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Abstract: The quality of simulations for wastewater treatment plants is heavily dependent on the
quality of the simulation input data. Inflow data from wastewater treatment plants collected by
measurement cannot usually be used directly for a wastewater treatment plant simulation. A method
is presented with which dynamic inflow descriptions for simulation studies can be generated from
typical operational measurements. These are volume-proportional 24 h composite samples and
continuously recorded inflow water flow rates. To derive the method, a deterministic model was first
developed to describe typical dry weather daily inflow concentration patterns and validated for a
larger number of measured daily inflow measurements (2 h composite samples). In the second part
of the article, the method is then developed with which the dynamic wastewater treatment plant
inflow can be calculated for a longer period of time from the modelled dry weather daily inflow and
a high-resolution time series of measured flow rates. This dynamic inflow can be used to validate
wastewater treatment plant models if additional online measurements for effluent concentrations
(e.g., NH4-N and NO3-N) are available. The proposed method is highly suitable for calculating an
online estimate of the influent concentrations, which can be used as input information for digital
twins, such as observer models and predictive controllers, based solely on the online measurement of
the influent flow rate.

Keywords: influent data; data modelling; simulation of WWTPs; wastewater treatment

1. Introduction
1.1. Motivation

With the method of dynamic simulation of wastewater treatment plants, significant
improvements can be achieved over the life phases of a wastewater treatment plant. In the
planning phase, whether for a new construction or expansion, the design of the plant can
be better adapted to special inflow conditions and existing structures to special discharge
requirements using a simulation model. Design details (tank layouts, equipment, MSR
options) can be evaluated for their efficiency. For existing plants, process engineering
modifications, changes in the equipment or advanced automation concepts can be analysed
and planned in detail, for example, to comply with stricter discharge requirements or to
improve cost and/or energy efficiency. For an overview on the application of dynamic
simulation of WWTPs, refer Ruiz et al., 2023 [1], Hvala et al., 2017 [2], and Gernaey et al.,
2004 [3].

For existing systems, it is good practice to first model the actual state, validate this
model and then use the validated model to simulate the planning and optimization variants.
A validated model significantly increases the reliability and trustworthiness of the obtained
results. For model validation, it is necessary to provide influent data for a wastewater
treatment plant model over a longer period of time, to simulate the model with these data
and to compare the results of the model with existing measurements (NH4-N, NO3-N),
preferably online measurements, of the plant. This validation can be simplified for the
quasi-stationary case with an estimation of the average inflow used as input data for the

Water 2024, 16, 564. https://doi.org/10.3390/w16040564 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16040564
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-0880-9747
https://doi.org/10.3390/w16040564
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16040564?type=check_update&version=2


Water 2024, 16, 564 2 of 29

simulation and the comparison of average simulation results with the composite samples of
the effluent of the real plant. This simple form of validation is not sufficient in the situation
where not only an average cleaning performance is required for a plant, but also limit
values are specified that must be complied with at all times, i.e., also during special events
such as rain events. This applies, for example, to all plants in Germany. In this situation,
the model validation must show that the dynamics of discharge peaks (NH4-N and NO3-N)
during rain events can be reproduced with the model. This proof is only possible with a
dynamic simulation with the specification of dynamic and high-resolution (<2 h sampling
time) inflow data (concentrations and volume flow). An established option in this situation
is to carry out an intensive measurement campaign in which, for example, 2 h composite
samples are sampled and analysed in the inlet over a longer period (>14 d). With these data
and the continuously measured water flow rate, the suitable inflow data are then available
for model validation. However, this procedure is very cost extensive and therefore only
makes sense for larger plants (cost-effective) (refer Borzooei et al. 2019 [4]). In addition,
only a relatively short period of time can be analysed, which may not always be suitable
for model validation (relevant rainfall events).

The method presented here allows the provision of dynamic inflow data based on
measurement data that are also routinely measured for medium-sized and small plants
(individual 24 h mixed samples and continuous inflow measurement). This means that
simulation models can also be provided and validated for small and medium-sized plants
without a cost-intensive measurement campaign. This means that the optimization poten-
tial of simulation studies with validated models can also be utilized for these plants. The
method presented is able to generate inflow data (flow and the relevant pollutant concen-
trations (COD: Chemical Oxygen Demand; TKN: Total Kjehldahl Nitrogen; P: phosphorus)
with high temporal resolution (e.g., 15 min values) for longer periods of time from the
typical data of wastewater treatment plant self-monitoring (operating data). The inflow
data reconstruction is based on the available load data from selected days (24 h composite
samples) and the continuous inflow flow data. No concentration measurements with high
temporal resolution are required.

The original method (Langergraber et al. 2008 [5], Ahnert et al. 2015 [6] and Alex et al.
2015 [7]) has proven in many simulation studies that the dynamic wastewater treatment
plant influent can be generated so well that the occurring effluent concentration peaks
can be reliably reproduced, especially for NH4-N and NO3-N. This method has been used
successfully in a large number of simulation studies. However, difficulties have also arisen
in some cases:

• In certain constellations of the shape parameters, the time series of the “urine” compo-
nent generates negative values.

• In certain constellations of the form parameters, the time series of the “urine” com-
ponent produces a second maximum (evening peak) that is greater than the morning
peak, and this does not correspond to human activity and is an artefact.

• In some systems, the increase in the water flow rate in the morning is significantly
steeper than can be represented by a second-order Fourier series (see similar findings
in Rodríguez et al., 2013 [8]).

• For stormwater runoff, it is assumed too simplistically that no pollution loads from
rainwater runoff are introduced.

• The form factors (tmin, fQ,min, tmax, fQ,max) are related to the total dry weather inflow;
for a system size-based specification, a reference to the fraction of wastewater only
makes more sense.

• The proportion of infiltration water is often not constant over the period under consid-
eration in a simulation study.

These weaknesses are be remedied with version 2023 which is presented in this
paper, thus improving the robustness of the method in practice. In the paper, the method
is modified, and a new fit to the available data set of example dry weather patterns is
performed. An extended method is derived to use the dry weather model to generate
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long-term influent data based on a continuous flow rate measurement. This improvement
will allow the use of the described methods for even longer simulation periods. As the
original method worked usually for 4–8 weeks, the new method will allow time periods
covering up to one year of operation. This becomes possible by introducing a variable
infiltration flow rate. A seasonal change in infiltration can be observed for many WWTPs.
All algorithms of the two methods are described in detail and are implemented using the
simulation software SIMBA# (5.0).

1.2. State of the Art

The literature contains a wide variety of approaches for providing feed data for
simulation models. Only approaches for the provision of dynamic data are considered
here. Many publications aim to provide data whose characteristics correspond to the real
inflow but do not necessarily cover a specific phase of the real operation of the plant. The
generation or completion of inflow data has been addressed by a number of authors. An
overview of these studies is given in Flores-Alsina et al., 2014 [9], Martin, Vanrolleghem,
2014 [10]. These are inflow models for benchmark analyses or approaches that statistically
cover the variability of the inflow and are used for the reliable dimensioning of plants.
In addition to these activities, one can find many recent publications addressing data-
driven modelling approaches (ANN and AI based methods, Wu et al. 2023 [11]). But
these methods will not be of any help in situations with a significant lack of data like
concentration measurements at WWTP influent.

The provision of dynamic data for a specific time period for validating the model for
impact loads (rainfall events) is primarily based on research conducted in German-speaking
countries. Especially the research of the simulation university group HSG (hsgsim.org)
(Ahnert et al. 2014 [12], Ahnert et al. 2015 [6] and Alex et al. 2015 [7]) is devoted to
allowing simulation studies with low data demand. This is due to the special requirements
in Germany, where wastewater treatment plants must reliably comply with the defined
discharge values at all times. In Germany, the DWA-A 131 [13] guidance document and its
predecessor versions have been the authoritative design regulation for the construction or
expansion of wastewater treatment plants for many decades. At the same time, the dynamic
simulation of activated sludge processes in wastewater treatment plants has become a
helpful tool for a wide range of issues in recent decades. Many simulation studies have been
and are being carried out to evaluate and optimize plant operation and the control system.
Internationally, activated sludge models are used in many different ways. A survey by
the IWA (Hauduc et al. 2009, [14]) revealed that, for example, in North America, dynamic
wastewater treatment plant simulation is a tool used by planners and practitioners, while
in Europe, it is mainly used in research.

In general, the effort required to carry out simulation studies must be at a level that
allows this method to be also used for medium-sized and small plants. The method pre-
sented here is based on the method developed by the HSG-Simulation group to describe a
dry weather diurnal cycle (Langergraber et al. 2008 [5]) supplemented by assumptions for
the generation of longer time series (Alex et al. 2009 [15]). A modified version (version 2023)
is presented, which incorporates experiences from a number of applications. The basis of
the method is the approximation of the inflow water volume in the dry weather case by
a Fourier series. This obvious method for the simplified mapping of periodic patterns is
also used by other authors (Mannina et al. 2011 [16], Rodríguez et al. 2013 [8]). The special
feature of the method pursued here is that it is not aiming on independent approximations
of the patterns of water quantities, and concentrations. Instead, the proportions of infiltra-
tion water, grey water and urine flow rates are inferred on the basis of the measured dry
weather water quantity, which then forms an explainable, robust and plausible basis for
the calculation of the resulting concentration curves of the relevant constituents (for the
occurrence of wastewater in households, refer (Almeida et al. 1999 [17])).

Special requirements arise if a simulation model must prove that a wastewater treat-
ment plant is able to comply with the limit values related to the current discharge values
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(concentration peak values) under different load conditions (diurnal dry weather pattern,
storm events, etc.). This is the standard case in Germany. Here, before using a model
for planning tasks, it must be validated that the model of the actual state with regard to
the peak discharge values reflects the behaviour of the real system. In this case, dynamic
inflow data (flow rates and concentrations) that correspond to the real inflow are essen-
tial. Similar requirements arise if the performance of a model is to be generally verified
in order to represent dynamic load situations of a real wastewater treatment plant. In
these cases, it was previously necessary to carry out a special measurement campaign in
which, among other things, the inflow had to be sampled and analysed in high temporal
resolution (typically 2 h composite samples) over a longer period of time (at least 2 weeks).
To mitigate this requirement, the measurement density can be reduced, and, for example,
a phenomenological or black box model can be adapted to the available data in order
to interpolate the remaining data. This approach is used, for example, in Flores-Alsina
2013 [18] (phenomenological) or Mannina et al. 2011 [16] (black-box: Fourier analysis).

1.3. Typical Data Available Based on Routine Measurements

The basis for planning the extension of wastewater treatment plants and the optimiza-
tion or capacity estimation of wastewater treatment plants with simulation is the creation of
a validated model of state. For this purpose, the created model is fed with dynamic inflow
data, and whether the model reproduces the measured discharge values of the current
plant is analysed. The more successful this is, the more trustworthy the model is, and the
more reliable all statements on plant performance and capacity will be.

In order to be able to use the simulation tool for capacity estimation with reasonable
effort, it is necessary that it can be used only on the basis of the available plant-operating
data. A typical and sufficient data basis is given if the following operational data are
available (Table 1).

Table 1. Minimal data requirement for WWTP simulation studies.

Location Data

Influent Water quantity in the inlet of the plant (or in the outlet of the plant) as
continuous online measurement (e.g., 15 min values)

Influent

24 h mixed samples (preferably flow-proportional mixing), laboratory
analysis of COD, TKN/TN, P concentrations, measured values on
different days but not for every day, sampling in the raw inlet,
alternatively in the pre-treatment outlet, random samples for the ratio
COD particulate/COD total, ISS (inert suspended solids)

Internal flows
Internal flows (recirculation, return sludge) as continuous online
measurement (e.g., 15 min values), alternatively the estimated flow
rates from pump control signals (on, off, frequency)

Aeration state Typically, oxygen concentrations in the aeration tanks as continuous
online measurement (e.g., 15 min values)

Sludge produced

Excess sludge flow rate as continuous online measurement (e.g., 15 min
values), alternatively the estimated flow rates from pump control (on,
off, frequency). Helpful: TSS concentration measurements in the return
sludge or in the excess sludge, continuously. Random samples: TSS
(total suspended solids), ISS

Activated sludge tanks
Available online measurements for NO3-N, NH4-N, PO4-P and TSS as
continuous online measurements (e.g., 15 min values),
Grab samples of NO3-N, NH4-N, PO4-P, TSS and temperature

Effluent
Available online measurements for NO3-N, NH4-N, PO4-P and TS as
continuous online measurements (e.g., 15 min values)
24 h composite samples of COD, NO3-N, NH4-N, P and TSS

For an improved analysis of the sludge balance, additional data from the digestion
process can also be included (see Table 2).
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Table 2. Extended data requirements and analysis of sludge production.

Location Data

Primary sludge Primary sludge flow rate; grab samples: TSS and ISS
Anaerobic
digestion

Amount of digested sludge, TSS, VSS (volatile suspended solids), ISS,
NH4-N, biogas flow rate and CH4 content

Good practice for obtaining inflow information is to use concentration measurements
from 24 h composite samples proportional to the flow over as many days as possible and
the corresponding water volumes. Unfortunately, for many reasons, this situation does
not exist at many plants—even large wastewater treatment plants. One has to deal with
measurements on only a limited number of days, often not evenly distributed over the
days of the week.

In most cases, the data on the influent side correspond to Table 1. In order to synthe-
size a sufficiently accurate description of the continuous plant influent from this influent
information (the time series of the concentrations of the relevant constituents), the method
described below can be used.

2. Method
2.1. Modelling Dry Weather Inflow Pattern
2.1.1. Model Approach for Dry Weather Inflow Pattern according to HSG

The university simulation group HSG (hsgsom.org) developed a method to describe
the dry weather inflow to municipal wastewater treatment plants (Langergraber et al.
2008 [5]). This modelling approach assumes that, in the case of dry weather, the inflow to
municipal plants can be described by a mixture of three wastewater sources (see Figure 1.
The composition of each of the sources is considered to be constant over time. In detail, it is
assumed that a constant amount of infiltration water is mixed with a periodic amount of
wastewater with a low nitrogen content and a periodically produced amount of nitrogen-
rich wastewater.
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For a better intuitive understanding, the high-N-wastewater will be called urine, and
the low-N-wastewater will be called grey water in this paper. This is not fully correct as
faeces are not explicitly taken into account in this approach and the usual understanding
would assume urine, greywater and faeces as the main components of wastewater. As in
the described method, only two partly independent components were necessary to explain
typical COD, N and P concentration pattern, and these two fractions are not identical to
the real urine and grey water components. In this approach, faeces is a potential content of
both, but probably to a higher extent, a part of the so-called urine fraction.

This then results in a total wastewater volume that is also produced periodically and
whose composition fluctuates periodically.

The two periodic sources, grey water and urine, were each described in the original
version by Fourier approximations (second order). As a result, the total wastewater volume
can also be described by a second-order Fourier series. Figure 2 shows a corresponding dry
weather inflow pattern.



Water 2024, 16, 564 6 of 29

Water 2024, 16, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 1. Modelling approach for dry weather inflow Langergraber et al. 2008 [5]. 

The two periodic sources, grey water and urine, were each described in the original 
version by Fourier approximations (second order). As a result, the total wastewater vol-
ume can also be described by a second-order Fourier series. Figure 2 shows a correspond-
ing dry weather inflow pattern. 

 
Figure 2. Fourier approximation of the dry weather inflow Langergraber et al. 2008 [5]. 

The chosen mathematical description makes it possible to establish a mathematical 
relationship between the easily tangible shape parameters such as the time (tmin) and the 
relative size (fQ,min) of the nighttime minimum and the time (tmax) and the relative size 
(fQ,max) of the daytime maximum and the parameters of the Fourier series. 

With a downstream storage volume (plug flow), the effect occurring in the sewer net-
work, that the increased water volume reaches the wastewater treatment plant before the 
concentration peak, can be modelled. 

2.1.2. Model Approach for Dry Weather Inflow Patter, Version 2023 
In the current version of the dry weather model approach, proposed here, it is also 

assumed that the time-varying composition of municipal wastewater can be described by 
the mixture of infiltration water with a periodic flow pattern of grey water and a periodic 
flow pattern of nitrogen-rich wastewater (urine). In Table 3, the different partial flows and 
the used variable names are summarized. Additional variables are defined in Table 4. 

The total dry weather Inflow is calculated using Equation (1). 

𝑞𝑞𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑢𝑢(𝑡𝑡) + 𝑞𝑞𝑔𝑔(𝑡𝑡) (1) 

 

 
Figure 2. Fourier approximation of the dry weather inflow Langergraber et al. 2008 [5].

The chosen mathematical description makes it possible to establish a mathematical
relationship between the easily tangible shape parameters such as the time (tmin) and the
relative size (fQ,min) of the nighttime minimum and the time (tmax) and the relative size
(fQ,max) of the daytime maximum and the parameters of the Fourier series.

With a downstream storage volume (plug flow), the effect occurring in the sewer
network, that the increased water volume reaches the wastewater treatment plant before
the concentration peak, can be modelled.

2.1.2. Model Approach for Dry Weather Inflow Patter, Version 2023

In the current version of the dry weather model approach, proposed here, it is also
assumed that the time-varying composition of municipal wastewater can be described by
the mixture of infiltration water with a periodic flow pattern of grey water and a periodic
flow pattern of nitrogen-rich wastewater (urine). In Table 3, the different partial flows and
the used variable names are summarized. Additional variables are defined in Table 4.

The total dry weather Inflow is calculated using Equation (1).

qdw(t) = Qin f + qu(t) + qg(t) (1)

A downstream storage volume (plug flow) can then be used to map the effect occurring
in the sewer network such that the increased flow rate of water reaches the wastewater
treatment plant before the concentration peak is achieved.

Table 3. Used variable names for different partial and total water flows.

Partial Flow COD
g COD/m3

TKN
g N/m3

P
g P/m3

Flow Rate
m3/d

Average
Flow Rate

Infiltration water (constant) CODin f TKNin f Pin f Qin f Qin f
Infiltration water time variable CODin f TKNin f Pin f qin f ,extra(t)

Rainfall runoff CODrain TKNrain Prain qrain(t)
Grey water CODg TKNg Pg qg(t) Qg,m

Urine CODu TKNu Pu qu(t) Qu,m
Wastewater (grey water + urine) CODw TKNw qw(t) Qw,m

Total dry weather inflow CODdw(t) TKNdw(t) Pdw(t) qdw(t) Qm
Total inflow COD(t) TKN(t) P(t) q(t)
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Table 4. Variable names and definitions and abbreviations.

Variable Description Unit

a0..a3, b1..b3 Coefficients of Fourier series for total dry weather flow m3/d
fu,min Constant fraction of urine flow -

TN,max Time of urine peak d
β Form parameter of Gumbel function, width of peak -

dTN Time shift of maximum flow to maximum of total flow rate d
LCOD Average COD load per day for dry weather g COD/d
LTKN Average TKN load per day for dry weather g N/d

LP Average P load per day for dry weather g COD/d
ω Unit frequency 1/d
T Period length = 1 d 1 d

fTKN,COD,g TKN/COD ratio of grey water gN/gCOD
fP,COD,g P/COD ratio of grey water gP/gCOD
fQ,min Ratio of minimum to mean wastewater flow -
Qmin Minimum dry weather flow rate m3/d
Tmin Time of minimum dry weather flow rate d

fQ,max Ratio of maximum to mean wastewater flow -
Qmax Maximum dry weather flow rate m3/d
Tmax Time of maximum dry weather flow rate d
tplug Time constant of plug flow element d
Vplug Volume of plug flow element, Vplug = tplug Qm m3

Vi
Volume of one element in the cascade of CSTRs to model the
plug-flow element m3

T0 Simulation time step for plug-flow model d
Abbreviations

PE Person equivalent, virtual number of persons connected to a
WWTP representing the observed load

WWTP Wastewater treatment plant
COD COD—Chemical Oxygen Demand
TKN Total Kjehldahl Nitrogen

P Phosphorus
HSG The university simulation group HSG (hsgsom.org)

For the total flow rate, it is assumed that a typical periodic inflow occurs in dry weather
conditions. This periodic pattern can be described very well by a Fourier series. In the new
version, it is generally assumed that at least two terms or even more terms (frequencies) are
used. Technically, second- and third-order series have been implemented (Equations (2a)
and (2b)).

qdw(t) = a0 + a1 sin(ω t) + a2 sin(2 ω t) + b1 cos(ω t) + b2 cos(2 ω t) (2a)

qdw(t) = a0 + a1 sin(ω t) + a2 sin(2 ω t) + a3 sin(3 ω t) + b1 cos(ω t) + b2 cos(2 ω t) + b3 cos(3 ω t) (2b)

In Equation (2), the frequency is as follows:

ω =
2 π

T

and the period T = 1 d is used. The mean daily dry weather is equal to parameter a0 of the
Fourier series (Equation (3)).

Qm = a0 (3)

The periodic pattern of wastewater (here, the sum of grey water and urine) results
from total dry weather inflow minus infiltration water (Equation (4)).

qw(t) = qu(t) + qg(t) = qdw(t)− Qin f (4)
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The mean value of the wastewater is calculated in a similar way (Equation (5)).

Qw,m = Qm − Qin f (5)

The following approach is chosen empirically for the temporal pattern of the urine
flow rate. The time series of the urine flow over time is characterized by a constant fraction
( fu,min Qu,m) and a nitrogen peak in the morning (1 − fu,min) Qu,m based on the average
urine flow rate Qu,m.

qu(t) = Qu,m fu,min + Qu,m(1 − fu,min) GF(t, TN,max, β) (6)

In Equation (6), the peak is achieved with the function GF (Gumbel function), which
defines a curve with a maximum at time TN,max, an area of one and the factor β, which
defines the width of the time curve (Equation (7)).

GF(t, TN,max, β) = 1
β e−(z+e−z)

z =
t−TN,max

β

(7)

With the known time series of the urine flow rate, the time series and the average
value of the grey water volume can also be calculated (Equations (8) and (9)).

qg(t) = qw(t)− qu(t) (8)

Qg,m = Qw,m − Qu,m (9)

Constant concentrations are assumed for the infiltration water (e.g., CODin f = 0 gCOD/m3,
TKNin f = 0 gN/m3, Pin f = 0 gP/m3). With the simplifying and arbitrary assumption
that the COD concentration in urine and grey water are equal (CODU = CODg) and the
known COD load (LCOD) and the COD concentration in the grey water can be calculated
as follows (Equation (10)).

LCOD = CODgQw,m + CODin f Qin f

CODg =
LCOD − CODin f Qin f

Qw,m
(10)

The nitrogen and phosphorus concentrations in grey water can be determined as
proportional values to the COD concentration.

TKNg = CODg fTKN,COD,g (11)

Pg = CODg fP,COD,g (12)

The TKN and P concentration in the urine results from the nitrogen and phosphorus
balances (Equations (13) and (14)).

TKNu =
LTKN − TKNin f Qin f − TKNgQg,m

Qu,m
(13)

Pu =
LP − Pin f Qin f − PgQg,m

Qu,m
(14)

The time-dependent functions for COD, TKN and P concentration in the dry weather
inflow are thus calculated in the following Equation (15)–(17).

CODdw(t) =
CODin f Qin f + CODgqg(t) + CODuqu(t)

q(t)
(15)
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TKNdw(t) =
TKNin f Qin f + TKNgqg(t) + TKNuqu(t)

q(t)
(16)

Pdw(t) =
Pin f Qin f + Pgqg(t) + Puqu(t)

q(t)
(17)

The typical time shift of volume flow and concentration hydrographs is caused by
storage volume (plug flow) in sewer and primary settler in case of pre-settled influent data.
This effect can be approximated by a cascade of nCSTR CSTRs (CSTR: completely stirred
tank reactor). The following difference equations (using a sufficiently small simulation time
step T0) were used for each CSTR, i = 1 · · · nCSTR.

CSBi(k + 1) =
Vi
T0

CSBi(k) + q(k)CSBi−1(k + 1)
Vi
T0

+ q(k)
(18)

TKNi(k + 1) =
Vi
T0

TKNi(k) + q(k)TKNi−1(k + 1)
Vi
T0

+ q(k)
(19)

Pi(k + 1) =
Vi
T0

Pi(k) + q(k)Pi−1(k + 1)
Vi
T0

+ q(k)
(20)

The storage volume was calculated from the time shift parameter tPlug.

Vplug = Qm tPlug (21)

Vi =
Vplug

nCSTR
(22)

2.2. Implementation of the Method in the SIMBA# Simulation System

The methodology developed for generating typical dry weather inflow hydrographs
was implemented in a special “Dry weather influent 2023” block in the SIMBA# simulation
system (ifak 2023 [19]). Figure 3 shows the first part of the parameter dialogue, with
which the parameters LCOD, LTKN , LP, Qm and Qin f are specified. The time delay of the
concentration curves is implemented in a separate block (plug flow). This division makes
it possible to map rain events which then cause load peaks in the inlet of the wastewater
treatment plant.
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Figure 3. Dry weather influent block in SIMBA#.

To set the shape parameters, corresponding adjustments can be made under the Form
tab (see Figure 4). Among other parameters, the parameters fQ,min, Tmin, fQ,max and Tmax
are defined here to describe the shape of the wastewater flow qw(t). From these parameters,
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the parameters of the Fourier series can be calculated (see Appendix B). Alternatively, the
shape parameters can also be specified directly as the coefficients of the Fourier series. In
this case, a third term with the parameters a3 and b3 can also be used. The time delay of the
concentrations compared to the flow rate of water is determined by the hydraulic residence
time tplug in the downstream storage element. This tab also contains the shape parameters
for characterizing the TKN curve (TN,max, fu,min, β).
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The remaining settings can be found in the components tab (Figure 5). The parameters
(CODin f , TKNin f , Pin f , fTKN,COD,g, fP,COD,g, Qu,m

Qw,m
, TKNu) can be set here.
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2.3. Calculation of a Continuous Inflow for Medium-Long Period

For the generation of data series to describe the inflow of wastewater treatment plants,
the dry weather discharge information needs to be supplemented by additional data.
Rainfall runoff, variable infiltration water and, if necessary, weekly load variations and
seasonal effects must also be taken into account (Gernaey et al. 2011 [20]).

For a wastewater treatment plant study with the data available in Table 1 (in Alex
et al. 2009, Case C [15]), the most important information available is a measurement
series of the flow (high time resolution) in the inlet of the wastewater treatment plant.
To use this measurement series as input information for a wastewater treatment plant
simulation, the data should be smoothed (moving average (1–2 h window)) to compensate
for measurement noise and the effects of smaller pumping stations in the upstream sewer
network.

A dry weather period with a minimum proportion of infiltration water is then identi-
fied in the processed data (see Figure 6).
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The shape parameters (Fourier coefficients, second or third order) are determined for
this period (method is described in Appendix A). The night minimum (Tmin, Qmin), day
maximum (Tmax, Qmax) and mean value Qm = a0 are then determined from the calculated
daily pattern. Assumptions (from DWA A131 [13], A198 [21]) are also made regarding the
wastewater concentrations in order to estimate the fraction of infiltration water (Table 5).

Table 5. Assumptions for wastewater concentrations.

Concentration Raw Wastewater Pre-Settled Wastewater Unit

CODw
120 g

pe d
qpe

78 g
pe d

qpe
g COD/m3

TKNw
12 g

pe d
qpe

10.8 g
pe d

qpe
g N/m3

In order for these concentrations to be calculated by the diurnal cycle model, the
infiltration water flow rates would have to be selected according to Equations (23) and (24).

Qin f ,COD = Qm − LCOD
CODw

(23)

Qin f ,TKN = Qm − LTKN
TKNw

(24)

Table 6 defines the additional variables used in this section.

Table 6. Variable names and definitions.

Variable Description Unit

qextra(t) Sum of additional infiltration water and rain runoff water m3/d
qrain(t) Rain runoff water m3/d

qin f ,extra(t)
Additional infiltration water compared to analysed dry weather
period, seasonal effect or rain event caused m3/d

q̂in f ,extra(t) Estimated value for qin f ,extra(t) m3/d
Tin f ,up Time constant estimation filter for qextra(t) > q̂in f ,extra(t) d

Tin f ,down Time constant estimation filter for qextra(t) < q̂in f ,extra(t) d

Qin f ,COD
Estimated infiltration flow rate based on COD concentration for
wastewater m3/d

Qin f ,TKN
Estimated infiltration flow rate based on TKN concentration for
wastewater m3/d

Qin f ,Qmin Estimated infiltration flow rate based on night minimum m3/d
fQin f ,Qmin Factor to specify infiltration flow rate based on night minimum -

Another boundary condition is given by the fact that the flow rate of infiltration
water must not be greater than the night-time minimum Qmin of the dry weather inflow.
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A reduction factor fQin f ,Qmin results in a third estimate of the infiltration water value
following Equation (25).

Qin f ,Qmin = fQin f ,Qmin Qmin (25)

The infiltration flow rate can be selected as the minimum of these three proposals
(Equation (26)).

Qin f = min
(

Qin f ,COD, Qin f ,TKN , Qin f ,Qmin

)
(26)

Based on the specified value of the infiltration water flow rate, the mean value of the
wastewater flow rate and the form parameters fQ,min and fQ,max can be calculated.

Qw,m = Qm − Qin f (27)

fQ,min =
Qmin − Qin f

Qw,m
(28)

fQ,max =
Qmax − Qin f

Qw,m
(29)

The remaining form parameters can be parametrized using default values or based on
linear functions from the plant size (log10(PE)) (see Table 7).

Table 7. Settings of form parameters for long-term data generation.

Variable Description Unit

tplug
Case specific setting, default value tplug = 0.1 d, Figure 6 can serve
as orientation, larger values for pre-settled influent data d

dTN dTN = 0.1939 − 0.0219 log10(PE), see also result section, Figure 15 d

TN,max
Calculated from the time of flow maximum and estimated time
shift, dTN : TN,max = Tmax − dTN

d

fu,min
default value, fu,min = 0.55, approximately mean value from
Figure 8 -

β β = −0.0292 + 0.0273 log10(PE), see also result section Figure 15 -

fTKN,COD,g
fTKN,COD,g = 0.06 gTKN/gCOD, a larger industrial wastewater
fraction could require adaptation gTKN/gCOD

fP,COD,g fP,COD,g = 0.008 gP/gCOD, see also result section Figure 16 gP/gCOD
fQu,Qw fQu,Qw = Qu,m

Qw,m
= 0.1 -

TKNu TKNu = 400 gN/m3 gN/m3

This defines a plausible dry weather daily pattern for simulation studies. However,
rain events and phases with an increased proportion of infiltration water also occur in the
influent data series used for simulation studies of wastewater treatment plants. In order to
be able to calculate a plausible inflow for the entire period, the following assumptions are
made. If the current water volume is less than or equal to the volume defined in the dry
weather daily cycle for this time of day, dry weather concentrations are assumed. If the
current water quantity is greater than the quantity defined in the dry weather daily cycle
for this time of day, it is assumed that the difference (extra water) is the result of either
rainwater or additional infiltration water. If it is assumed that both fractions, infiltration
water and rainwater, are not polluted, then, the current concentrations could be calculated
by dividing the current dry weather load by the current water quantity (dilution). This
approach was used in the original version. In the 2023 variant presented here, it is assumed
differently that rainwater runoff is significantly polluted in contrast to infiltration water. In
this case, it is necessary to differentiate between infiltration water and rainwater. The sum
of additional infiltration water qin f ,extra(t) and rainwater qrain(t) is calculated by following
Equation (30).

qextra(t) = qrain(t) + qin f ,extra(t) = max(0, q(t)− qdw(t)) (30)
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During dry weather periods, the additional water is assumed to be additional infiltra-
tion water: qextra(t) = qin f ,extra(t). As the amount of infiltration water changes only slowly,
the additional infiltration flow rate could be estimated from qextra(t) using a low-pass filter
(Equation (31)).

d q̂in f ,extra(t)
dt

=
1

Tin f

(
qextra(t)− q̂in f ,extra(t)

)
(31)

Here, Tin f is a filter time constant. However, during a rainfall event, the estimate for
the additional extraneous water q̂in f ,extra(t) would be increased very fast, which does not
correspond to reality. In order to minimize this effect, it is advisable to implement the
increase in the estimate less and the decrease more pronounced. This is achieved by the
following filter (Equation (32)) with Tin f ,up > Tin f ,down.

d q̂in f ,extra(t)
dt

=
1

Tin f ,up
max

(
qextra(t)− q̂in f ,extra(t)

)
+

1
Tin f ,down

min
(

qextra(t)− q̂in f ,extra(t)
)

(32)

With this estimate of the current additional infiltration water q̂in f ,extra(t), the rainwater
fraction can be calculated using Equation (33).

qrain(t) = max
(

0, qextra(t)− q̂in f ,extra(t)
)

(33)

Figure 7 shows the decomposition of the measured inflow volume to the wastewater
treatment plant into the following components: additional infiltration water, infiltration
water, urine, greywater and stormwater runoff.
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Once all components (dry weather runoff, additional infiltration water and rainwater)
are known, the influent concentrations can be calculated (for COD, see Equation (34)).

COD(t) =
CODdw(t) qdw(t) + CODin f q̂in f ,extra(t) + CODrain(t) qrain(t)

max(qdw(t), q(t))
(34)

The method described allows the generation of sufficiently good inflow data for
the validation of wastewater treatment plant models. However, a number of aspects are
neglected. In particular, it is assumed that the same load of COD, TKN and P is contained
in the influent every day in the dry weather case. The typical random variation in loads
and, e.g., typical weekly variations are neglected. The reason for this strong simplification
is the assumed data basis according to Table 1. A typical number of approximately 50 daily
mixed samples for a year does not usually allow a reliable estimation of the load dynamics.
This is only possible in cases where daily composite samples are available. In these cases,
the method can be extended by specifying the daily load variations.
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A further simplification is the assumption of constant pollution of the stormwater
runoff. The database provided in Table 1 does not allow a more detailed description of
pollution accumulation on sealed surfaces and wash-off during rain events or the sedimen-
tation and re-suspension of deposits in the sewer network. This could be supplemented
by additional and complex modelling of these processes with a sewer network pollutant
transport model (a very simple approach is provided in Rojas et al. 2017 [22]). Previous
studies on wastewater treatment plant simulation shows that this effect can be usually
neglected. Another argument in favour of simplifying these processes is that the modelling
of pollution load accumulation on surfaces and the sedimentation and re-suspension of
deposits in the sewer network have so far only been successful in individual cases with a
high calibration effort. Simple and robust models for this task are not available.

2.4. Implementation of the Method for Long-Term Dynamic Data Generation in the SIMBA#

Simulation System

For the practical implementation of the method, the “Influent Generator 2023” block
was introduced in the SIMBA# simulation tool. The internal structure of this block is shown
in Figure 8.
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Figure 8. Inflow calculation in the SIMBA block “Influent Generator 2023”.

The dry weather inflow loads LCOD, LTKN and LP are specified in the dry weather
block TG_HSG. The assumptions for the parameters fTKN,COD,g, fP,COD,g and TKNu are
also entered here. The measured continuous wastewater treatment plant inflow is imported
from an Excel spreadsheet via the FlowFromExcel block. An algorithm is then started to
adjust the shape parameters (Optimize TG to Flow block, see Figure 9).

The script block “Optimise TG” is used to determine the shape parameters of the
wastewater production (the case order of the Fourier series is second: Qm, fQ,min, Tmin,
fQ,max, Tmax, and, the case order of the Fourier series is third: a0..a3, b1..b3), and the pro-
portion of infiltration water is determined. Size-dependent (person equivalents—PEs)
standard values are calculated for the parameters dTN and β.

With the now-defined dry weather inflow and the continuously measured water vol-
ume, a realistic continuous wastewater treatment plant inflow can now be calculated for
a longer period of time. The calculation is performed in block TG_caseC as described in
Section 2.3. This block is a so-called converter block for which the internal calculation
function can be defined or altered by the user in a formula editor. This block also has
a self-documentation function with which the implemented formulas can be generated
as a document (see Figure 10). With this function, implemented functions are displayed
transparently to the user, and the publications of models correspond exactly to the imple-
mented function.
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3. Results
3.1. Verification of the Modelling Approach for Dry Weather Inflow Pattern

This modelling approach was used to model a selection of measured example diurnal
cycles. For the analysis, the data from Langergraber et al. 2008 [5] (17 examples from Aus-
tria, 2 from Germany) were supplemented by further daily profiles collected by members of
the HSG Simulation working group (hsgsim.org). In particular, larger plants from Germany
were included. In the presented results (see Figure 11 and Appendix C), 21 data sets from
plants of wider range of sizes were analysed.
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A second-order Fourier analysis was calculated to adjust the water flow rates. The
analysed data sets only contain 2 h values for the water quantity; with this temporally not
very high-resolution database, no significant improvement in mapping can be achieved
with a higher-order Fourier series. The analysis calculates the parameters a0, a1, a2, b1
and b2.

The parameters Qin f and tplug were optimized to adjust the COD to the measured
values. This means that the time series of the COD concentration is completely determined
by the mixture of infiltration water (COD ≈ 0) and wastewater (COD constant). A time
shift to the time series of the water quantity and a further deformation of the pattern results
from the transport through a storage volume.

The parameters TN,max, β and fU,min were optimised to adjust the TKN to the measured
values. The time series of the TKN concentration is characterised by a proportion of COD,
representing organic bound nitrogen, in the grey water (constant concentration) and a
very high concentration (approximately 400 gN/m3) in the urine. The time function of
the urine flow rate is characterised by a constant proportion ( fU,min QU,M) and a nitrogen
peak in the morning (1 − fU,min) QU,M. This nitrogen peak is determined by the two shape
parameters TN,max (time) and β (the shape parameter of the Gumbel function and the width
of the peak).

The parameter fP,COD,G was optimised to adjust the P concentration to the measured
values. Similar to the course of the TKN concentration, the course of the P concentration is
characterised by a COD proportional fraction ( fP,COD,G)) in the grey water (constant con-
centration) and a very high concentration in the urine. By adjusting the parameter fP,COD,G,
the pattern can be varied, with larger values of the factor in the direction of the temporal
course of the COD concentration, with smaller values in the direction of the pattern of the
TKN concentration. Unfortunately, it was only possible to adjust the P concentration for a
small number of measured daily patterns due to the lack of P measurement values in many
data sets.

This analysis impressively demonstrates that the dry weather inflow of wastewater
treatment plants can be plausibly described with regard to COD, TKN and P concentrations
using the simple model approach presented. The results of the analysis of all 21 daily cycles
considered can be found in the appendix. Based on the analysis carried out, the systematic
dependencies of the adjusted shape parameters on the plant size can also be analysed.
These correlations can help to estimate typical daily patterns even for locations for which
no measurements are available.

The shape parameters Tmin, fQ,min, Tmax and fQ,max (for definition, see Figure 2) were
determined from the time courses of the wastewater (qw(t) = qu(t) + qg(t)). The deter-
mined shape parameters are shown in Figure 12 over the plant size in population equiva-
lents (PE calculated from the COD load with the assumption of a PE-related daily COD
load of 120 g COD/PE for raw wastewater and 78 g COD/PE for pre-treated wastewater
(data points with red label)).

In principle, it becomes obvious from Figure 12 that the time of the night-time min-
imum and the morning peak are shifted backwards with the size of the system. The
dynamics of the daily cycle also decrease with the size of the system, with the minimum
and the maximum approaching the mean value. Despite this significant correlation, a large
variance in the values can be observed. This clearly speaks in favour of the necessity of
using the real measurement data of the inflow for the planning and simulation studies of
wastewater treatment plants. Only in an emergency should standard assumptions be used
and can be calculated with the shown linear correlations. Figure 12, bottom right, shows
the height of the wastewater maximum in relation to the average wastewater volume. The
examples are roughly in the range specified in DWA A198, 2003, Figure 2 [21] but also
outside this range. The influence of the number of connected person equivalents (PE) to
a WWTP can be summarized by two effects. For larger number of PEs, a more equalized
wastewater will be the produced.For larger numbers of connected PEs, the maximum
flow rate will arrive later in the day at the WWTP. These arise partly from the size of the
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required sewer system (more distributed sources, longer travel time). In addition, cultural
differences between urban and rural areas are responsible for this behaviour. Similar results
have been reported already in Langergraber et al. 2008 [5].
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Figure 12. Shape parameter wastewater flow rate as a function of plant size (PE). (A linear regression
line is plotted as grey dotted line which appears as solid grey line in the plots).

The COD concentration time series are adjusted using the parameters Qin f and tplug.
There is no plausible dependence on the plant size for the infiltration water fraction. As
can be seen in Figure 13 (left), the values for the proportion of extraneous water (Qin f /Qm
in relation to the total water volume) of the sample daily cycles fluctuate in the range of
10–70%. The temporal shift of the concentration curve in relation to the water retention
volume (tplug) varies greatly. Larger values (0.1–0.2 d) are to be expected for larger plants.
Daily variations in the pre-treatment process (data points labelled in red) typically show
larger delays.
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Figure 14 shows the calculated COD concentrations of the examples. The expected val-
ues of approximately 1000 gCOD/m3 for raw wastewater and approximately 600 gCOD/m3

for pre-treated water (data points labelled in red) are confirmed.
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grey dotted line which appears as solid grey line in the plots).

The TKN concentration time series is adjusted to the measured values using the
parameters TN,max, β and fU,min. Figure 15 shows the estimated parameters over the system
size. Similar to the time of the maximum inflow volume, the time of the urine peak is clearly
dependent on the system size. Compared to the maximum water volume, the urine peak
is between 0–0.2 d ahead (Figure 15, bottom right). The proportion of the constant urine
volume varies in the range of 0.3–0.65 with outliers. There is no visible dependence on the
size of the plant. Pretreated wastewater tends to produce higher values for the constant
fraction of urine flow rate ( fU,min), which could be explained by further equalization in
the pre-treatment stage. For the width of the urine peak (β), a dependence on the size of
the plant is also visible. For larger plants, the urine flow is obviously more even, and the
morning peak is less pronounced.
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To adjust the phosphorus concentration pattern to the measured values, the parameter
fP,COD,G was optimized. As only some of the available daily data contain phosphorus
concentration values, a value of fP,COD,G = 0.008 gP/gCOD was assumed for the remaining
examples. This value corresponds approximately to the mean value of the analyses for
which P data was available. A correlation with the plant size is not expected and also not
visible in Figure 16.
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3.2. Experiences with the Method to Generate Long-Term Dynamic Simulation Influent Data

The method described here modifies the HSG method from Langergraber et al. 2008 [5]
in order to improve the shortcomings described in the motivation section. This extends
the scope of application of this method. For many typical municipal plants, both methods
will yield comparable results. The inflow to municipal wastewater treatment plants can
be described very well in most cases using both methods. The original method was used
in a large number of simulation studies. The good-to-very-good agreement achieved
between the simulated effluent values of the plants and the measured values is an indirect
confirmation of the quality of the method.

In a simulation study carried out by the authors, the method was evaluated even fur-
ther. Here, at the wastewater treatment plant, the continuous quality measurements in the
influent during continuous operation (NH4-N, online PO4-P analyzer, daily 24 h composite
samples with COD, TKN and PO4-P) were available. In this case, the influent data syn-
thesized with the method could be compared with measured values. Figure 17 compares
the ammonium loads calculated from the measured data with the data synthesized using
the method.
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A very good reproduction of the inflow situation including the rain events could be
created here. Differences result primarily from variations in the inflow loads that cannot be
recorded with the presented method. A quantification of the quality of a generated dynamic
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influent pattern as presented in Figure 17 or a quantification of the quality of achieved fit of
the validated model to the available effluent measurements remains a difficult problem.
There was an intensive discussion in the HSG group about the valid methods and the
error definitions for this task (Ahnert et al. 2009 [23]). Simple residuals are not sufficiently
significant. A visual evaluation was used here as a pragmatic solution.

The method described is not applicable in the following cases. A necessary precon-
dition is that the dry weather inflow is mainly created from normal human activities in
urbanizations (municipal wastewater). If the wastewater is completely produced by indus-
try or a large fraction of the wastewater arises from industrial sources, the assumptions
regarding cyclic production patterns of greywater and urine will not hold. The method
cannot be applied. A failure of the method was also observed in one case in which mu-
nicipal wastewater was pumped to the wastewater treatment plant in a widely branched
pressurized pipe system with very long residence times (>4 h) (wastewater treatment
plant in Berlin). In general, the method might fail in situations where large fractions
of the wastewater will be managed and stored in the sewer system. This will lead to a
non-predictable change in the resulting inflow patterns.

One major limitation of the method results from the assumed measurement situation
(only routine data). In this situation, the influent concentration (24 h composite sample) are
not measured every day but only on some days (e.g., 50 times a year). As a consequence,
a constant load for every day must be assumed. Stochastic variations and typical weekly
patterns cannot be reproduced. A limited quality of the influent data arises. Better influent
data quality can be achieved only with an additional (non-routine) measurement effort.

But, if applicable, the method drastically reduces the requirements for influent data
down to a continuous influent flow measurement and a few 24 h composite samples.

4. Summary and Outlook

In general, many simulation studies have shown that the method reproduces the
particularly critical situations of incoming rain event water with a displacement load
peak of wastewater stored in the sewer network by rainwater well and that the validated
models reproduce the NH4-N effluent peaks occurring at the real plants very well. This
is indispensable for a capacity estimate, especially against the background of the usual
monitoring practice in Germany (peak values).

In a rare number of cases, there might even be a larger data basis for modelling the
available system inlet. One such special case is, for example, the availability of uninter-
rupted 24 h mixed samples in the inlet. In this case, an improved inflow modelling that
goes beyond the method presented is theoretically possible (an imprinting of a time series
of the daily inflow loads). But, due to the uncertainties in the collected data, it may also be
better to use the method described here in this situation.

Another special case is the temporary availability of online measurements (e.g., NH4-
N, SAK, COD via spectrometer) in the influent of the wastewater treatment plant. In
this case as well, advanced methods for inflow data generation are possible (Alex et al.
2009 [15]).

An improved modelling quality can also be achieved if diurnal variations are mea-
sured. Here, it is assumed that 12 2 h composite samples are analysed on a dry weather
day in order to determine the diurnal pattern of concentration variation for COD, TKN and
P. With these data, a case-specific adjustment of the shape parameters tplug, dTN , β, fu,min
and fP,COD,G is also possible. The parameter Qin f can be validated or adjusted.

The method also allows an improved estimation of influent loads for wastewater
treatment plants where no volume-flow-proportional 24 h-composite samples are per-
formed (only this method normally allows reliable load calculations). Instead of volume-
proportional 24 h composite samples, time-proportional 24 h composite samples are taken
at many wastewater treatment plants, or only grab samples are taken. In Germany, this
is partly due to the different regulations for the self-monitoring of wastewater treatment
plants in the different federal states. In order to generate wastewater treatment plant inflow
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data for a simulation study in these situations or to estimate the inflow loads for conven-
tional planning on a sounder basis, the following procedure can be applied. Assuming
daily COD, TKN and P loads, the method can be used to synthesize a continuous course of
concentrations. All types of measured values can be derived from these calculated time
series, including time-proportional mixed samples or grab samples. These synthesized
measured values can be compared with the real measured values. A simple search can
be used to determine the loads at which the deviations between synthesized and real
measured values are minimal. This provides well-founded estimates of the daily pollution
loads and a reliable data set for describing the dynamic inflow of the wastewater treatment
plant as a basis for model validation.

With the described method, dynamic inflow descriptions for simulation studies for
municipal wastewater treatment plants can be easily generated from a few typical routine
measurements. The original method (Langergraber et al. 2008 [5], Alex et al. 2009 [15])
has proven itself in many simulation studies, but the 2023 variant presented here provides
comparable data and is suitable for an even broader class of applications.

In addition to generating inflow data for simulation studies, the method can also be
used to generate the improved estimates of inflow loads. The required loads or volume-
proportional composite concentrations can be generated from existing time-proportional
composite concentrations or grab samples. This means that the method can also be used
for applications beyond simulation studies, for example, for load calculation for design
or benchmarking.

An emerging topic for the operation of plants is the usage of “digital twins”. One
promising application are the model-based predictive controller of plants (MBPC). These
MBPCs will require the online generation of reliable influent data from reliable online
measurements. The method described in this paper would only require an online flow
rate measurement and thus serve this specific purpose. Future research could direct in this
application of the presented method.

Funding: This research received no external funding.
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Appendix A. Parameter Estimation of Fourier-Series Parameters

For any measured timeseries of the dry weather inflow (single daily pattern or se-
quence of dry weather days) qmess at the time points tmeas and the pattern calculated using
the Fourier series q, an error vector can be defined (Equation (A1)).

e = qmess − q (A1)

The flow rate measurements and time values are as follows.

qmeas =

qmeas,0
...

qmeas,n

 tmeas =

tmeas,0
...

tmeas,n


The flow rates generated by the Fourier series can then be described using the follow-

ing equation:
q = M

(
tmeas

)
p (A2)

The matrix M
(
tmeas

)
and the parameter vector are as follows (the Fourier series of

second order).

M
(
tmess

)
=

1 sin(ω tmess,0) sin(2ω tmess,0) cos(ω tmess,0) cos(2ω tmess,0)
...

...
...

1 sin(ω tmess,n) sin(2ω tmess,n) cos(ω tmess,n) cos(2ω tmess,n)
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p =


a0
a1
a2
b1
b2


The parameter vector p that minimizes the sum of the error squares of the error vector

e and is calculated from Equation (A3).

p =
(

MT M
)−1

MTqmeas (A3)

Appendix B. Relationship between Shape Parameters and Fourier Coefficients
(Second Order)

For a second-order Fourier series used to describe the dry weather diurnal cycle qdw(t),
a clear relationship can be established between the shape parameters fQ,min, Tmin, fQ,max,
Tmax, Qm and Qin f (see Figure A1) and the coefficients of the series a0, a1, a2, b1 and b2.
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Equations (A4) and (A5) apply to the maximum dry weather inflow.

Qmax = fQ,maxQw,m + Qin f

Qmax = fQ,max

(
Qm − Qin f

)
+ Qin f (A4)

Qmax = a0 + a1 sin(ω Tmax) + a2 sin(2 ω Tmax) + b1 cos(ω Tmax) + b2 cos(2 ω Tmax) (A5)

Since the flow pattern has a maximum at this point in time, the first derivative of the
function is zero (Equation (A6)).

0 = ω a1 cos(ω Tmax) + 2 ω a2 cos(2 ω Tmax)− ω b1 sin(ω Tmax)− 2 ω b2 sin(2 ω Tmax)

0 = a1 cos(ω Tmax) + 2 a2 cos(2 ω Tmax)− b1 sin(ω Tmax)− 2 b2 sin(2 ω Tmax) (A6)

The same applies to the minimum dry weather inflow (Equation (A7)–(A9)).

Qmin = fQ,min

(
Qm − Qin f

)
+ Qin f (A7)

Qmin = a0 + a1 sin(ω Tmin) + a2 sin(2 ω Tmin) + b1 cos(ω Tmin) + b2 cos(2 ω Tmin) (A8)

0 = a1 cos(ω Tmin) + 2 a2 cos(2 ω Tmin)− b1 sin(ω Tmin)− 2 b2 sin(2 ω Tmin) (A9)

The mean flow rate is defined by the Fourier series with Equation (A10).

Qm = a0 (A10)
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This results in a system of equations with five equations and five unknowns, which
can be represented in a matrix notation as described by Equation (A11).

y = M p (A11)

with

y =


fQ,max

(
Qm − Qin f

)
+ Qin f

fQ,min

(
Qm − Qin f

)
+ Qin f

0
0

Qm

 p =


a0
a1
a2
b1
b2



M =


1 sin(ωTmax) sin(2ωTmax) cos(ωTmax) cos(2ωTmax)
1 sin(ωTmin) sin(2ωTmin) cos(ωTmin) cos(2ωTmin)
0 cos(ωTmax) 2 cos(2ωTmax) − sin(ωTmax) −2 sin(2ωTmax)
0 cos(ωTmin) 2 cos(2ωTmin) − sin(ωTmin) −2 sin(2ωTmin)
1 0 0 0 0


The coefficients of the Fourier series then produce Equation (A12).

p = M−1 y (A12)

Appendix C. 8.3 Model Fit for the Sample Diurnal Pattern (Complete)

The following figures (A2) show, on the left-hand side, the fit of the diurnal flow rate
pattern and, on the right-hand side, the resulting fit of the diurnal concentration pattern.
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Figure A2 Model Fit for the Sample Diurnal Pattern (Complete results). 
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