Observed Changes in Temperature and Precipitation Extremes Over the Yarlung Tsangpo River Basin during 1970–2017
<p>Location of the study area and the meteorological stations.</p> "> Figure 2
<p>Regionally averaged anomaly series of (<b>a</b>) TNn, (<b>b</b>) TNx, (<b>c</b>) TXn, (<b>d</b>) TXx, and (<b>e</b>) DTR during 1970–2017. The black dashed line is the linear trend and the solid orange line from Locally Estimated Scatterplot Smoothing (LOESS). Z is the Mann–Kendall test statistic and S is the Sen’s slope.</p> "> Figure 3
<p>Spatial distribution of change trends for (<b>a</b>) TNn, (<b>b</b>) TNx, (<b>c</b>) TXn, (<b>d</b>) TXx, and (<b>e</b>) DTR during 1970–2017. Positive/negative trends are shown as up/down triangles. Triangle size is proportional to the magnitude of the trend. Trends significant at the 0.05 level are shown by a black box.</p> "> Figure 4
<p>Regionally averaged anomaly series of (<b>a</b>) TN10p, (<b>b</b>) TX10p, (<b>c</b>) FD, (<b>d</b>) ID, and (<b>e</b>) CSDI during 1970–2017. The black dashed line is the linear trend and the solid orange line from Locally Estimated Scatterplot Smoothing (LOESS). Z is the Mann–Kendall test statistic and S is the Sen’s slope.</p> "> Figure 5
<p>Spatial distribution of change trends for (<b>a</b>) TN10p, (<b>b</b>) TX10p, (<b>c</b>) FD, (<b>d</b>) ID, and (<b>e</b>) CSDI during 1970–2017. Positive/negative trends are shown as up/down triangles. Triangle size is proportional to the magnitude of the trend. Trends significant at the 0.05 level are shown by a black box.</p> "> Figure 6
<p>Regionally averaged anomaly series of (<b>a</b>) TN90p, (<b>b</b>) TX90p, (<b>c</b>) GSL, (<b>d</b>) SU25, and (<b>e</b>) WSDI during 1970–2017. The black dashed line is the linear trend and the solid orange line from Locally Estimated Scatterplot Smoothing (LOESS). Z is the Mann–Kendall test statistic and S is the Sen’s slope.</p> "> Figure 7
<p>Spatial distribution of change trends for (<b>a</b>) TN90p, (<b>b</b>) TX90p, (<b>c</b>) GSL, (<b>d</b>) SU25, and (<b>e</b>) WSDI during 1970–2017. Positive/negative trends are shown as up/down triangles. Triangle size is proportional to the magnitude of the trend. Trends significant at the 0.05 level are shown by a black box.</p> "> Figure 8
<p>Regionally averaged anomaly series of (<b>a</b>) PRCPTOT, (<b>b</b>) SDII, (<b>c</b>) RX1d, (<b>d</b>) RX5d, (<b>e</b>) R95p, and (<b>f</b>) R99p during 1970–2017. The black dashed line is the linear trend and the solid orange line from Locally Estimated Scatterplot Smoothing (LOESS). Z is the Mann–Kendall test statistic and S is the Sen’s slope.</p> "> Figure 9
<p>Spatial distribution of change trends for (<b>a</b>) PRCPTOT, (<b>b</b>) SDII, (<b>c</b>) RX1d, (<b>d</b>) RX5d, (<b>e</b>) R95p, and (<b>f</b>) R99p during 1970–2017. Positive/negative trends are shown as up/down triangles. Triangle size is proportional to the magnitude of the trend. Trends significant at the 0.05 level are shown by a black box.</p> "> Figure 10
<p>Regionally averaged anomaly series of (<b>a</b>) R10mm, (<b>b</b>) R20mm, (<b>c</b>) CWD, and (<b>d</b>) CDD during 1970–2017. The black dashed line is the linear trend and the solid orange line from Locally Estimated Scatterplot Smoothing (LOESS). Z is the Mann–Kendall test statistic and S is the Sen’s slope.</p> "> Figure 11
<p>Spatial distribution of change trends for (<b>a</b>) R10mm, (<b>b</b>) R20mm, (<b>c</b>) CWD, and (<b>d</b>) CDD during 1970–2017. Positive/negative trends are shown as up/down triangles. Triangle size is proportional to the magnitude of the trend. Trends significant at the 0.05 level are shown by a black box.</p> "> Figure 12
<p>(<b>a</b>) Ratio of very wet day precipitation (R95p) to total precipitation; (<b>b</b>) ratio of extremely wet day precipitation (R99p) to total precipitation. Green dashed line is the linear trend during 1970–1999, and the red dashed line is the linear trend during 2000–2017.</p> "> Figure 13
<p>Pearson correlation analysis of (<b>a</b>) temperature and (<b>b</b>) precipitation indices.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Source
3. Extreme Climate Indices and Methodology
4. Results
4.1. Temperature Indices
4.1.1. Absolute Indices (TNn, TNx, TXn, and TXx) and Diurnal Temperature Range (DTR)
4.1.2. Cooling Indices (TN10p, TX10p, FD, ID, and CSDI)
4.1.3. Warming Indices (TN90p, TX90p, GSL, SU25, and WSDI)
4.2. Precipitation Indices
4.2.1. Intensity Indices (SDII, RX1d, RX5d, R95p, and R99p) and Wet Day Precipitation (PRCPTOT)
4.2.2. Frequency Indices (R10mm and R20mm) and Duration Indices (CWD and CDD)
4.2.3. Proportion of Heavy Precipitation in Total Precipitation
4.3. Abrupt Change Analysis
5. Discussion
5.1. Correlation Analysis of Extreme Temperature and Precipitation Indices
5.2. Comparison with Results of Other Studies
5.3. Relationship between Extreme Precipitation Changes and Monsoon Activities
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis: Summary for Policymakers; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zwiers, F.; Zhang, X.; Chen, G.; Lu, J.; Li, G.; Norris, J.; Tan, Y.; Sun, Y.; Liu, M. Larger Increases in More Extreme Local Precipitation Events as Climate Warms. Geophys. Res. Lett. 2019, 46, 6885–6891. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donat, M.G.; Angelil, O.; Ukkola, A.M. Intensification of precipitation extremes in the world’s humid and water-limited regions. Environ. Res. Lett. 2019, 14, 9. [Google Scholar] [CrossRef]
- Pfleiderer, P.; Schleussner, C.F.; Kornhuber, K.; Coumou, D. Summer weather becomes more persistent in a 2 degrees C world. Nat. Clim. Chang. 2019, 9, 666. [Google Scholar] [CrossRef]
- Zhang, L.B.; Ameca, E.I.; Cowlishaw, G.; Pettorelli, N.; Foden, W.; Mace, G.M. Global assessment of primate vulnerability to extreme climatic events. Nat. Clim. Chang. 2019, 9, 554–561. [Google Scholar] [CrossRef]
- Han, J.Y.; Du, H.B.; Wu, Z.F.; He, H.S. Changes in Extreme Precipitation Over Dry and Wet Regions of China During 1961–2014. J. Geophys. Res. 2019, 124, 5847–5859. [Google Scholar] [CrossRef]
- Eckstein, D.; Hutfils, M.L.H.; Winges, M. Global Climate Risk Index 2019; Germanwatch: Bonn, Germany, 2018. [Google Scholar]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Clim. 2016, 36, 1051–1066. [Google Scholar] [CrossRef]
- Franzke, C.L.E. Local trend disparities of European minimum and maximum temperature extremes. Geophys. Res. Lett. 2015, 42, 6479–6484. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Aguilar, E.; Sensoy, S.; Melkonyan, H.; Tagiyeva, U.; Ahmed, N.; Kutaladze, N.; Rahimzadeh, F.; Taghipour, A.; Hantosh, T.H.; et al. Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Naveendrakumar, G.; Vithanage, M.; Kwon, H.H.; Chandrasekara, S.S.K.; Iqbal, M.C.M.; Pathmarajah, S.; Fernando, W.; Obeysekera, J. South Asian perspective on temperature and rainfall extremes: A review. Atmos. Res. 2019, 225, 110–120. [Google Scholar] [CrossRef]
- Sein, K.K.; Chidthaisong, A.; Oo, K.L. Observed Trends and Changes in Temperature and Precipitation Extreme Indices over Myanmar. Atmosphere 2018, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.B.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Dietzsch, F.; Andersson, A.; Ziese, M.; Schröder, M.; Raykova, K.; Schamm, K.; Becker, A. A Global ETCCDI-Based Precipitation Climatology from Satellite and Rain Gauge Measurements. Climate 2017, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Donat, M.G.; Alexander, L.V.; Sun, Y. Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int. J. Clim. 2015, 35, 2809–2827. [Google Scholar] [CrossRef]
- You, Q.; Fraedrich, K.; Ren, G.; Pepin, N.; Kang, S. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int. J. Clim. 2013, 33, 1337–1347. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Jiang, Z.; Wang, D.; Pepin, N.; Kang, S. Simulation of temperature extremes in the Tibetan Plateau from CMIP5 models and comparison with gridded observations. Clim. Dyn. 2017, 51, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Sun, J. Changes in climate extreme events in China associated with warming. Int. J. Clim. 2015, 35, 2735–2751. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Wu, Y.; Yan, Y. Climate change over the Yarlung Zangbo River Basin during 1961–2005. J. Geogr. Sci. 2007, 17, 409–420. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Huang, H.; Wu, S.; Liu, G. Land Use and Climate Changes and Their Impacts on Runoff in the Yarlung Zangbo River Basin, China. Land Degrad. Devlop. 2014, 25, 203–215. [Google Scholar] [CrossRef]
- Xu, R.; Hu, H.; Tian, F.; Li, C.; Khan, M.Y.A. Projected climate change impacts on future streamflow of the Yarlung Tsangpo-Brahmaputra River. Glob. Planet. Chang. 2019, 175, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Zhong, R.; He, Y.; Chen, X. Responses of the hydrological regime to variations in meteorological factors under climate change of the Tibetan plateau. Atmos. Res. 2018, 214, 296–310. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.; Wang, B. Changes in precipitation extremes in Southeastern Tibet, China. Quat. Int. 2015, 380–381, 49–59. [Google Scholar] [CrossRef]
- Li, B.; Zhou, W.; Zhao, Y.; Ju, Q.; Yu, Z.; Liang, Z.; Acharya, K. Using the SPEI to Assess Recent Climate Change in the Yarlung Zangbo River Basin, South Tibet. Water 2015, 7, 5474–5486. [Google Scholar] [CrossRef] [Green Version]
- Sang, Y.; Singh, V.P.; Gong, T.; Xu, K.; Sun, F.; Liu, C.; Liu, W.; Chen, R. Precipitation variability and response to changing climatic condition in the Yarlung Tsangpo River basin, China. J. Geophys. Res. 2016, 121, 8820–8831. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Kang, S.; Aguilar, E.; Yan, Y. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. 2008, 113, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, M.; Wang, B.; Sun, M.; Li, X. Recent changes in daily extremes of temperature and precipitation over the western Tibetan Plateau, 1973–2011. Quat. Int. 2013, 313–314, 110–117. [Google Scholar] [CrossRef]
- Cao, L.; Pan, S. Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960–2012. Quat. Int. 2014, 321, 105–115. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, Y.; Lu, R. An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961–2016. Atmos. Res. 2018, 209, 103–114. [Google Scholar] [CrossRef]
- Fan, J.; Sun, W.; Zhao, Y.; Xue, B.; Zuo, D.; Xu, Z. Trend Analyses of Extreme Precipitation Events in the Yarlung Zangbo River Basin, China Using a High-Resolution Precipitation Product. Sustainability 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Gao, X.; Zhang, D.; Giorgi, F. Climate change over the Yarlung Zangbo–Brahmaputra River Basin in the 21st century as simulated by a high resolution regional climate model. Quat. Int. 2011, 244, 159–168. [Google Scholar] [CrossRef]
- Li, F.; Xu, Z.; Liu, W.; Zhang, Y. The impact of climate change on runoff in the Yarlung Tsangpo River basin in the Tibetan Plateau. Stoch. Environ. Res. Risk Assess. 2013, 28, 517–526. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, F.; Lu, X.; Wang, G.; Gong, T. Improving sediment load estimations: The case of the Yarlung Zangbo River (the upper Brahmaputra, Tibet Plateau). Catena 2018, 160, 201–211. [Google Scholar] [CrossRef]
- Li, J.P.; Zeng, Q.C. A unified monsoon index. Geophys. Res. Lett. 2002, 29, 4. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin and Company: London, UK, 1955. [Google Scholar]
- Von Storch, H. Misuses of Statistical Analysis in Climate Research; Springer: Berlin, Germany, 1995; pp. 11–26. [Google Scholar]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 7. [Google Scholar] [CrossRef]
- Sen, P. Estimates of regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Advanced Studies in Theoretical and Applied Econometrics; Raj, B., Koerts, J., Eds.; Springer: Dordrecht, The Netherlands, 1992; Volume 23, pp. 345–381. [Google Scholar]
- Pettitt, A. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Tank, A.; Konnen, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. 2006, 111, 1–11. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Wang, P.; Theakstone, W.H.; An, W.; Wang, X.; Lu, A.; Zhang, W.; Cao, W. Changes of daily climate extremes in southwestern China during 1961–2008. Glob. Planet. Chang. 2012, 80–81, 255–272. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Hu, J.; Cao, J. Variability of extreme precipitation over Yunnan Province, China 1960–2012. Int. J. Clim. 2015, 35, 245–258. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Yang, X.; Hao, Y.; Guo, H.; Kossi, F.; Xin, Z.; Wei, W.; Zhang, Z.; Zhang, X.; et al. Analysis of Precipitation Extremes in the Qinghai-Tibetan Plateau, China: Spatio-Temporal Characteristics and Topography Effects. Atmosphere 2017, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Yong, Z.; Wang, Z.; Cheng, W.; Li, Y.; Zhang, H.; Ye, C.; Yang, Y. Spatial and Temporal Patterns of the Extreme Precipitation across the Tibetan Plateau (1986–2015). Water 2019, 11, 1453. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shao, Q.; Yang, T.; Peng, S.; Yu, Z.; Taylor, J.; Xing, W.; Zhao, C.; Sun, F. Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stoch. Environ. Res. Risk Assess. 2012, 27, 401–421. [Google Scholar] [CrossRef]
- Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M.M.; Molanejad, M.; Sabziparvar, A.A.; Ranjbar SaadatAbadi, A.; Ranjbar, F.; Rousta, I.; et al. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor. Appl. Climatol. 2015, 126, 775–795. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Cuo, L.; Zhang, Y.; Zhu, F. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963–2015. Sci. Rep. 2018, 8, 11860. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Wu, L.; Wang, J.; Wang, Y.; Xu, Y.; Dai, X. Variability of precipitation extremes over the Yangtze River Delta, eastern China, during 1960–2016. Theor. Appl. Climatol. 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Yao, T.; Li, Z.; Yang, W.; Guo, X.; Zhu, L.; Kang, S.; Wu, Y.; Yu, W. Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes. Chin. Sci. Bull. 2010, 55, 2072–2078. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, R.; Yao, Z. Climate change and its impact on water availability of large international rivers over the mainland Southeast Asia. Hydrol. Process. 2018, 32, 3966–3977. [Google Scholar] [CrossRef]
- Yang, T.; Hao, X.; Shao, Q.; Xu, C.-Y.; Zhao, C.; Chen, X.; Wang, W. Multi-model ensemble projections in temperature and precipitation extremes of the Tibetan Plateau in the 21st century. Glob. Planet. Chang. 2012, 80–81, 1–13. [Google Scholar] [CrossRef]
ID | Station | Lat (° N) | Lon (° E) | Elevation (m) | Study Periods |
---|---|---|---|---|---|
55437 | Pulan | 30.28 | 81.25 | 4900 | 1973–2017 |
55493 | Dangxiong | 30.48 | 91.1 | 4200 | 1970–2017 |
55578 | Rikaze | 29.25 | 88.88 | 3836 | 1970–2017 |
55585 | Nimu | 29.43 | 90.16 | 3809 | 1973–2017 |
55591 | Lasa | 29.66 | 91.13 | 3648 | 1970–2017 |
55598 | Zedang | 29.25 | 91.76 | 3551 | 1970–2017 |
55664 | Dingri | 28.63 | 87.08 | 4300 | 1970–2017 |
55680 | Jiangzi | 28.91 | 89.6 | 4040 | 1970–2017 |
55690 | Cuona | 27.98 | 91.95 | 4280 | 1970–2017 |
55696 | Longzi | 28.41 | 92.46 | 3860 | 1970–2017 |
55773 | Pali | 27.73 | 89.08 | 4300 | 1970–2017 |
56202 | Jiali | 30.66 | 93.28 | 4488 | 1970–2017 |
56227 | Bomi | 29.86 | 95.76 | 2736 | 1970–2017 |
56312 | Linzhi | 29.66 | 94.33 | 2991 | 1970–2017 |
56434 | Chayu | 28.65 | 97.46 | 2327 | 1970–2017 |
Classification | Abbreviation | Index | Definition | Units |
---|---|---|---|---|
Absolute indices and DTR | TNn | Minimum Tmin | Annual lowest TN | °C |
TNx | Maximum Tmin | Annual highest TN | °C | |
TXn | Minimum Tmax | Annual lowest TX | °C | |
TXx | Maximum Tmax | Annual highest TX | °C | |
DTR | Diurnal temperature range | Annual mean difference between TX and TN | °C | |
Cooling indices | TN10p | Cold nights | Percentage of days when TN < 10th percentile of 1971–2000 | d |
TX10p | Cold days | Percentage of days when TX < 10th percentile of 1971–2000 | d | |
FD | Frost days | Annual count when TN < 0 °C | d | |
ID | Ice days | Annual count when TX < 0 °C | d | |
CSDI | Cold spell duration indicator | Annual count of days with at least 6 consecutive days when TN < 10th percentile | d | |
Warming indices | TN90p | Warm nights | Percentage of days when TN > 90th percentile of 1971–2000 | d |
TX90p | Warm days | Percentage of days when TX > 90th percentile of 1971–2000 | d | |
GSL | Growing season length | Annual count between the first span of at least 6 days with daily mean temperature >5 °C after winter and the first span after summer of 6 days with a daily mean temperature < 5 °C | d | |
SU25 | Summer days | Annual count when TX > 5 °C | d | |
WSDI | Warm spell duration indicator | Annual count of days with at least 6 consecutive days when TX > 90th percentile | d |
Classification | Abbreviation | Index | Definition | Units |
---|---|---|---|---|
PRCPTOT and intensity indices | PRCPTOT | Wet day precipitation | Annual total precipitation in wet days | mm |
SDII | Simple daily intensity index | Average precipitation on wet days | mm/d | |
RX1d | Maximum 1-d precipitation amount | Annual maximum 1-day precipitation | mm | |
RX5d | Maximum 5-d precipitation amount | Annual maximum consecutive 5-day precipitation | mm | |
R95p | Very wet day precipitation | Annual total precipitation when RR >95th percentile of 1971–2000 daily precipitation | mm | |
R99p | Extremely wet day precipitation | Annual total precipitation when RR > 99th percentile of 1971–2000 daily precipitation | mm | |
Frequency indices | R10mm | Number of heavy precipitation days | Annual count of days when RR > 10 mm | d |
R20mm | Number of very heavy precipitation days | Annual count of days when RR > 20 mm | d | |
Duration indices | CWD | Consecutive wet days | Maximum number of consecutive days with RR > 1 mm | d |
CDD | Consecutive dry days | Maximum number of consecutive days with RR < 1 mm | d |
Index | Regional Trends | Range | Positive Trend (Significant) | Negative Trend (Significant) | No Trend |
---|---|---|---|---|---|
TNn | 0.48 | −0.14 to 0.91 | 87% (60%) | 13% (0%) | 0% |
TNx | 0.34 | 0.18 to 0.70 | 100% (93%) | 0% (0%) | 0% |
TXn | 0.35 | 0.05 to 0.60 | 100% (87%) | 0% (0%) | 0% |
TXx | 0.22 | 0.00 to 0.57 | 93% (47%) | 0% (0%) | 7% |
DTR | −0.06 | −0.27 to 0.17 | 20% (7%) | 73% (33%) | 7% |
TN10p | −1.94 | −3.64 to −0.03 | 0% (0%) | 100% (93%) | 0% |
TX10p | −1.66 | −2.14 to −0.55 | 0% (0%) | 100% (93%) | 0% |
FD | −4.39 | −9.64 to −0.83 | 0% (0%) | 100% (87%) | 0% |
ID | −2.02 | −8.66 to 0.00 | 0% (0%) | 67% (27%) | 33% |
CSDI | −0.27 | 0.00 | 0% (0%) | 0% (0%) | 100% |
TN90p | 3.75 | 1.94 to 6.22 | 100% (100%) | 0% (0%) | 0% |
TX90p | 2.10 | 0.25 to 3.41 | 100% (93%) | 0% (0%) | 0% |
GSL | 4.33 | 0.04 to 12.34 | 100% (27%) | 0% (0%) | 0% |
SU25 | 1.23 | 0.00 to 6.46 | 47% (47%) | 0% (0%) | 53% |
WSDI | 2.80 | 0.00 to 5.00 | 80% (60%) | 0% (0%) | 20% |
Index | Regional Trends | Range | Positive Trend (Significant) | Negative Trend (Significant) | No Trend |
---|---|---|---|---|---|
PRCPTOT | 7.33 | −17.80 to 20.27 | 80% (0%) | 20% (0%) | 0% |
SDII | 0.10 | −0.10 to 0.31 | 80% (13%) | 13% (0%) | 7% |
RX1d | 0.21 | −2.06 to 1.80 | 53% (7%) | 47% (0%) | 0% |
RX5d | 0.69 | −1.77 to 2.44 | 53% (7%) | 47% (0%) | 0% |
R95p | 4.01 | −9.24 to 13.27 | 47% (7%) | 40% (0%) | 13% |
R99p | 0.92 | −0.60 to 0.00 | 0% (0%) | 7% (0%) | 93% |
R10mm | 0.37 | −0.85 to 1.26 | 53% (7%) | 7% (0%) | 40% |
R20mm | 0.11 | 0.00 | 0% (0%) | 0% (0%) | 100% |
CWD | −0.06 | −0.84 to 0.59 | 13% (0%) | 13% (7%) | 73% |
CDD | 0.62 | −6.10 to 5.87 | 47% (7%) | 47% (0%) | 7% |
Index | Change Year | U * | p | Index | Change Year | U * | p |
---|---|---|---|---|---|---|---|
TNn | 1997 | 387 | <0.01 | SU25 | 2004 | 316 | 0.01 |
TNx | 1995 | 459 | <0.01 | WSDI | 1997 | 438 | <0.01 |
TXn | 1997 | 295 | 0.02 | PRCPTOT | 1987 | 154 | 0.57 |
TXx | 1992 | 208 | 0.20 | SDII | 2006 | 206 | 0.21 |
DTR | 1988 | 279 | 0.03 | RX1d | 2006 | 161 | 0.50 |
TN10p | 1997 | 548 | <0.01 | RX5d | 2006 | 151 | 0.60 |
TX10p | 1997 | 522 | <0.01 | R95p | 2006 | 143 | 0.67 |
FD | 1997 | 503 | <0.01 | R99p | 2006 | 175 | 0.39 |
ID | 1998 | 434 | <0.01 | R10mm | 1987 | 192 | 0.28 |
CSDI | 1998 | 268 | 0.04 | R20mm | 1983 | 157 | 0.54 |
TN90p | 1997 | 546 | <0.01 | CWD | 2004 | 207 | 0.21 |
TX90p | 1997 | 466 | <0.01 | CDD | 1977 | 138 | 0.73 |
GSL | 1997 | 407 | <0.01 |
Indices | The YTRB | TP and Its Surroundings | Eastern and Central TP | Western TP | Three-River Headwaters | Southwestern China | China |
---|---|---|---|---|---|---|---|
TNn | 0.48 | 1.04 | - | 0.63 | 0.49 | 0.29 | 0.58 |
TNx | 0.34 | 0.36 | - | 0.38 | 0.29 | 0.17 | 0.28 |
TXn | 0.35 | 0.10 | - | 0.67 | 0.26 | 0.13 | 0.32 |
TXx | 0.22 | 0.30 | - | 0.15 | 0.39 | 0.11 | 0.17 |
DTR | −0.06 | - | −0.20 | −0.20 | −0.11 | −0.18 | - |
TN10p | −1.94 | - | −2.38 | −4.92 | −4.63 | −0.37 | −2.00 |
TX10p | −1.66 | - | −0.85 | −2.84 | −2.47 | −0.13 | −0.80 |
FD | −4.39 | −4.06 | −4.32 | −5.69 | −4.28 | −0.29 | −3.90 |
ID | −2.02 | −2.03 | −2.46 | −7.74 | −4.68 | −0.09 | −2.10 |
CSDI | −0.27 | - | - | −2.55 | - | - | −0.80 |
TN90p | 3.75 | - | 2.54 | 4.00 | 4.30 | 0.36 | 3.30 |
TX90p | 2.10 | - | 1.26 | 3.43 | 3.05 | 0.22 | 1.70 |
GSL | 4.33 | - | 4.25 | 4.35 | 3.94 | 0.12 | 3.40 |
SU25 | 1.23 | 2.59 | - | 0.42 | 1.20 | - | 1.90 |
WSDI | 2.80 | - | - | 3.31 | - | - | 3.00 |
PRCPTOT | 7.33 | 6.98 | 6.66 | 0.47 | 8.33 | 0.03 | 0.30 |
SDII | 0.10 | 0.08 | 0.03 | 0.01 | 0.02 | 0.03 | 0.70 |
RX1d | 0.21 | 0.45 | 0.27 | 0.37 | −0.16 | 0.05 | - |
RX5d | 0.69 | 0.50 | −0.08 | 1.25 | −0.44 | 0.03 | - |
R95p | 4.01 | 3.24 | 1.28 | 0.48 | 3.83 | 0.04 | 2.10 |
R99p | 0.92 | 1.96 | 1.09 | 0.41 | 1.90 | 0.05 | - |
R10mm | 0.37 | 0.27 | 0.23 | 0.06 | 0.16 | 0.00 | - |
R20mm | 0.11 | 0.07 | - | - | 0.04 | 0.00 | - |
CWD | −0.06 | −0.02 | −0.07 | 0.17 | −0.16 | −0.08 | 0.20 |
CDD | 0.62 | −0.87 | −4.64 | 0.52 | −2.06 | −0.05 | −3.50 |
Indices | PRCPTOT | SDII | RX1d | RX5d | R95p | R99p | R10mm | R20mm | CWD | CDD |
---|---|---|---|---|---|---|---|---|---|---|
EASMI | −0.32 | −0.28 | −0.25 | −0.19 | −0.23 | −0.25 | −0.31 | −0.27 | −0.30 | 0.28 |
SASMI | 0.21 | 0.11 | 0.01 | −0.04 | 0.09 | 0.07 | 0.24 | 0.09 | 0.08 | 0.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Li, Y.; Ji, X.; Luo, X.; Zhu, M. Observed Changes in Temperature and Precipitation Extremes Over the Yarlung Tsangpo River Basin during 1970–2017. Atmosphere 2019, 10, 815. https://doi.org/10.3390/atmos10120815
Liu C, Li Y, Ji X, Luo X, Zhu M. Observed Changes in Temperature and Precipitation Extremes Over the Yarlung Tsangpo River Basin during 1970–2017. Atmosphere. 2019; 10(12):815. https://doi.org/10.3390/atmos10120815
Chicago/Turabian StyleLiu, Chunyu, Yungang Li, Xuan Ji, Xian Luo, and Mengtao Zhu. 2019. "Observed Changes in Temperature and Precipitation Extremes Over the Yarlung Tsangpo River Basin during 1970–2017" Atmosphere 10, no. 12: 815. https://doi.org/10.3390/atmos10120815
APA StyleLiu, C., Li, Y., Ji, X., Luo, X., & Zhu, M. (2019). Observed Changes in Temperature and Precipitation Extremes Over the Yarlung Tsangpo River Basin during 1970–2017. Atmosphere, 10(12), 815. https://doi.org/10.3390/atmos10120815