Extreme Value Analysis of NOx Air Pollution in the Winter Seaport of Varna
<p>Varna seaports (A-Summer and B-Winter seaports), developed by authors based on Google My Maps, <a href="https://www.google.com/intl/en-GB_ALL/permissions/geoguidelines/" target="_blank">https://www.google.com/intl/en-GB_ALL/permissions/geoguidelines/</a>, accessed on 20 October 2022.</p> "> Figure 2
<p>Types (<b>left</b>) and DW (<b>right</b>) of queuing ships.</p> "> Figure 3
<p>Age (<b>left</b>) and length (<b>right</b>) of queuing ships.</p> "> Figure 4
<p>Average arriving ships (<b>left</b>) and installed engine power (<b>right</b>).</p> "> Figure 5
<p>Average queuing time (<b>left</b>) and wind speed (<b>right</b>).</p> "> Figure 6
<p>Average wind direction (<b>left</b>) and weather stability (<b>right</b>).</p> "> Figure 7
<p>Weibull descriptors of arriving ships (<b>left</b>) and installed engine power (<b>right</b>).</p> "> Figure 8
<p>Weibull descriptors of queuing time (<b>left</b>) and wind speed (<b>right</b>).</p> "> Figure 9
<p>Weibull descriptors of weather stability.</p> "> Figure 10
<p>Return period of arriving ships (<b>left</b>) and installed engine power (<b>right</b>).</p> "> Figure 11
<p>Return period of queuing time (<b>left</b>) and wind speed (<b>right</b>).</p> "> Figure 12
<p>Return period of insolation.</p> "> Figure 13
<p>Monte Carlo air pollution generation for <span class="html-italic">x</span> = 500 m, <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>O</mi> <mi>x</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 14
<p>Weibull descriptors and lower and upper confidence level of air pollution concentration, <span class="html-italic">x</span> = 250 m (<b>left</b>) and <span class="html-italic">x</span> = 500 m (<b>right</b>), <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>O</mi> <mi>x</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 15
<p>Weibull descriptors and lower and upper confidence level of air pollution concentration, <span class="html-italic">x</span> = 750 m (<b>left</b>) and <span class="html-italic">x</span> = 1000 m (<b>right</b>), <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>O</mi> <mi>x</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 16
<p>Weibull descriptors and lower and upper confidence level of air pollution concentration, <span class="html-italic">x</span> = 1500 m (<b>left</b>) and <span class="html-italic">x</span> = 2000 m (<b>right</b>), <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>O</mi> <mi>x</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 17
<p>Air pollution concentration return value and period, <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>O</mi> <mi>x</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 18
<p>Probability of exceedance of the limit value of 25 μg/m<sup>3</sup> air pollution concentration of <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>O</mi> <mi>x</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 19
<p>Risk of <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>O</mi> <mi>x</mi> </msub> </mrow> </semantics></math> air pollution as a function of wind direction, conditional on distancing, in a one-year return period.</p> "> Figure 20
<p>Risk of <math display="inline"><semantics> <mrow> <mi>N</mi> <msub> <mi>O</mi> <mi>x</mi> </msub> </mrow> </semantics></math> air pollution, projected to the seaport map (<b>left</b>) as a function of distance (<b>right</b>), conditional to wind direction, in a one-year return period.</p> ">
Abstract
:1. Introduction
2. Port, Weather, and Ship Descriptors
3. Extreme Value Analysis
4. Gas Emissions and Air Pollution
5. Air Pollution Dispersion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barberi, S.; Sambito, M.; Neduzha, L.; Severino, A. Pollutant Emissions in Ports: A Comprehensive Review. Infrastructures 2021, 6, 114. [Google Scholar] [CrossRef]
- Zanne, M.; Twrdy, E. The Economic Analysis of Air Pollution Mitigation Measures in Smaller Ports. REDS 2021, 33, 145–152. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, L.; Shu, Y.; Zhu, W. Evaluation model and management strategy for reducing pollution caused by ship collision in coastal waters. Ocean Coast. Manag. 2021, 203, 105446. [Google Scholar] [CrossRef]
- Zhu, S.; Sun, J.; Liu, Y.; Lu, M.; Liu, X. The Air Quality Index Trend Forecasting based on Improved Error Correction Model and Data Preprocessing for 17 Port Cities in China. Chemosphere 2020, 252, 126474. [Google Scholar] [CrossRef]
- Gobbi, G.P.; Di Liberto, L.; Barnaba, F. Impact of Port Emissions on EU-regulated and Non-regulated Air Quality Indicators: The Case of Civitavecchia (Italy). Sci. Total. Env. 2020, 719, 134984. [Google Scholar] [CrossRef]
- EPA. Nitrogen Oxides (NOx), Why and How They Are Controlled; EPA: Washington, DC, USA, 1999. [Google Scholar]
- Mishra, B. Shipping Industry and the NOx Emissions. In Sea News; 2019; Available online: https://seanews.co.uk/environment/shipping-industry-and-the-nox-emissions/ (accessed on 29 October 2022).
- WHO. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 21 October 2022).
- IMO. Nitrogen Oxides (NOx). Available online: https://www.imo.org/en/OurWork/Environment/Pages/Nitrogen-oxides-(NOx)-%E2%80%93-Regulation-13.aspx (accessed on 25 October 2022).
- Sorte, S.; Rodrigues, V.; Borrego, C.; Monteiro, A. Impact of harbor activities on local air quality: A review. Environ. Pollut. 2020, 257, 113542. [Google Scholar] [CrossRef]
- Lonati, G.; Cernuschi, S.; Sidi, S. Air quality impact assessment of at-berth ship emissions: Case-study for the project of a new freight port. Sci. Total Environ. 2010, 409, 192–200. [Google Scholar] [CrossRef]
- Lu, G.; Brook, J.R.; Alfarra, M.R.; Anlauf, K.; Leaitch, W.R.; Sharma, S.; Wang, D.; Worsnop, D.R.; Phinney, L. Identification and characterization of inland ship plumes over Vancouver. Atmos. Environ. 2006, 40, 2767–2782. [Google Scholar] [CrossRef]
- Merk, O. Shipping Emissions in Ports; OECD: Paris, France, 2014. [Google Scholar]
- Ramacher, M.O.P.; Karl, M.; Bieser, J.; Jalkanen, J.-P.; Johansson, L. Urban population exposure to NOx emissions from local shipping in three Baltic Sea harbour cities—A generic approach. Atmos. Chem. Phys. 2019, 19, 9153–9179. [Google Scholar] [CrossRef] [Green Version]
- Ramacher, M.O.P.; Matthias, V.; Aulinger, A.; Quante, M.; Bieser, J.; Karl, M. Contributions of traffic and shipping emissions to city-scale NOx and PM2.5 exposure in Hamburg. Atmos. Environ. 2020, 237, 117674. [Google Scholar] [CrossRef]
- Ledoux, F.; Roche, C.; Cazier, F.; Beaugard, C.; Courcot, D. Influence of ship emissions on NOx, SO2, O3 and PM concentrations in a North-Sea harbor in France. J. Environ. Sci. 2018, 71, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Bacalja, B.; Krčum, M.; Slišković, M. A Line Ship Emissions while Manoeuvring and Hotelling—A Case Study of Port Split. J. Mar. Sci. Eng. 2020, 8, 953. [Google Scholar] [CrossRef]
- Winnes, H.; Fridell, E. Emissions of NOx and particles from manoeuvring ships. Transp. Res. Part D Transp. Environ. 2010, 15, 204–211. [Google Scholar] [CrossRef]
- Toscano, D.; Murena, F. Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic. Atmos. Environ. X 2019, 4, 100050. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Q.; Xu, Z.; Chen, J.; Wang, Q. Impact of emission control areas on atmospheric pollutant emissions from major ocean-going ships entering the Shanghai Port, China. Mar. Pollut Bull. 2019, 142, 525–532. [Google Scholar] [CrossRef]
- Paulauskas, V.; Filina-Dawidowicz, L.; Paulauskas, D. The Method to Decrease Emissions from Ships in Port Areas. Sustainability 2020, 12, 4374. [Google Scholar] [CrossRef]
- Nguyen, D.-H.; Lin, C.; Cheruiyot, N.K.; Hsu, J.-Y.; Cho, M.-Y.; Hsu, S.-H.; Yeh, C.-K. Reduction of NOx and SO2 Emissions by Shore Power Adoption. Aerosol Air Qual. Res. 2021, 21, 210100. [Google Scholar] [CrossRef]
- Roberts, E.M. Review of Statistics of Extreme Values with Applications to Air Quality Data Part I. Review. J. Air Pollut. Control Assoc. 1979, 29, 632–637. [Google Scholar] [CrossRef] [Green Version]
- Roberts, E.M. Review of Statistics of Extreme Values with Applications to Air Quality Data. J. Air Pollut. Control Assoc. 1979, 29, 733–740. [Google Scholar] [CrossRef]
- Abdulali, B.A.A.; Abu Bakar, M.A.; Ibrahim, K.; Ariff, N.B.M.; De Gregorio, A. Extreme Value Distributions: An Overview of Estimation and Simulation. J. Probab. Stat. 2022, 2022, 5449751. [Google Scholar] [CrossRef]
- Kiichenhoff, H.; Thamerus, M. Extreme value analysis of Munich air pollution data. Environ. Ecol. Stat. 1996, 3, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Gouldsbrough, L.; Hossaini, R.; Eastoe, E.; Young, P.J. A temperature dependent extreme value analysis of UK surface ozone, 1980–2019. Atmos. Environ. 2022, 273, 118975. [Google Scholar] [CrossRef]
- Martins, L.D.; Wikuats, C.F.H.; Capucim, M.N.; de Almeida, D.S.; da Costa, S.C.; Albuquerque, T.; Barreto Carvalho, V.S.; de Freitas, E.D.; de Fátima Andrade, M.; Martins, J.A. Extreme value analysis of air pollution data and their comparison between two large urban regions of South America. Weather Clim. Extrem. 2017, 18, 44–54. [Google Scholar] [CrossRef]
- Ercelebi, S.G.; Toros, H. Extreme Value Analysis of Istanbul Air Pollution Data. CLEAN Soil Air Water 2009, 37, 122–131. [Google Scholar] [CrossRef]
- Hasfazilah, A.; Yahaya, A.S.; Ramli, A. The Malaysia PM10 analysis using extreme value. J. Eng. Sci. Technol. 2015, 10, 1560–1574. [Google Scholar]
- Kuntalee, C.; Kamonrat, S. Extreme Value Analysis of PM10 Concentration in Thailand. Thail. Stat. 2021, 19, 642–658. [Google Scholar]
- Su, F.C.; Jia, C.; Batterman, S. Extreme value analyses of VOC exposures and risks: A comparison of RIOPA and NHANES datasets. Atmos Environ. 2012, 62, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.-K.; Chen, Y.-S.; Chen, Y.-T. Utilization of Vessel Automatic Identification System (AIS) to Estimate the Emission of Air Pollutant from Merchant Vessels in the Port of Kaohsiung. Aerosol Air Qual. Res. 2019, 19, 2341–2351. [Google Scholar] [CrossRef]
- Gan, L.; Che, W.; Zhou, M.; Zhou, C.; Zheng, Y.; Zhang, L.; Rangel-Buitrago, N.; Song, L. Ship exhaust emission estimation and analysis using Automatic Identification System data: The west area of Shenzhen port, China, as a case study. Ocean Coast. Manag. 2022, 226, 106245. [Google Scholar] [CrossRef]
- Anurag, B.; Debopam, A. Extreme Value Analysis of Urban Air Quality using Internet of Things. Int. J. Next-Gener. Comput. 2019, 10, 19–35. [Google Scholar]
- Riess, T.C.V.W.; Boersma, K.F.; Van Vliet, J.; Peters, W.; Sneep, M.; Eskes, H.; Van Geffen, J. Improved monitoring of shipping NO2 with TROPOMI: Decreasing NOx emissions in European seas during the COVID-19 pandemic. Atmos. Meas. Tech. 2022, 15, 1415–1438. [Google Scholar] [CrossRef]
- Van Roy, W.; Scheldeman, K.; Van Roozendael, B.; Van Nieuwenhove, A.; Schallier, R.; Vigin, L.; Maes, F. Airborne monitoring of compliance to NOx emission regulations from ocean-going vessels in the Belgian North Sea. Atmos. Pollut. Res. 2022, 13, 101518. [Google Scholar] [CrossRef]
- Milazzo, M.F.; Ancione, G.; Lisi, R. Emissions of volatile organic compounds during the ship-loading of petroleum products: Dispersion modelling and environmental concerns. J. Environ. Manag. 2017, 204, 637–650. [Google Scholar] [CrossRef]
- Gibson, M.D.; Kundu, S.; Satish, M. Dispersion model evaluation of PM 2. 5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos. Pollut. Res. 2013, 4, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Sutton, O.G. A theory of eddy diffusion in the atmosphere. Proc. R. Soc. A 1932, 135, 143–165. [Google Scholar]
- Pasquill, F. The Estimation of the Dispersion of Windborne Material. Meteorol. Mag. 1961, 90, 33–49. [Google Scholar]
- Henderson-Sellers, B.; Allen, S.E. Verification of the plume rise/dispersion model U.S.P.R.: Plume rise for single stack emissions. Ecol. Modeling 1985, 30, 209–227. [Google Scholar] [CrossRef]
- Garbatov, Y.; Georgiev, P. Stochastic Air Quality Dispersion Model for Defining Queuing Ships Seaport Location. J. Mar. Sci. Eng. 2022, 10, 140. [Google Scholar] [CrossRef]
- Garbatov, Y.; Georgiev, P. Short sea shipping greenhouse gas emissions and dispersion. In Trends in Maritime Technology and Engineering; Guedes Soares, C., Santos, T., Eds.; Taylor and Frances: London, UK, 2022; Volume 2, pp. 35–43. [Google Scholar]
- Garbatov, Y.; Georgiev, P. Air Pollution and Economic Impact from Ships Operating in the Port of Varna. Atmosphere 2022, 13, 1526. [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting Forms of the Frequency Distribution of the Largest or Smallest Members of a Sample. Proc. Camb. Philos. Soc. 1928, 24, 180–190. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 1955, 81, 145–158. [Google Scholar] [CrossRef]
- Whall, C.; Cooper, D.; Archer, K.; Twigger, K.; Thruston, N.; Ockwell, D.; McIntyre, A.; Ritchie, A. Quantification of Emissions from Ships Associated with Ship Movements between Ports in the European Community; Entec UK Limited: London, UK, 2002. [Google Scholar]
- Ramalho, M.M.; Santos, T.A. Numerical Modeling of Air Pollutants and Greenhouse Gases Emissions in Intermodal Transport Chains. J. Mar. Sci. Eng. 2021, 9, 679. [Google Scholar] [CrossRef]
- Hammersley, J.; Handscomb, D. Monte Carlo Methods; Methuen: London, UK, 1975. [Google Scholar]
- EEA. Air Quality in Europe; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- EPA. General Information of CATC Products. Available online: https://www.epa.gov/catc/clean-air-technology-center-products (accessed on 1 October 2022).
- Van Essen, H.; van Wijngaarden, L.; Schroten, A.; Sutter, D.; Bieler, C.; Maffii, S.; Brambilla, M.; Fiorello, D.; Fermi, F.; Parolin, R.; et al. Handbook on the External Costs of Transport; European Commission: Brussels, Belgium, 2019. [Google Scholar]
Tier | Ship Construction Date On or After | Total Weighted Cycle Emission Limit (g/kWh) n = Engine’s Rated Speed (rpm) | ||
---|---|---|---|---|
n < 130 | n = 130–1999 | n ≥ 2000 | ||
I | 1 January 2000 | 17.0 | 45.n(−0.2) | 9.8 |
II | 1 January 2011 | 14.4 | 44.n(−0.23) | 7.7 |
III | 1 January 2016 | 3.4 | 9.n(−0.2) | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbatov, Y.; Georgiev, P.; Fuchedzhieva, I. Extreme Value Analysis of NOx Air Pollution in the Winter Seaport of Varna. Atmosphere 2022, 13, 1921. https://doi.org/10.3390/atmos13111921
Garbatov Y, Georgiev P, Fuchedzhieva I. Extreme Value Analysis of NOx Air Pollution in the Winter Seaport of Varna. Atmosphere. 2022; 13(11):1921. https://doi.org/10.3390/atmos13111921
Chicago/Turabian StyleGarbatov, Yordan, Petar Georgiev, and Ivet Fuchedzhieva. 2022. "Extreme Value Analysis of NOx Air Pollution in the Winter Seaport of Varna" Atmosphere 13, no. 11: 1921. https://doi.org/10.3390/atmos13111921
APA StyleGarbatov, Y., Georgiev, P., & Fuchedzhieva, I. (2022). Extreme Value Analysis of NOx Air Pollution in the Winter Seaport of Varna. Atmosphere, 13(11), 1921. https://doi.org/10.3390/atmos13111921