Circulation Specific Precipitation Patterns over Svalbard and Projected Future Changes
<p>Orography in the intermediate (<b>left</b>) and high-resolution (<b>right</b>) regional climate model domain. The location of Svalbard Airport is indicated by a circle in the high-resolution domain.</p> "> Figure 2
<p>Annual and seasonal mean sea level pressure from ERA-Interim (1979–2008, as contour lines) and the current climate MPI-ESM-LR simulation (1971–2000, in colours). The numbered points and dashed box denote the grid points and bounding box used for the weather type classification, respectively. The labels in the top left corners refer to the annual mean (ANN) or the months of the specific season of the year.</p> "> Figure 3
<p>Mean monthly occurrence of weather types in ERA-Interim (1979–2008, <b>left</b>) and the MPI-ESM-LR current climate simulation (1971–2000, <b>right</b>), respectively. The dots mark statistically significant differences.</p> "> Figure 4
<p>Annual mean sea level pressure from MPI-ESM-LR (1971–2000, in colours) and ERA-Interim (1979–2008, as contour lines) for the current climate (top left) and the single weather types. The bold grey line shows the 1010 hPa level in the ERA-Interim fields and the dashed box the area used for the weather type classification. The labels in the top left corners refer to the weather type.</p> "> Figure 5
<p>Annual mean precipitation (top left) from the MPI-ESM-LR driven COSMO-CLM current climate (1971–2000) simulation and its decomposition into single weather types over Svalbard. For the annual mean, the average daily precipitation over the whole land area is shown in the bottom right corner. For the different weather types, the contribution to the total precipitation is given in the bottom right corner, while the number in the top left corresponds to the number of occurrences per year.</p> "> Figure 6
<p>(<b>Left</b>): Difference between the annual and seasonal mean precipitation from the MPI-ESM-LR and the ERA-Interim driven COSMO-CLM simulation for the current climate (1971–2000 and 2004–2017, respectively). Statistically significant differences are outlined. (<b>Center</b>): The part resulting from differences between the weather type frequencies in MPI-ESM-LR and ERA-Interim. (<b>Right</b>): The part resulting from large-scale condition differences. The labels in the top left corners refer to the annual mean (ANN) or the months of the specific season of the year.</p> "> Figure 7
<p>Projected changes from 1971–2000 to 2071–2100 in the mean annual and seasonal sea level pressure in the MPI-ESM-LR climate simulation. Statistically significant changes are marked with dots. The labels in the top left corners refer to the annual mean (ANN) or the months of the specific season of the year.</p> "> Figure 8
<p>Mean monthly changes in the occurrence of weather types in the MPI-ESM-LR RCP8.5 projection (2071–2100) compared to the historical simulation (1971–2000). The dots mark statistically significant changes.</p> "> Figure 9
<p>Annual mean sea level pressure from the future (2071–2100, in colours) and current (1971–2000, as contour lines) MPI-ESM-LR simulation (top left) and the decomposition for single weather types. The bold grey line shows the 1010 hPa level in the current climate and the dashed box the area used for the weather type classification. In the top left corner, the number of events per year in the future and current (in parentheses) simulation is given.</p> "> Figure 10
<p>Annual mean precipitation change from 1971–2000 to 2071–2100 (top left) and its decomposition into single weather types. Statistically significant changes are outlined. For the annual mean, the number in the bottom right corner gives the mean increase. For the weather types, the numbers give the contributions to the change and the contribution to the future mean precipitation (in parentheses), respectively. In the top left corner, the frequencies (number of days per year) for the future and current climate (in parentheses) are given.</p> "> Figure 11
<p>Mean precipitation changes (from 1971–2000 to 2071–2100) for the weather type Nc in winter (<b>left</b>) and SWc in summer (<b>right</b>). Statistically significant changes are outlined.</p> "> Figure 12
<p>Changes in precipitation (from 1971–2000 to 2071–2100) decomposed into the contributions from frequency and large-scale condition changes. (<b>Left</b>): Changes in the annual (top) and seasonal mean precipitation climate projections over Svalbard. Statistically significant changes are outlined. (<b>Center</b>): Precipitation changes resulting from frequency changes only. (<b>Right</b>): Differences resulting from large-scale condition changes only.</p> "> Figure 13
<p>Distributions for current (1971–2000, orange) and future (2071–2100, brown) mean daily precipitation values over Svalbard associated with the different weather types. The crosses denote the contribution to the total precipitation (in %) and the circles the mean precipitation (in mm/day) for each weather type. The horizontal line in the box indicates the median, while bottom and top edges indicate the first and third quartile, respectively. Whiskers extend to the most extreme value which is no more than 1.5 times the interquartile range from the box. Data points outside the whisker range are plotted as outliers. The width of the box indicates the number of events.</p> "> Figure 14
<p>Precipitable water (colours) and sea level pressure (contours) for the top three precipitation events in the 1971–2000 (<b>left</b>) and 2071–2100 (<b>right</b>) climate simulations. The labels in the top left corner denote the corresponding weather type.</p> ">
Abstract
:1. Introduction
- How well are typical weather types around Svalbard represented in the modelling framework for the current climate?
- What is the contribution from the different weather types to precipitation and its spatial distribution on Svalbard?
- What may the atmospheric conditions and the frequencies of specific weather types look like in a future climate?
- Which part of projected precipitation changes can be attributed to changes in frequencies of weather types and which part to changes in large-scale conditions?
2. Data and Methods
2.1. High-Resolution Climate Model and Simulations
2.2. Classification of Atmospheric Circulation
2.3. Contribution from Frequencies and Large-Scale Conditions
2.4. Test for Statistical Significance
3. Results
3.1. Simulation of the Current Climate
3.1.1. Large-Scale Sea Level Pressure
3.1.2. Weather Type Classification
3.1.3. Local Precipitation
3.1.4. Influence of the Driving Model
3.2. Future Climate Projections
3.2.1. Large-Scale Sea Level Pressure
3.2.2. Local Precipitation
3.2.3. Severe Weather Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hanssen-Bauer, I.; Førland, E.J.; Hisdal, H.; Mayer, S.; Sandø, A.B.; Sorteberg, A. Climate in Svalbard 2100—A knowledge base for climate adaptation. NCCS Rep. 2019, 1, 208. [Google Scholar] [CrossRef]
- Larsson, S. Geomorphological Effects on the Slopes of Longyear Valley, Spitsbergen, After a Heavy Rainstorm in July 1972. Geogr. Ann. Ser. A Phys. Geogr. 1982, 64, 105–125. [Google Scholar] [CrossRef]
- Hansen, B.B.; Isaksen, K.; Benestad, R.E.; Kohler, J.; Pedersen, Å.Ø.; Loe, L.E.; Coulson, S.J.; Larsen, J.O.; Varpe, Ø. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9, 114021. [Google Scholar] [CrossRef]
- Dobler, A.; Førland, E.J.; Isaksen, K. Present and future heavy rainfall statistics for Svalbard—Background-report for Climate in Svalbard 2100. NCCS Rep. 2019, 3, 29. [Google Scholar]
- Serreze, M.C.; Crawford, A.D.; Barrett, A.P. Extreme daily precipitation events at Spitsbergen, an Arctic Island. Int. J. Climatol. 2015, 35, 4574–4588. [Google Scholar] [CrossRef]
- Osuch, M.; Wawrzyniak, T. Climate projections in the Hornsund area, Southern Spitsbergen. Pol. Polar Res. 2016, 37, 379–402. [Google Scholar] [CrossRef] [Green Version]
- AMAP. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017. [Google Scholar]
- Kattsov, V.M.; Walsh, J.E.; Chapman, W.L.; Govorkova, V.A.; Pavlova, T.V.; Zhang, X. Simulation and Projection of Arctic Freshwater Budget Components by the IPCC AR4 Global Climate Models. J. Hydrometeorol. 2007, 8, 571–589. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Koumoutsaris, S.; Zahn, M.; Keenlyside, N. The changing atmospheric water cycle in Polar Regions in a warmer climate. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 907–920. [Google Scholar] [CrossRef] [Green Version]
- Bintanja, R.; Selten, F.M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 2014, 509, 479–482. [Google Scholar] [CrossRef]
- Hanssen-Bauer, I.; Førland, E. Long-term trends in precipitation and temperature in the Norwegian Arctic: Can they be explained by changes in atmospheric circulation patterns? Clim. Res. 1998, 10, 143–153. [Google Scholar] [CrossRef]
- Isaksen, K.; Nordli, Ø.; Førland, E.J.; Łupikasza, E.; Eastwood, S.; Niedźwiedź, T. Recent warming on Spitsbergen—Influence of atmospheric circulation and sea ice cover. J. Geophys. Res. Atmos. 2016, 121, 11–913. [Google Scholar] [CrossRef]
- Dahlke, S.; Maturilli, M. Contribution of Atmospheric Advection to the Amplified Winter Warming in the Arctic North Atlantic Region. Adv. Meteorol. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Gjelten, H.M.; Nordli, Ø.; Isaksen, K.; Førland, E.J.; Sviashchennikov, P.N.; Wyszynski, P.; Prokhorova, U.V.; Przybylak, R.; Ivanov, B.V.; Urazgildeeva, A.V. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Res. 2016, 35, 29878. [Google Scholar] [CrossRef]
- Nordli, Ø.; Przybylak, R.; Ogilvie, A.E.; Isaksen, K. Long-term temperature trends and variability on Spitsbergen: The extended Svalbard Airport temperature series, 1898–2012. Polar Res. 2014, 33, 21349. [Google Scholar] [CrossRef] [Green Version]
- Osuch, M.; Wawrzyniak, T. Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen. Int. J. Climatol. 2016, 37, 3082–3097. [Google Scholar] [CrossRef]
- Dahlke, S.; Hughes, N.E.; Wagner, P.M.; Gerland, S.; Wawrzyniak, T.; Ivanov, B.; Maturilli, M. The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover. Int. J. Climatol. 2020, 40, 5246–5265. [Google Scholar] [CrossRef]
- Lind, P.; Belušić, D.; Christensen, O.B.; Dobler, A.; Kjellström, E.; Landgren, O.; Lindstedt, D.; Matte, D.; Pedersen, R.A.; Toivonen, E.; et al. Benefits and added value of convection-permitting climate modeling over Fenno-Scandinavia. Clim. Dyn. 2020, 55, 1893–1912. [Google Scholar] [CrossRef]
- Pontoppidan, M.; Reuder, J.; Mayer, S.; Kolstad, E.W. Downscaling an intense precipitation event in complex terrain: The importance of high grid resolution. Tellus A Dyn. Meteorol. Oceanogr. 2017, 69, 1271561. [Google Scholar] [CrossRef] [Green Version]
- Prein, A.F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; et al. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys. 2015, 53, 323–361. [Google Scholar] [CrossRef] [Green Version]
- Früh, B.; Will, A.; Castro, C.L. Editorial: Recent developments in Regional Climate Modelling with COSMO-CLM. Meteorol. Z. 2016, 25, 119–120. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2013, 14, 563–578. [Google Scholar] [CrossRef]
- Kotlarski, S.; Keuler, K.; Christensen, O.B.; Colette, A.; Déqué, M.; Gobiet, A.; Goergen, K.; Jacob, D.; Lüthi, D.; van Meijgaard, E.; et al. Regional climate modeling on European scales: A joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci. Model Dev. 2014, 7, 1297–1333. [Google Scholar] [CrossRef] [Green Version]
- Kessler, E. On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res. 1995, 38, 109–145. [Google Scholar] [CrossRef]
- Ritter, B.; Geleyn, J.F. A Comprehensive Radiation Scheme for Numerical Weather Prediction Models with Potential Applications in Climate Simulations. Mon. Weather. Rev. 1992, 120, 303–325. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Brisson, E.; Demuzere, M.; van Lipzig, N.P. Modelling strategies for performing convection-permitting climate simulations. Meteorol. Z. 2016, 25, 149–163. [Google Scholar] [CrossRef]
- Dobler, A. Convection permitting climate simulations for Svalbard—Background-report for Climate in Svalbard 2100. NCCS Rep. 2019, 2, 27. [Google Scholar]
- Jenkinson, A.; Collison, F. An initial climatology of gales over the North Sea. Synop. Climatol. Branch Memo. 1977, 62, 18. Available online: https://library.metoffice.gov.uk/Portal/Default/enGB/RecordView/Index/175564 (accessed on 18 December 2020).
- Jones, P.D.; Hulme, M.; Briffa, K.R. A comparison of Lamb circulation types with an objective classification scheme. Int. J. Climatol. 1993, 13, 655–663. [Google Scholar] [CrossRef]
- Lamb, H.H. British Isles weather types and a register of the daily sequence of circulation patterns 1861–1971. Geophys. Mem. 1972, 116, 1861–1971. [Google Scholar]
- Jones, P.D.; Harpham, C.; Briffa, K.R. Lamb weather types derived from reanalysis products. Int. J. Climatol. 2012, 33, 1129–1139. [Google Scholar] [CrossRef]
- Niedźwiedź, T. Climate and Climate Change at Hornsund, Svalbard; Marsz, A.A., Styszyńska, A., Eds.; Gdynia Maritime University: Gdyni, Poland, 2013. [Google Scholar]
- Huth, R.; Beck, C.; Philipp, A.; Demuzere, M.; Ustrnul, Z.; Cahynová, M.; Kyselý, J.; Tveito, O.E. Classifications of Atmospheric Circulation Patterns. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948, 19, 279–281. [Google Scholar] [CrossRef]
- Koenigk, T.; Berg, P.; Döscher, R. Arctic climate change in an ensemble of regional CORDEX simulations. Polar Res. 2015, 34, 24603. [Google Scholar] [CrossRef]
- Isaksen, K.; Førland, E.J.; Dobler, A.; Benestad, R.; Haugen, J.E.; Mezghani, A. Klimascenarioer for Longyearbyen-området, Svalbard. MET Nor. Rep. 2017, 14, 2017. [Google Scholar]
- Rinke, A.; Segger, B.; Crewell, S.; Maturilli, M.; Naakka, T.; Nygård, T.; Vihma, T.; Alshawaf, F.; Dick, G.; Wickert, J.; et al. Trends of Vertically Integrated Water Vapor over the Arctic during 1979–2016: Consistent Moistening All Over? J. Clim. 2019, 32, 6097–6116. [Google Scholar] [CrossRef]
- Carvalho, K.; Wang, S. Sea surface temperature variability in the Arctic Ocean and its marginal seas in a changing climate: Patterns and mechanisms. Glob. Planet. Chang. 2020, 193, 103265. [Google Scholar] [CrossRef]
- Gimeno-Sotelo, L.; Nieto, R.; Vázquez, M.; Gimeno, L. A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent. Earth Syst. Dyn. 2018, 9, 611–625. [Google Scholar] [CrossRef] [Green Version]
- Akperov, M.; Rinke, A.; Mokhov, I.I.; Semenov, V.A.; Parfenova, M.R.; Matthes, H.; Adakudlu, M.; Boberg, F.; Christensen, J.H.; Dembitskaya, M.A.; et al. Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Glob. Planet. Chang. 2019, 182, 103005. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobler, A.; Lutz, J.; Landgren, O.; Haugen, J.E. Circulation Specific Precipitation Patterns over Svalbard and Projected Future Changes. Atmosphere 2020, 11, 1378. https://doi.org/10.3390/atmos11121378
Dobler A, Lutz J, Landgren O, Haugen JE. Circulation Specific Precipitation Patterns over Svalbard and Projected Future Changes. Atmosphere. 2020; 11(12):1378. https://doi.org/10.3390/atmos11121378
Chicago/Turabian StyleDobler, Andreas, Julia Lutz, Oskar Landgren, and Jan Erik Haugen. 2020. "Circulation Specific Precipitation Patterns over Svalbard and Projected Future Changes" Atmosphere 11, no. 12: 1378. https://doi.org/10.3390/atmos11121378
APA StyleDobler, A., Lutz, J., Landgren, O., & Haugen, J. E. (2020). Circulation Specific Precipitation Patterns over Svalbard and Projected Future Changes. Atmosphere, 11(12), 1378. https://doi.org/10.3390/atmos11121378