Study on the Ecological Operation and Watershed Management of Urban Rivers in Northern China
<p>Location of the study area.</p> "> Figure 2
<p>Simulated result of the water level at Cross Section A.</p> "> Figure 3
<p>Simulated result of the water level at Cross Section B.</p> "> Figure 4
<p>Simulated result of the water level at Cross Section C.</p> "> Figure 5
<p>Simulated results of the COD concentration in 2010.</p> "> Figure 6
<p>Simulated results of the NH<sub>3</sub>-N concentration in 2010.</p> "> Figure 7
<p>Simulated COD concentration before and after the ecological operation scheme.</p> "> Figure 8
<p>Simulated NH<sub>3</sub>-N concentration before and after the ecological operation scheme.</p> "> Figure 9
<p>Weighted available area of the study area vs. flow.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ecological Water Demand Calculation
2.3. Water Supplement Scheme Examination
2.3.1. MIKE 11 One-Dimensional Hydraulics-Water Quality Model
2.3.2. Physical Habitat Simulation Model (PHABSIM)
3. Results and Discussion
3.1. Ecological Water Demand
3.1.1. Watercourse Base Water Demand
3.1.2. Evaporation Water Demand
3.1.3. Leakage Water Demand
3.1.4. River Outside Water Demand
3.1.5. River Ecological Water Demand
3.2. Ecological Water Supplement and Ecological Operation of the Xinlicheng Reservoir
3.3. Model Simulation
3.3.1. Simulation of the MIKE 11 One-Dimensional Hydrodynamic-Water Quality Model
3.3.2. Simulation of the PHABSIM Model
3.4. Watershed Management Reform and Suggestion for the Yitong River
3.4.1. Main Problems of Watershed Management
3.4.2. Countermeasures and Suggestions for Watershed Management
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dunham, J.B.; Angermeier, P.L.; Crausbay, S.D.; Cravens, A.E.; Gosnell, H.; McEvoy, J.; Moritz, M.A.; Raheem, N.; Sanford, T. Rivers are social–ecological systems: Time to integrate human dimensions into riverscape ecology and management. Water 2018, 5, e1291. [Google Scholar] [CrossRef]
- Rinaldi, M.; Gurnell, A.M.; del Tánago, M.G.; Bussettini, M.; Hendriks, D. Classification of river morphology and hydrology to support management and restoration. Aquat. Sci. 2016, 78, 17–33. [Google Scholar] [CrossRef]
- Roy, S.G.; Uchida, E.; Souza, S.P.; Blachly, B.; Fox, E.; Gardner, K.; Gold, A.J.; Jansujwicz, J.; Klein, S.; McGreavy, B. A multiscale approach to balance trade-offs among dam infrastructure, river restoration, and cost. Proc. Natl. Acad. Sci. USA 2018, 115, 12069–12074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Wang, P.F.; Wang, C.; Wang, X. Optimal reservoir operation using multi-objective evolutionary algorithms for potential estuarine eutrophication control. J. Environ. Manag. 2018, 223, 758–770. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, K.; Hu, H.; Su, L.W. The cascade reservoirs multi-objective ecological operation optimization considering different ecological flow demand. Water Resour. Manag. 2019, 33, 207–228. [Google Scholar] [CrossRef]
- Suen, J.-P.; Eheart, J.W. Reservoir management to balance ecosystem and human needs: Incorporating the paradigm of the ecological flow regime. Water Resour. Res. 2006, 42, W03417. [Google Scholar] [CrossRef]
- Meißner, T.; Schütt, M.; Sures, B.; Feld, C.K. Riverine regime shifts through reservoir dams reveal options for ecological management. Ecol. Appl. 2018, 28, 1897–1908. [Google Scholar] [CrossRef]
- Lu, S.B.; Shang, Y.Z.; Li, W.; Wu, X.H.; Zhang, H.B. Basic theories and methods of watershed ecological regulation and control system. J. Water Clim. Chang. 2018, 9, 293–306. [Google Scholar] [CrossRef]
- Ma, L.J.; Zhang, X.N.; Huan, W.; Qi, C.J. Characteristics and practices of ecological flow in rivers with flow reductions due to water storage and hydropower projects in China. Water 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Yin, X.A.; Yu, C.X.; Xu, Z.H.; Yang, Z.F. Quantifying parameter uncertainty in reservoir operation associated with environmental flow management. J. Clean. Prod. 2018, 176, 1271–1282. [Google Scholar] [CrossRef]
- Jia, W.H.; Dong, Z.C.; Duan, C.G.; Ni, X.K.; Zhu, Z.Y. Ecological reservoir operation based on DFM and improved PA-DDS algorithm: A case study in Jinsha river, China. Hum. Ecol. Risk Assess. Int. J. 2019, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Fan, Y.B.; Bu, F.; Zhou, D.M. Quantifying effects of water and sediment regulation scheme on the sand bar in the yellow river estuary in 2014. Ecohydrol. Hydrobiol. 2019. Available online: https://doi.org/10.1016/j.ecohyd.2019.10.004 (accessed on 20 March 2020). [CrossRef]
- Kong, D.X.; Miao, C.Y.; Wu, J.W.; Duan, Q.Y.; Sun, Q.H.; Ye, A.Z.; Di, Z.H.; Gong, W. The hydro-environmental response on the lower Yellow River to the water–sediment regulation scheme. Ecol. Eng. 2015, 79, 69–79. [Google Scholar] [CrossRef]
- Dudgeon, D. River regulation in Southern China: Ecological implications, conservation and environmental management. Regul. Rivers Res. Manag. 1995, 11, 35–54. [Google Scholar] [CrossRef]
- Mi, Y.J.; He, C.G.; Bian, H.F.; Cai, Y.P.; Sheng, L.S.; Ma, L. Ecological engineering restoration of a non-point source polluted river in Northern China. Ecol. Eng. 2015, 76, 142–150. [Google Scholar] [CrossRef]
- Lv, J.; Xu, J.L.; Wang, H.X.; Li, W.; Liu, X.J.; Yao, D.F.; Lu, Y.; Zheng, X. X Study on ecological protection and rehabilitation technology of a reservoir-type water source in the northeastern region of China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 1802–1815. [Google Scholar] [CrossRef]
- Suen, J.-P. Determining the ecological flow regime for existing reservoir operation. Water Resour. Manag. 2011, 25, 817–835. [Google Scholar] [CrossRef]
- Kingsford, R.T. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol. 2000, 25, 109–127. [Google Scholar] [CrossRef]
- Daldorph, P.W.G. A reservoir in management-induced transition between ecological states. Ecol. Bases Lake Reserv. Manag. 1999, 395–396, 325–333. [Google Scholar]
- Thompson, R.M.; Bond, N.; Poff, N.L.; Byron, N. Towards a systems approach for river basin management—Lessons from Australia’s largest river. River Res. Appl. 2019, 35, 466–475. [Google Scholar] [CrossRef] [Green Version]
- den Brandeler, F.; Gupta, J.; Hordijk, M. Megacities and rivers: Scalar mismatches between urban water management and river basin management. J. Hydrol. 2019, 573, 1067–1074. [Google Scholar] [CrossRef]
- Taha, R.; Dietrich, J.; Dehnhardt, A.; Hirschfeld, J. Scaling effects in spatial multi-criteria decision aggregation in Integrated River Basin Management. Water 2019, 11, 355. [Google Scholar] [CrossRef] [Green Version]
- Delipınar, Ş.; Karpuzcu, M. Policy, legislative and institutional assessments for integrated river basin management in Turkey. Environ. Sci. Policy 2017, 72, 20–29. [Google Scholar] [CrossRef]
- Xue, L.Q.; Wang, J.; Zhang, L.C.; Wei, G.H.; Zhu, B.L. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.F.; Cui, B.S.; Liu, J.L.; Wang, X.Q.; Liu, C.M. Theory, Methods and Practices of Ecological Environment Water Demand; Science Press: Beijing, China, 2003. [Google Scholar]
- Jiang, H.B.; He, C.G.; Luo, W.B.; Yang, H.J.; Sheng, L.X.; Bian, H.F.; Zou, C.L. Hydrological Restoration and Water Resource Management of Siberian Crane (Grus leucogeranus) Stopover Wetlands. Water 2018, 10, 1714. [Google Scholar] [CrossRef] [Green Version]
- Men, B.H.; Yu, T.; Kong, F.L.; Yin, H. Study on the minimum and appropriate instream ecological flow in Yitong River based on Tennant method. Nat. Environ. Pollut. Technol. 2014, 13, 541–546. [Google Scholar]
- Herman, M.R.; Nejadhashemi, A.P. A review of macroinvertebrate- and fish-based stream health indices. Ecohydrol. Hydrobiol. 2015, 15, 53–67. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, A.; Townsend, K.; Hale, R.; Sharley, D.; Pettigrove, V. How is ecosystem health defined and measured? A critical review of freshwater and estuarine studies. Ecol. Indic. 2016, 69, 722–729. [Google Scholar] [CrossRef]
- Han, N.N.; Wang, Y.R.; Zhou, Q.Y.; Li, S.M.; Ye, L.T.; Jin, J.H. Analysis on Spatial and Temporal Variations of Maize Irrigation Water Requirement in Jilin Province. IOP Ser. Earth Environ. Sci. 2018, 128, 012024. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.H.; Zheng, L.Q. Different Irrigation water requirements of seed corn and field corn in the Heihe River Basin. Water 2017, 9, 606. [Google Scholar] [CrossRef] [Green Version]
Qualitative Description of Flow Values and Corresponding Habitat | Recommended Base Flow Standard (The Percentage of Average Flow) | |
---|---|---|
General Water Period (October–March) | Fish Spawning Breeding Season (April–September) | |
Maximum | 200 | 200 |
Optimum range | 60–100 | 60–100 |
Very good | 40 | 60 |
Good | 30 | 50 |
Better | 20 | 40 |
General or poor | 10 | 30 |
Poor or minimum | 10 | 10 |
Severe degradation | <10 | <10 |
Month | April | May | June | July | August | September | October | Average/Total |
---|---|---|---|---|---|---|---|---|
Monthly average flow (m3/s) | 0.62 | 1.23 | 1.99 | 4.88 | 5.69 | 1.37 | 0.92 | 2.39 |
Minimum ecological flow (m3/s) | 0.19 | 0.37 | 0.60 | 1.46 | 1.71 | 0.41 | 0.09 | 0.69 |
Monthly water demand (106 m3) | 0.48 | 0.97 | 1.52 | 3.83 | 4.48 | 1.04 | 0.24 | 12.56 |
Month | April | May | June | July | August | September | October | Total |
---|---|---|---|---|---|---|---|---|
Evaporation water demand | 0.63 | 0.88 | 0.51 | 0.06 | 0.11 | 0.33 | 0.30 | 2.82 |
Section | Area (hm2) | Water Quota (m3/hm2) | Total Water Demand (106 m3) |
---|---|---|---|
Natural | 3300 | 4275 | 14.10 |
Urban | 12426 | 4000 | 49.70 |
Total | 15726 | - | 63.80 |
Water Demand | Watercourse Base | Evaporation | Leakage | River Outside | Total |
---|---|---|---|---|---|
Amount | 12.56 | 2.82 | 0.17 | 63.80 | 79.35 |
Month | April | May | June | July | August | September | October | Total |
---|---|---|---|---|---|---|---|---|
Total | 0.08 | 0.10 | 0.11 | 0.16 | 0.18 | 0.09 | 0.07 | 0.79 |
Month | April | May | June | July | August | September | October | Total |
---|---|---|---|---|---|---|---|---|
Ecological water supplement (106 m3) | 1.13 | 1.87 | 2.05 | 3.91 | 4.61 | 1.39 | 0.56 | 15.52 |
Daily release (m3/s) | 0.44 | 0.70 | 0.79 | 1.46 | 1.72 | 0.54 | 0.21 | — |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, G.; Yao, X.; Jiang, H.; Cao, Y.; Wen, Y.; Wang, W.; Zhao, S.; He, C. Study on the Ecological Operation and Watershed Management of Urban Rivers in Northern China. Water 2020, 12, 914. https://doi.org/10.3390/w12030914
Deng G, Yao X, Jiang H, Cao Y, Wen Y, Wang W, Zhao S, He C. Study on the Ecological Operation and Watershed Management of Urban Rivers in Northern China. Water. 2020; 12(3):914. https://doi.org/10.3390/w12030914
Chicago/Turabian StyleDeng, Guangyi, Xiaohan Yao, Haibo Jiang, Yingyue Cao, Yang Wen, Wenjia Wang, She Zhao, and Chunguang He. 2020. "Study on the Ecological Operation and Watershed Management of Urban Rivers in Northern China" Water 12, no. 3: 914. https://doi.org/10.3390/w12030914
APA StyleDeng, G., Yao, X., Jiang, H., Cao, Y., Wen, Y., Wang, W., Zhao, S., & He, C. (2020). Study on the Ecological Operation and Watershed Management of Urban Rivers in Northern China. Water, 12(3), 914. https://doi.org/10.3390/w12030914