Patterns of Precipitation and Convection Occurrence over the Mediterranean Basin Derived from a Decade of Microwave Satellite Observations
<p>Orography of the studied area (in meters). wMed: The western Mediterranean basin consists of the Alboran (ALB), the Algerian (ALG), the Balearic (BAL), the Ligurian (LIG) and the Tyrrhenian (TYR) sub-basins; cMed: the central Mediterranean basin consists of the Adriatic Sea (ADR) and the Ionian sub-basin (ION); and eMed: the eastern Mediterranean basin consists of the Aegean Sea (AEG) and the Levantine sub-basin (LEV); BLK: Black Sea; ALP: Alps; ATL: Atlas; BAL: Balkan; PYR: Pyrenees; ANT: Anatolian and TRS: Taurus Mountains. Blue-solid lines indicate limits between western, central and eastern Mediterranean basins.</p> "> Figure 2
<p>Descending (solid) and ascending (dashed) annual cycle of (<b>left</b> column) moderate rain (MR) and (<b>right</b> column) deep convection (DC) frequency for the Mediterranean Sea (<b>upper</b> panel) and for land-only of the Mediterranean region (<b>lower</b> panel) based on NOAA-15 (black), NOAA-16 (blue) and NOAA-17 (red) observations over 2002–2007.</p> "> Figure 3
<p>Monthly mean of (<b>a</b>) MR and (<b>b</b>) DC frequency over the Mediterranean Sea based on NOAA-15 (black), NOAA-16 (blue) and NOAA-17 (red) observations.</p> "> Figure 4
<p>NOAA-15 climatologies: (left) mean state and (right) interannual variability computed as standard deviation of the monthly means over the period 2000–2007. (<b>a</b>,<b>b</b>) MR frequencies (‰), and (<b>c</b>,<b>d</b>) DC frequencies (‰).</p> "> Figure 5
<p>Spatial distribution of monthly climatology of MR frequency over the Mediterranean region from January 2000 throughDecember 2007 from NOAA-15 satellite.</p> "> Figure 6
<p>Spatial distribution of monthly climatology of DC frequency over the Mediterranean region from January 2000 through December 2007 from NOAA-15 satellite.</p> "> Figure 7
<p>Latitude time sections (<b>a</b>,<b>b</b>) and time longitude (<b>c</b>,<b>d</b>) of MR (left column) and DC (right column) frequencies over the Mediterranean region based on NOAA-15 observations, 2000–2007.</p> "> Figure 8
<p>(<b>a</b>) HOAPS-3.2 rain-frequency climatology (‰) and (<b>b</b>) interannual variability computed as standard deviation (‰) of the monthly means over the period 1999–2005 for a threshold of 30 mm/day.</p> "> Figure 9
<p>Monthly mean annual cycle averaged over the period 1999–2005 of NOAA-15 MR frequency for different thresholds of UTH (<70%, <50%, and <30%; thick-solid, dashed and dotted black, respectively), and HOAPS-3.2 rain frequency (thin-solid) for different thresholds (30, 40 and 50 mm/day; blue, purple, and green, respectively) in (<b>a</b>) Mediterranean Sea (Med), (<b>b</b>) wMed, (<b>c</b>) cMed and (<b>d</b>) eMed (see <a href="#atmosphere-05-00370-f008" class="html-fig">Figure 8</a> for the regions location).</p> "> Figure 10
<p>ERA-Interim climatologies (left) mean state and (right) interannual variability computed as standard deviation of the monthly means over the period 2000–2007 for a threshold of 30 mm/day. (<b>a</b>,<b>b</b>) rain frequency (‰) and (<b>c</b>,<b>d</b>) convective rain frequency (‰).</p> "> Figure 11
<p>Monthly mean annual cycle averaged over the period 2000–2007 in (<b>a</b>) Mediterranean sea (Med), (<b>b</b>) wMed, (<b>c</b>) cMed and (<b>d</b>) eMed of NOAA-15 MR frequency (thick-solid black), and ERA-Interim reanalysis rain frequency (thin-solid) for different thresholds (30, 40 and 50 mm/day; blue, purple, and green respectively) and in (<b>e</b>) Mediterranean sea (Med), (<b>f</b>) wMed, (<b>g</b>) cMed and (<b>h</b>) eMed of NOAA-15 DC frequency (thick-solid black), and ERA-Interim reanalysis DC frequency (thin-solid) for different thresholds (30, 40 and 50 mm/day; blue, purple, and green respectively). See <a href="#atmosphere-05-00370-f008" class="html-fig">Figure 8</a> for the regions location.</p> ">
Abstract
:1. Introduction
2. Precipitation Products
2.1. AMSU-Based Precipitation and Convection Occurrence
Dsc (UTC) | Asc (UTC) | |
---|---|---|
NOAA-15 | 02–09 | 12–19 |
NOAA–16 | 22–05 | 08–15 |
NOAA–17 | 06–13 | 16–23 |
2.2. HOAPS
2.3. ERA-Interim
3. Rain and Deep Convection Occurrence Characteristics
3.1. Mean Annual Cycle
3.2. Interannual Variability
3.3. Spatial Patterns of MR and DC Occurrence
3.4. Monthly Mean Spatial Patterns of MR and DC Occurrences
3.5. Annual Cycle of Zonally and Meridionally Averaged Precipitation Occurrence
4. Comparison with HOAPS and ERA-Interim
4.1. HOAPS
4.1.1. Spatial Variability and Precipitation Occurrence
4.1.2. Basin Scale Precipitation Occurrence
4.1.3. Regional Scale Precipitation Occurrence
4.2. ERA-Interim
4.2.1. Spatial Variability and Precipitation Occurrence
4.2.2. Basin Scale Precipitation Occurrence
4.2.3. Regional Scale Precipitation Occurrence
5. Discussion
6. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006. [Google Scholar] [CrossRef]
- Hulme, M.; Barrow, E.M.; Arnell, N.W.; Harrison, P.A.; Johns, T.C.; Downing, T.E. Relative impacts of human-induced climate change and natural variability. Nature 1999, 397, 688–691. [Google Scholar] [CrossRef]
- Mariotti, A. Recent changes in the mediterranean water cycle: A pathway toward long-term regional hydroclimatic change? J. Clim. 2010, 23, 1513–1525. [Google Scholar] [CrossRef]
- Alpert, P.; Ben-Gai, T.; Baharad, A.; Benjamini, Y.; Yekutieli, D.; Colacino, M.; Diodato, L.; Ramis, C.; Homar, V.; Romero, R.; et al. The paradoxical increase of mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 2002. [Google Scholar] [CrossRef]
- Gaertner, M.A.; Jacob, D.; Gil, V.; Dominguez, M.; Padorno, E.; Sanchez, E.; Castro, M. Tropical cyclones over the mediterranean sea in climate change simulations. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Mariotti, A.; Struglia, M.; Zeng, N.; Lau, K. The hydrological cycle in the mediterranean region and implications for the water budget of the mediterranean sea. J. Clim. 2002, 15, 1674–1690. [Google Scholar] [CrossRef]
- Aznar, R.; Sotillo, M.G.; Martin, M.L.; Somot, S.; Valero, F. Comparison of model and satellite-derived longterm precipitation databases over the mediterranean basin: A general overview. Atmos. Res. 2010, 97, 170–184. [Google Scholar] [CrossRef]
- Michaelides, S.; Levizzani, V.; Anagnostou, E.; Bauer, P.; Kasparis, T.; Lane, J.E. Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res. 2009, 94, 512–533. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Strangeways, I. Improving precipitation measurement. Int. J. Clim. 2004, 24, 1443–1460. [Google Scholar] [CrossRef]
- Delrieu, G.; Braud, I.; Berne, A.; Borga, M.; Boudevillain, B.; Fabry, F.; Freer, J.; Gaume, E.; Nakakita, E.; Seed, A.; et al. Weather radar and hydrology preface. Adv. Water Resour. 2009, 32, 969–974. [Google Scholar] [CrossRef]
- Béranger, K.; Barnier, B.; Gulev, S.; Crépon, M. Comparing 20 years of precipitation estimates from different sources over the world ocean. Ocean Dyn. 2006, 56, 104–138. [Google Scholar]
- Ebert, E.E.; Janoviak, J.E.; Kidd, C. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- Feidas, H.; Kokolatos, G.; Negri, A.; Manyin, M.; Chrysoulakis, N.; Kamarianakis, Y. Validation of an infrared-based satellite algorithm to estimate accumulated rainfall over the Mediterranean basin. Theor. Appl. Climatol. 2008, 95, 91–109. [Google Scholar]
- Drobinski, P.; Ducrocq, V.; Alpert, P.; Anagnostou, E.; Beranger, K.; Borga, M.; Braud, I.; Chanzy, A.; Davolio, S.; Delrieu, G.; et al. Hymex, a 10-year multidisciplinary project on mediterranean water cycle. Bull. Am. Meteorol. Soc. 2013. [Google Scholar] [CrossRef]
- Funatsu, B.M.; Claud, C.; Chaboureau, J.-P. A 6-year amsu-based climatology of upper-level troughs and associated precipitation distribution in the mediterranean region. J. Geophys. Res.: Atmos. 2008. [Google Scholar] [CrossRef]
- Claud, C.; Alhammoud, B.; Funatsu, B.M.; Lebeaupin-Brossier, C.; Chaboureau, J.-P.; Béranger, K.; Drobinski, P. A high resolution climatology of precipitation and deep convection over the mediterranean region from operational satellite microwave data: Development and application to the evaluation of model uncertainties. Nat. Hazard. Earth Syst. Sci. 2012, 12, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Goodrum, G.; Kidwell, K.; Winston, W. NOAA KLM User’s Guide; US Dept. of Commerce Washington, DC, USA/National Oceanic and Atmospheric Administration/National Environmental Satellite Data and Information Service: Suitland, MD, USA, 2000. [Google Scholar]
- Laviola, S.; Levizzani, V. Observing precipitation by means of water vapor absorption lines: A first check of the retrieval capabilities of the 183-wsl rain retrieval method. Italian J. Remote Sens. 2009, 41, 39–49. [Google Scholar] [CrossRef]
- Laviola, S.; Levizzani, V. The 183-wsl fast rain rate retrieval algorithm. Part I: Retrieval design. Atmos. Res. 2011, 99, 443–461. [Google Scholar] [CrossRef]
- John, V.O.; Holl, G.; Atkinson, N.; Buehler, S.A. Monitoring scan asymmetry of microwave humidity sounding channels using simultaneous all angle collocations (saacs). J. Geophys. Res.: Atmos. 2013, 118, 1536–1545. [Google Scholar] [CrossRef]
- Surussawadee, C.; Staelin, D.H. Global precipitation retrievals using the noaa amsu millimeter-wave channels: Comparisons with rain gauges. J. Appl. Meteorol. Climatol. 2010, 49, 124–135. [Google Scholar] [CrossRef]
- Greenwald, T.J.; Christopher, S.A. Effect of cold clouds on satellite measurements near 183 GHz. J. Geophys. Res.: Atmos. 2002. [Google Scholar] [CrossRef]
- Funatsu, B.M.; Claud, C.; Chaboureau, J.-P. Potential of advanced microwave sounding unit to identify precipitating systems and associated upper-level features in the mediterranean region: Case studies. J. Geophys. Res.: Atmos. 2007. [Google Scholar] [CrossRef]
- Hong, G.; Heygster, G.; Miao, J.; Kunzi, K. Detection of tropical deep convective clouds from amsu-b water vapor channels measurements. J. Geophys. Res.: Atmos. 2005. [Google Scholar] [CrossRef]
- Delrieu, G.; Ducrocq, V.; Gaume, E.; Nicol, J.; Payrastre, O.; Yates, E.; Kirstetter, P.E.; Andrieu, H.; Ayral, P.A.; Bouvier, C.; et al. The catastrophic flash-flood event of 8–9 September 2002 in the gard region, france: A first case study for the cevennes-vivarais mediterranean hydrometeorological observatory. J. Hydrometeorol. 2005, 6, 34–52. [Google Scholar] [CrossRef]
- Buehler, S.A.; John, V.O. A simple method to relate microwave radiances to upper tropospheric humidity. J. Geophys. Res.: Atmos. 2005. [Google Scholar] [CrossRef]
- Funatsu, B.M.; Claud, C.; Chaboureau, J.-P. Comparison between the large-scale environments of moderate and intense precipitating systems in the mediterranean region. Mon. Weather Rev. 2009, 137, 3933–3959. [Google Scholar] [CrossRef]
- Liu, G.; Seo, E.-K. Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach. J. Geophys. Res.: Atmos. 2013, 118, 1376–1387. [Google Scholar] [CrossRef]
- Bennartz, R.; Petty, G.W. The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteorol. 2001, 40, 345–364. [Google Scholar] [CrossRef]
- Lima, W.F.A.; Machado, L.A.T.; Morales, C.A.; Viltard, N. Rainfall sensitivity analyses for the hsb sounder: An amazon case study. Int. J. Remote Sens. 2007, 28, 3520–3545. [Google Scholar]
- Andersson, A.; Fennig, K.; Klepp, C.; Bakan, S.; Grassl, H.; Schulz, J. The hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3. Earth Syst. Sci. Data 2010, 2, 215–234. [Google Scholar] [CrossRef]
- Fennig, K.; Andersson, A.; Bakan, S.; Klepp, C.-P.; Schröder, M. Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS 3.2—Monthly Means/6-Hourly Composites; Satellite Application Facility on Climate Monitoring: Offenbach, Germany, 2012. [Google Scholar]
- Andersson, A.; Klepp, C.; Fennig, K.; Bakan, S.; Graßl, H.; Schulz, J. Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteorol. Climatol. 2011, 50, 379–398. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The erainterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Bechtold, P.; Chaboureau, J.-P.; Beljaars, A.; Betts, A.K.; Miller, M.; Köhler, M.; Redelsperger, J.-L. The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. R. Meteorol. Soc. 2004, 130, 3119–3137. [Google Scholar] [CrossRef]
- Dubois, C.; Somot, S.; Calmanti, S.; Carillo, A.; Déqué, M.; Dell’Aquilla, A.; Elizalde, A.; Gualdi, S.; Jacob, D.; L’Hévéder, B.; et al. Future projections of the surface heat and water budgets of the mediterranean sea in an ensemble of coupled atmosphere–ocean regional climate models. Clim. Dyn. 2012, 39, 1859–1884. [Google Scholar] [CrossRef]
- Melani, S.; Pasi, F.; Gozzini, B.; Ortolani, A. A four year (2007–2010) analysis of long-lasting deep convective systems in the mediterranean basin. Atmos. Res. 2013, 123, 151–166. [Google Scholar] [CrossRef]
- Levizzani, V.; Pinelli, F.; Pasqui, M.; Melani, S.; Laing, A.G.; Carbone, R.E. 10-year climatology of warm-season cloud patterns over europe and the mediterranean from meteosat ir observations. Atmos. Res. 2010, 97, 555–576. [Google Scholar] [CrossRef]
- Zampieri, M.; Giorgi, F.; Lionello, P.; Nikulin, G. Regional climate change in the northern adriatic. Phys. Chemist. Earth 2012, 40–41, 32–46. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Mehta, A.V.; Yang, S. Precipitation climatology over mediterranean basin from ten years of trmm measurements. Adv. Geosci. 2008, 17, 87–91. [Google Scholar] [CrossRef]
- Biasutti, M.; Yuter, S.E.; Burleyson, C.D.; Sobel, A.H. Very high resolution rainfall patterns measured by trmm precipitation radar: Seasonal and diurnal cycles. Clim. Dyn. 2012, 39, 239–258. [Google Scholar] [CrossRef]
- Chaboureau, J.-P.; Pantillon, F.; Lambert, D.; Richard, E.; Claud, C. Tropical transition of a mediterranean storm by jet crossing. Quart. J. R. Meteorol. Soc. 2012, 138, 596–611. [Google Scholar] [CrossRef]
- Flocas, H.A.; Simmonds, I.; Kouroutzoglou, J.; Keay, K.; Hatsali, M. Asimakopoulos, On cyclonic tracks over the eastern mediterranean. J. Clim. 2010, 23, 5243–5257. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongracz, R.; Pattanyus-Abraham, M. Analyzing the genesis, intensity and tracks of western mediterranean cyclones. Theor. Appl. Climatol. 2009, 96, 133–144. [Google Scholar] [CrossRef]
- Campins, J.; Genoves, A.; Jansa, A.; Guijarro, J.A.; Ramis, C. A catalogue and a classification of surface cyclones for the western mediterranean. Int. J. Climatol. 2000, 20, 969–984. [Google Scholar] [CrossRef]
- Claud, C.; Alhammoud, B.; Funatsu, B.M.; Chaboureau, J.-P. Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazard. Earth Syst. Sci. 2010, 10, 2199–2213. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Climatol. 2013, 33, 1–14. [Google Scholar] [CrossRef]
- Xoplaki, E.; Gonzalez-Rouco, J.F.; Luterbacher, J.; Wanner, H. Wet season mediterranean precipitation variability: Influence of large-scale dynamics and trends. Clim. Dyn. 2004, 23, 63–78. [Google Scholar]
- Romanou, A.; Tselioudis, G.; Zerefos, C.S.; Clayson, C.A.; Curry, J.A.; Andersson, A. Evaporation–precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J. Clim. 2010, 23, 5268–5287. [Google Scholar] [CrossRef]
- Kidd, C.; Bauer, P.; Turk, J.; Huffman, G.J.; Joyce, R.; Hsu, K.-L.; Braithwaite, D. Intercomparison of high-resolution precipitation products over Northwest Europe. J. Hydrometeorol. 2012, 13, 67–83. [Google Scholar] [CrossRef]
- Lionello, P.; Bhend, J.; Buzzi, A.; Della-Marta, P.M.; Krichak, S.O.; Jansa, A.; Maheras, P.; Sanna, A.; Trigo, I.F.; Trigo, R. Cyclones in the Mediterranean Region: Climatology and Effects on the Environment. In Mediterranean Climate Variability; Elsevier: Amsterdam, The Netherlands, 2006; pp. 325–372. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Alhammoud, B.; Claud, C.; Funatsu, B.M.; Béranger, K.; Chaboureau, J.-P. Patterns of Precipitation and Convection Occurrence over the Mediterranean Basin Derived from a Decade of Microwave Satellite Observations. Atmosphere 2014, 5, 370-398. https://doi.org/10.3390/atmos5020370
Alhammoud B, Claud C, Funatsu BM, Béranger K, Chaboureau J-P. Patterns of Precipitation and Convection Occurrence over the Mediterranean Basin Derived from a Decade of Microwave Satellite Observations. Atmosphere. 2014; 5(2):370-398. https://doi.org/10.3390/atmos5020370
Chicago/Turabian StyleAlhammoud, Bahjat, Chantal Claud, Beatriz M. Funatsu, Karine Béranger, and Jean-Pierre Chaboureau. 2014. "Patterns of Precipitation and Convection Occurrence over the Mediterranean Basin Derived from a Decade of Microwave Satellite Observations" Atmosphere 5, no. 2: 370-398. https://doi.org/10.3390/atmos5020370