is on maintaining a standardized unit and compare results of the same group.
The index categorization schema developed for the study is described in the following section.

3.5. Index Categorisation Schema

Water quality index (WQI) classification approach integrates WQI results into a much simpler,
but yet decisive expression that can describe the spatial and temporal changes in water quality. Water
categorization has brought more clarity and understanding in the interpretation of water quality index
scores, making it more favorable to non-technical individuals and water management officials.

Accordingly, an increasing scale index with values ranging from zero to hundred (0 to 100) with
categorization classes ranging from Class 1 to Class 5 has been adopted for the classification of the
water quality index scores. Class 1 water quality with a possible maximum index score of hundred
(100) represents water quality of the highest degree, whereas Class 5 water quality with an index score
close or equal to zero (0) denotes water quality of the poorest degree [27].

Table 8 indicates the index score classification for the water quality index proposed for South
African watersheds and eventually satisfying the objective of producing a water classification grading
and water categorization schema suitable for assessing South African river catchments.

Table 8. Index Score Classification for the Surrogate Water Quality Index for South African
River Catchments.

ID
Water Quality Classification

Description of Rank and Classification Index Score

1
Class 1—Good water quality

Water quality is protected with a virtual absence of threat or
impairment; conditions very close to natural or pristine levels

95 < Index ≤ 100

2
Class 2—Acceptable water quality

Water quality is usually protected with only a minor degree of threat or
impairment; conditions rarely depart from natural or desirable levels

75 < Index ≤ 95

3
Class 3—Regular water quality

Water quality is usually protected but occasionally threatened or
impaired; conditions sometimes depart from natural or desirable levels

50 < Index ≤ 75

4
Class 4—Bad water quality

Water quality is frequently threatened or impaired; conditions often
depart from natural or desirable levels

25 < Index ≤ 50

5
Class 5—Very bad water quality

Water quality is almost always threatened or impaired; conditions
usually depart from natural or desirable levels

0 < Index ≤ 25

Source: A modified version of the water quality index (WQI) categorization schema suggested by Banda [43]. Notes:
Class 1 index values (good water quality) can only be obtained if all measurements are within objectives virtually all
the time.

Similar to the methods used by Abrahão, et al. [74], Rabee, et al. [75], Rubio-Arias, et al. [76] and
Sutadian, et al. [77], appropriate mathematical functions with logical linguistic descriptors such as
less than, equal to and greater than have been assigned to each categorization class. By so doing, the
categorization schema can accommodate all possible index scores regardless of the decimal value.
This method ultimately assists in developing more flexible and precise water quality models. More
importantly, the established categorization schema aids in closing gaps identified in literature [27,44],
and present a progressive approach that will contribute significantly towards water quality indices
development. Such an academic contribution reflects on the efficiency of the model and attributes to
the success of the current study.
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4. Conclusions

A scientifically balanced surrogate water quality index (WQI) has been suggested. Multivariate
statistical method has been effectively adopted and employed for selecting four proxy parameters and
establishing their relative coefficients. Two models were developed, each with four indicators; in fact,
the first three variables are similar except the forth parameter of each model. The identical variables
are chlorophyll-a (Chl-a), electrical conductivity (EC) and turbidity (Turb). Proxy WQI(a) has sulphate
(SO4) as the fourth parameter, whereas proxy WQI(b) uses pondus Hydrogenium (pH) instead. Both
models are technically sensible, with the latter model being considered as the most applicable proxy
index. The four parameters retained in the proposed proxy model can be easily measured, even using
remote sensors; which would drastically reduce time, effort and cost of evaluating water quality across
South African river catchments.

The proxy WQI is not intended at substituting comprehensive water quality evaluations instead,
it is designed to deliver a quick guide of water resources status, which should assist water quality
experts, policymakers and the public by communicating water quality data in a more consistent and
on-going manner. Developing the surrogate WQI is an attempt to provide an alternative index, better
functional with minimum variables, especially in the absence of a full-dataset applicable to high-fidelity
model referred to as universal water quality index (UWQI). Though with a slight prediction disparity,
the proxy WQI can systematically replicate the prediction capabilities of the UWQI. The surrogate
WQI developed under this study is regarded as an achievement and considered successful enough to
fulfill the objective of the research. The objective is defined as developing a surrogate water quality
index model that can operate with four key determinants as a proxy to the unbridged UWQI.
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