Effects of Modified Surface Roughness Length over Shallow Waters in a Regional Model Simulation
<p>Sea-surface roughness length (cm) with respect to water depth (m) calculated using original formula (Equation (1), dashed); formula suggested by Jiménez and Dudhia (2018) [<a href="#B9-atmosphere-10-00818" class="html-bibr">9</a>] (Equation (2), gray), and a combination of both formulas using a weighting factor that depends on water depth (black solid). Friction velocity is assumed to be 0.3 m s<sup>−1</sup>.</p> "> Figure 2
<p>Model domains and ocean bathymetry (m, shaded).</p> "> Figure 3
<p>Sea-surface roughness length (cm) over shallow waters with a depth less than 100 m as a function of wind speed at 10 m in the (<b>a</b>) control (CTL) and (<b>b</b>) sea-surface roughness length considering water depth (Z0MOD) experiments.</p> "> Figure 4
<p>(<b>a</b>) Bathymetry (m) and wind speed at 10 m (m s<sup>-1</sup>) in the (<b>b</b>) final analysis (FNL) data, (<b>c</b>) ECMWF reanalysis (ERA5) data, (<b>d</b>) CTL experiment, (<b>e</b>) difference between the CTL experiment and the FNL data (CTL-FNL), (<b>f</b>) difference between the CTL experiment and the ERA5 data (CTL-ERA5), and (<b>g</b>) difference between the Z0MOD and CTL experiments (Z0MOD-CTL). The dashed box in (<b>g</b>) indicates the area where the wind speed is averaged for profile in Figure 6.</p> "> Figure 5
<p>Wind speed at 10 m (m s<sup>−1</sup>) on 10 July 2017 at observational points in the (<b>a</b>) CTL experiment, and the (<b>b</b>) surface observational (OBS) data; (<b>c</b>) difference between the CTL experiment and the OBS data (CTL-OBS); (<b>d</b>) difference between the Z0MOD and CTL experiments (Z0MOD-CTL).</p> "> Figure 6
<p>Wind speed profile averaged over the area indicated by dashed box in <a href="#atmosphere-10-00818-f004" class="html-fig">Figure 4</a>g in the CTL (blue solid line) and Z0MOD (red solid line) experiments and FNL (black solid line) and ERA5 (black dashed line) data.</p> "> Figure 7
<p>Horizontal wind vector and speed (shaded) at (<b>a</b>–<b>c</b>) 200 hPa and (<b>d</b>–<b>f</b>) 850 hPa in (<b>a</b>,<b>d</b>) the CTL experiment, (<b>b</b>,<b>e</b>) difference between the CTL experiment and FNL data (CTL–FNL), and (<b>c</b>,<b>f</b>) difference between the Z0MOD and CTL experiments (Z0MOD–CTL).</p> "> Figure 8
<p>Zonal wind at (<b>a</b>–<b>c</b>) 200 hPa, (<b>d</b>–<b>f</b>) 850 hPa, and (<b>g</b>–<b>i</b>) vertical difference between 200 hPa and 850 hPa (200 hPa–850 hPa) in the (<b>a</b>,<b>d</b>,<b>g</b>) CTL and (<b>b</b>,<b>e</b>,<b>h</b>) Z0MOD experiments, and (<b>c</b>,<b>f</b>,<b>i</b>) difference between the Z0MOD and CTL experiments (Z0MOD–CTL).</p> "> Figure 9
<p>Temperature at (<b>a</b>,<b>b</b>) 500 hPa, (<b>c</b>,<b>d</b>) 850 hPa, and (<b>e</b>,<b>h</b>) 2m in (left) the CTL experiment and (right) difference between the Z0MOD and CTL experiments (Z0MOD–CTL).4. Summary and Conclusions.</p> ">
Abstract
:1. Introduction
2. Experimental Design
2.1. Sea-Surface Roughness Length
2.2. Numerical Experiments
3. Results and Discussion
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hsu, S.A. A dynamics roughness equation and its application to wind stress determination at the air-sea interface. J. Phys. Oceanogr. 1974, 4, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.D.; Anderson, R.J.; Oost, W.A.; Kraan, C.; Maat, N.; de Cosmo, J.; Katsaros, K.B.; Davidson, K.L.; Bumke, K.; Hasse, L.; et al. Sea surface wind stress and drag coefficients: The HEXOS results. Bound. Layer Meteorol. 1992, 60, 109–142. [Google Scholar] [CrossRef] [Green Version]
- Johnson, H.K.; Højstrup, J.; Vested, H.J.; Larsen, S.E. On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr. 1998, 28, 1702–1716. [Google Scholar] [CrossRef]
- Taylor, P.K.; Yelland, M.J. The dependence of sea surface roughness on height and steepness of the waves. J. Phys. Oceanogr. 2001, 31, 572–590. [Google Scholar] [CrossRef] [Green Version]
- Charnock, H. Wind stress on a water surface. Q. J. R. Meteorol. Soc. 1955, 81, 639–640. [Google Scholar] [CrossRef]
- Donelan, M.A. Air-sea interaction. In Ocean Engineering Science; LeMehaute, B., Hanes, D.M., Eds.; John Wiley: New York, NY, USA, 1990; Volume 9, pp. 239–292. [Google Scholar]
- Hersbach, H. Sea-Surface Roughness and Drag Coefficient as Function of Neutral Wind Speed; ECMWF Technical Memorandum 630; ECMWF: Reading, UK, 2010; p. 6. [Google Scholar]
- Arya, S.P. Introduction to Micrometeorology, 1st ed.; Academic Press: San Diego, CA, USA, 1988; p. 303. [Google Scholar]
- Jiménez, P.A.; Dudhia, J. On the need to modify the sea surface roughness formulation over shallow waters. J. Appl. Meteorol. Climatol. 2018, 57, 1101–1110. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; NCAR Technical Note NCAR/TN-556+STR; Mesoscale and Microscale Meteorology (MMM) Division, NCAR: Boulder, CO, USA, 2019. [Google Scholar]
- Hong, S.-Y.; Dudhia, J.; Chen, S.-H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Pan, H.-L. Convective trigger function for a mass flux cumulus parameterization scheme. Mon. Weather Rev. 1998, 126, 2599–2620. [Google Scholar] [CrossRef]
- Han, J.-Y.; Hong, S.-Y.; Lim, K.-S.S.; Han, J. Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Weather Rev. 2016, 144, 2125–2135. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculation with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Thiébaux, J.; Rogers, E.; Wang, W.; Katz, B. A new high-resolution blended real-time global sea surface temperature analysis. Bull. Am. Meteorol. Soc. 2003, 84, 645–656. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Kanamitsu, M.; Hong, S.-Y.; Yoshimura, K.; Cayan, D.R.; Misra, V. A high-resolution ocean–atmosphere coupled downscaling of the present climate over California. Clim. Dyn. 2014, 42, 701–714. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Kwon, Y.C.; Kim, T.-H.; Kim, J.-E.E.; Choi, S.-J.; Kwon, I.-H.; Kim, J.; Lee, E.-H.; Park, R.-S.; Kim, D.-I. The Korean Integrated Model (KIM) system for global weather forecasting. Asia Pac. J. Atmos. Sci. 2008, 54, 267–292. [Google Scholar] [CrossRef]
- Kang, J.-H.; Chun, H.-W.; Lee, S.; Ha, J.-H.; Song, H.-J.; Kwon, I.-H.; Han, H.-J.; Jeong, H.-B.; Kwon, H.-N.; Kim, T.-H. Development of an observational Processing Package for Data Assimilation in KIAPS. Asia Pac. J. Atmos. Sci. 2008, 54, 303–318. [Google Scholar] [CrossRef]
- Nakanishi, M.; Ninno, H. An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound. Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-Y.; Hong, S.-Y.; Kwon, Y.C.; Lee, Y.H.; Kim, D.-E. Effects of Modified Surface Roughness Length over Shallow Waters in a Regional Model Simulation. Atmosphere 2019, 10, 818. https://doi.org/10.3390/atmos10120818
Kim S-Y, Hong S-Y, Kwon YC, Lee YH, Kim D-E. Effects of Modified Surface Roughness Length over Shallow Waters in a Regional Model Simulation. Atmosphere. 2019; 10(12):818. https://doi.org/10.3390/atmos10120818
Chicago/Turabian StyleKim, So-Young, Song-You Hong, Young Cheol Kwon, Yong Hee Lee, and Da-Eun Kim. 2019. "Effects of Modified Surface Roughness Length over Shallow Waters in a Regional Model Simulation" Atmosphere 10, no. 12: 818. https://doi.org/10.3390/atmos10120818
APA StyleKim, S. -Y., Hong, S. -Y., Kwon, Y. C., Lee, Y. H., & Kim, D. -E. (2019). Effects of Modified Surface Roughness Length over Shallow Waters in a Regional Model Simulation. Atmosphere, 10(12), 818. https://doi.org/10.3390/atmos10120818