Numerical Simulation of Perkins Instability in the Midlatitude F-Region Ionosphere: The Influence of Background Ionospheric Multi-Factors
<p>The evolution process of relative plasma density perturbation at 280 km for 0 s (<b>a</b>), 1200 s (<b>b</b>), 2400 s (<b>c</b>), and 3600 s (<b>d</b>) from random perturbation conditions with a range of 0–500 m.</p> "> Figure 2
<p>Power spectral density of density perturbation in the wave vector domain in the height of 280 km for t = 3600 s. The area composed of solid lines indicates the region where the Perkins instability occurs.</p> "> Figure 3
<p>Time variation of mean field-line-integrated Pedersen conductivity perturbation.</p> "> Figure 4
<p>Neutral density scale height dependence of Perkins instability. The neutral density scale heights are (<b>a</b>) 60 km, (<b>b</b>) 80 km, (<b>c</b>) 100 km, and (<b>d</b>) 120 km, respectively.</p> "> Figure 5
<p>The variation of the mean amplitude of relative density perturbation with a neutral density scale height at 280 km for 3600 s.</p> "> Figure 6
<p>The evolution process of relative field-line-integrated Pedersen conductivity perturbation at 0 s (<b>a</b>), 1200 s (<b>b</b>), 2400 s (<b>c</b>), and 3600 s (<b>d</b>) under the action of GW activity.</p> "> Figure 7
<p>The evolution process of relative field-line-integrated Pedersen conductivity perturbation at 0 s (<b>a</b>), 120 s (<b>b</b>), 600 s (<b>c</b>), and 1200 s (<b>d</b>)under the action of E region polarized electric field.</p> ">
Abstract
:1. Introduction
2. Model Description
3. Simulation and Discussion
3.1. Random Perturbation
3.2. Neutral Density Scale Height Dependency
3.3. The Influence of Gravity Wave Activity
3.4. The Influence of Polarized Electric Field Excited by Plasma Instability in the E Region
4. Conclusions
- The initial random distributed density structure gradually developed into a banded structure aligned in the NW–SE direction, which is consistent with GPS–TEC and all-sky imager observations. Moreover, the relative amplitude of density perturbation grew steadily after about 8000 s.
- The domain wave vector direction satisfied the linear growth theory of Perkins instability. Inappropriate perturbations would be suppressed based on our simulated results.
- The neutral scale height dependency of Perkins instability has been quantitatively revealed for the first time. Simulated results in this study showed a negative correlation between the neutral scale height and the growth rate of Perkins instability. Smaller neutral scale height H would amplify the amplitude of ionospheric perturbation, which is in agreement with the statistical results of MSTID occurrence variations with solar activity. The relative perturbation reached nearly 6.00% during the solar minimum periods, but during the solar maximum periods, it was less than 1.50% at 3600 s.
- A comparative analysis of the effects of GW activity and polarized electric field seeding from plasma instability in the E region on the generation of MSTID is quantitatively presented in this study for the first time. An additional seeding process would greatly accelerate the development of Perkins instability. The maximum amplitude of relative perturbation reached 4.00% at 1200 s under the E region’s polarized electric field seeding, wherein the initial polarized potential perturbation amplitude was 1 V with a horizontal wavelength of about 100 km, while it was less than 1.00% at 1200 s under the GW activity seeding wherein the initial field-line-integrated Pedersen conductivity relative perturbation was 0.51% with a horizontal wavelength of about 160 km. The E–F electrodynamic process is more likely to be the main controlling factor for the generation of nighttime MSTID in the midlatitude ionosphere rather than the modifications of GW activity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behnke, R. F Layer Height Bands in the Nocturnal Ionosphere over Arecibo. J. Geophys. Res. Space Phys. 1979, 84, 974–978. [Google Scholar] [CrossRef]
- Kubota, M.; Shiokawa, K.; Ejiri, M.K.; Otsuka, Y.; Ogawa, T.; Sakanoi, T.; Fukunishi, H.; Yamamoto, M.; Fukao, S.; Saito, A. Traveling Ionospheric Disturbances Observed in the OI 630-Nm Nightglow Images over Japan by Using a Multipoint Imager Network during the FRONT Campaign. Geophys. Res. Lett. 2000, 27, 4037–4040. [Google Scholar] [CrossRef]
- Kubota, M.; Fukunishi, H.; Okano, S. Characteristics of Medium- and Large-Scale TIDs over Japan Derived from OI 630-Nm Nightglow Observation. Earth Planets Space 2001, 53, 741–751. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shiokawa, K.; Ogawa, T.; Wilkinson, P. Geomagnetic Conjugate Observations of Medium-Scale Traveling Ionospheric Disturbances at Midlatitude Using All-Sky Airglow Imagers. Geophys. Res. Lett. 2004, 31, L15803. [Google Scholar] [CrossRef]
- Lai, C.; Xu, J.; Lin, Z.; Wu, K.; Zhang, D.; Li, Q.; Sun, L.; Yuan, W.; Zhu, Y. Statistical Characteristics of Nighttime Medium-Scale Traveling Ionospheric Disturbances From 10-Years of Airglow Observation by the Machine Learning Method. Space Weather 2023, 21, e2023SW003430. [Google Scholar] [CrossRef]
- Saito, A.; Fukao, S.; Miyazaki, S. High Resolution Mapping of TEC Perturbations with the GSI GPS Network over Japan. Geophys. Res. Lett. 1998, 25, 3079–3082. [Google Scholar] [CrossRef]
- Saito, A.; Nishimura, M.; Yamamoto, M.; Fukao, S.; Kubota, M.; Shiokawa, K.; Otsuka, Y.; Tsugawa, T.; Ogawa, T.; Ishii, M.; et al. Traveling Ionospheric Disturbances Detected in the FRONT Campaign. Geophys. Res. Lett. 2001, 28, 689–692. [Google Scholar] [CrossRef]
- Kotake, N.; Otsuka, Y.; Tsugawa, T.; Ogawa, T.; Saito, A. Climatological Study of GPS Total Electron Content Variations Caused by Medium-Scale Traveling Ionospheric Disturbances. J. Geophys. Res. Space Phys. 2006, 111, A04306. [Google Scholar] [CrossRef]
- Kotake, N.; Otsuka, Y.; Ogawa, T.; Tsugawa, T.; Saito, A. Statistical Study of Medium-Scale Traveling Ionospheric Disturbances Observed with the GPS Networks in Southern California. Earth Planets Space 2007, 59, 95–102. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Xu, G.; Yu, T.; Yang, G.; Wang, J. Climatology of Medium-Scale Traveling Ionospheric Disturbances Observed by a GPS Network in Central China. J. Geophys. Res. Space Phys. 2011, 116, A09327. [Google Scholar] [CrossRef]
- Huang, F.; Dou, X.; Lei, J.; Lin, J.; Ding, F.; Zhong, J. Statistical Analysis of Nighttime Medium-Scale Traveling Ionospheric Disturbances Using Airglow Images and GPS Observations over Central China. J. Geophys. Res. Space Phys. 2016, 121, 8887–8899. [Google Scholar] [CrossRef]
- Huang, F.; Lei, J.; Dou, X. Daytime Ionospheric Longitudinal Gradients Seen in the Observations from a Regional BeiDou GEO Receiver Network. J. Geophys. Res. Space Phys. 2017, 122, 6552–6561. [Google Scholar] [CrossRef]
- Huang, F.; Lei, J.; Dou, X.; Luan, X.; Zhong, J. Nighttime Medium-Scale Traveling Ionospheric Disturbances From Airglow Imager and Global Navigation Satellite Systems Observations. Geophys. Res. Lett. 2018, 45, 31–38. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, C.; Liu, Y.; Zhao, J.; Tang, Q.; Wang, X.; Zhao, Z. A Statistical Analysis of Medium-Scale Traveling Ionospheric Disturbances during 2014–2017 Using the Hong Kong CORS Network. Earth Planets Space 2019, 71, 52. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Tang, Q.; Kong, J.; Gu, X.; Ni, B.; Yao, Y.; Zhao, Z. Evidence of Mid- and Low-Latitude Nighttime Ionospheric E − F Coupling: Coordinated Observations of Sporadic E Layers, F-Region Field-Aligned Irregularities, and Medium-Scale Traveling Ionospheric Disturbances. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7547–7557. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Z.; Xu, T.; Kong, J.; Zhou, C.; Yao, Y.; Tang, Q.; Zhao, Z. Daytime F Region Echoes at Equatorial Ionization Anomaly Crest During Geomagnetic Quiet Period: Observations From Multi-Instruments. Space Weather 2022, 20, e2021SW003002. [Google Scholar] [CrossRef]
- Li, X.; Ding, F.; Yue, X.; Mao, T.; Xiong, B.; Song, Q. Multiwave Structure of Traveling Ionospheric Disturbances Excited by the Tonga Volcanic Eruptions Observed by a Dense GNSS Network in China. Space Weather 2023, 21, e2022SW003210. [Google Scholar] [CrossRef]
- Perkins, F. Spread F and Ionospheric Currents. J. Geophys. Res. 1973, 78, 218–226. [Google Scholar] [CrossRef]
- Kelley, M.C.; Fukao, S. Turbulent Upwelling of the Mid-Latitude Ionosphere: 2. Theoretical Framework. J. Geophys. Res. Space Phys. 1991, 96, 3747–3753. [Google Scholar] [CrossRef]
- Bowman, G.G. Some Aspects of Sporadic-E at Mid-Latitudes. Planet. Space Sci. 1960, 2, 195–202. [Google Scholar] [CrossRef]
- Miller, C.A.; Swartz, W.E.; Kelley, M.C.; Mendillo, M.; Nottingham, D.; Scali, J.; Reinisch, B. Electrodynamics of Midlatitude Spread F: 1. Observations of Unstable, Gravity Wave-Induced Ionospheric Electric Fields at Tropical Latitudes. J. Geophys. Res. Space Phys. 1997, 102, 11521–11532. [Google Scholar] [CrossRef]
- Otsuka, Y.; Onoma, F.; Shiokawa, K.; Ogawa, T.; Yamamoto, M.; Fukao, S. Simultaneous Observations of Nighttime Medium-Scale Traveling Ionospheric Disturbances and E Region Field-Aligned Irregularities at Midlatitude. J. Geophys. Res. Space Phys. 2007, 112, A06317. [Google Scholar] [CrossRef]
- Ogawa, T.; Nishitani, N.; Otsuka, Y.; Shiokawa, K.; Tsugawa, T.; Hosokawa, K. Medium-Scale Traveling Ionospheric Disturbances Observed with the SuperDARN Hokkaido Radar, All-Sky Imager, and GPS Network and Their Relation to Concurrent Sporadic E Irregularities. J. Geophys. Res. Space Phys. 2009, 114, A03316. [Google Scholar] [CrossRef]
- Zhou, C.; Tang, Q.; Huang, F.; Liu, Y.; Gu, X.; Lei, J.; Ni, B.; Zhao, Z. The Simultaneous Observations of Nighttime Ionospheric E Region Irregularities and F Region Medium-Scale Traveling Ionospheric Disturbances in Midlatitude China. J. Geophys. Res. Space Phys. 2018, 123, 5195–5209. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Xu, T.; Wang, Z.; Tang, Q.; Deng, Z.; Chen, G. Investigation of Midlatitude Nighttime Ionospheric E-F Coupling and Interhemispheric Coupling by Using COSMIC GPS Radio Occultation Measurements. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027625. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Xu, T.; Tang, Q.; Deng, Z.; Chen, G.; Wang, Z. Review of Ionospheric Irregularities and Ionospheric Electrodynamic Coupling in the Middle Latitude Region. Earth Planet. Phys. 2021, 5, eepp2021025. [Google Scholar] [CrossRef]
- Xu, J.; Li, Q.; Yue, J.; Hoffmann, L.; Straka, W.C., III; Wang, C.; Liu, M.; Yuan, W.; Han, S.; Miller, S.D.; et al. Concentric Gravity Waves over Northern China Observed by an Airglow Imager Network and Satellites. J. Geophys. Res. Atmos. 2015, 120, 11,058–11,078. [Google Scholar] [CrossRef]
- Tsunoda, R.T.; Cosgrove, R.B. Coupled Electrodynamics in the Nighttime Midlatitude Ionosphere. Geophys. Res. Lett. 2001, 28, 4171–4174. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. Wind-Shear-Driven, Closed-Current Dynamos in Midlatitude Sporadic E. Geophys. Res. Lett. 2002, 29, 7-1–7-4. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. A Direction-Dependent Instability of Sporadic-E Layers in the Nighttime Midlatitude Ionosphere. Geophys. Res. Lett. 2002, 29, 11-1–11-4. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. Instability of the E-F Coupled Nighttime Midlatitude Ionosphere. J. Geophys. Res. Space Phys. 2004, 109, A04305. [Google Scholar] [CrossRef]
- Huang, C.-S.; Miller, C.A.; Kelley, M.C. Basic Properties and Gravity Wave Initiation of the Midlatitude F Region Instability. Radio Sci. 1994, 29, 395–405. [Google Scholar] [CrossRef]
- Huang, C.-S. Numerical simulations of large scale perturbations in the midlatitude F region. Chin. J. Geophys. 1997, 40, 301–310. [Google Scholar]
- Miller, C.A. On Gravity Waves and the Electrodynamics of the Mid-Latitude Ionosphere. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1996. [Google Scholar]
- Zhou, Q.; Mathews, J.D.; Du, Q.; Miller, C.A. A Preliminary Investigation of the Pseudo-Spectral Method Numerical Solution of the Perkins Instability Equations in the Homogeneous TEC Case. J. Atmos. Sol.-Terr. Phys. 2005, 67, 325–335. [Google Scholar] [CrossRef]
- Zhou, Q.; Mathews, J.D.; Miller, C.A.; Seker, I. The Evolution of Nighttime Mid-Latitude Mesoscale F-Region Structures: A Case Study Utilizing Numerical Solution of the Perkins Instability Equations. Planet. Space Sci. 2006, 54, 710–718. [Google Scholar] [CrossRef]
- Cosgrove, R.B. Generation of Mesoscale F Layer Structure and Electric Fields by the Combined Perkins and Es Layer Instabilities, in Simulations. Ann. Geophys. 2007, 25, 1579–1601. [Google Scholar] [CrossRef]
- Yokoyama, T.; Otsuka, Y.; Ogawa, T.; Yamamoto, M.; Hysell, D.L. First Three-Dimensional Simulation of the Perkins Instability in the Nighttime Midlatitude Ionosphere. Geophys. Res. Lett. 2008, 35, L03101. [Google Scholar] [CrossRef]
- Yokoyama, T.; Hysell, D.L.; Otsuka, Y.; Yamamoto, M. Three-Dimensional Simulation of the Coupled Perkins and Es-Layer Instabilities in the Nighttime Midlatitude Ionosphere. J. Geophys. Res. Space Phys. 2009, 114, A03308. [Google Scholar] [CrossRef]
- Yokoyama, T. Scale Dependence and Frontal Formation of Nighttime Medium-Scale Traveling Ionospheric Disturbances. Geophys. Res. Lett. 2013, 40, 4515–4519. [Google Scholar] [CrossRef]
- Trac, H.; Pen, U.-L. A Primer on Eulerian Computational Fluid Dynamics for Astrophysics. Publ. Astron. Soc. Pac. 2003, 115, 303. [Google Scholar] [CrossRef]
- Katamzi-Joseph, Z.T.; Grawe, M.A.; Makela, J.J.; Habarulema, J.B.; Martinis, C.; Baumgardner, J. First Results on Characteristics of Nighttime MSTIDs Observed Over South Africa: Influence of Thermospheric Wind and Sporadic E. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030375. [Google Scholar] [CrossRef]
- Shiokawa, K.; Ihara, C.; Otsuka, Y.; Ogawa, T. Statistical Study of Nighttime Medium-Scale Traveling Ionospheric Disturbances Using Midlatitude Airglow Images. J. Geophys. Res. Space Phys. 2003, 108, 1052. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Shiokawa, K.; Fujinami, H.; Otsuka, Y.; Nakamura, T.; Connors, M.; Schofield, I.; Shevtsov, B.; Poddelsky, I. Three-Dimensional Fourier Analysis of the Phase Velocity Distributions of Mesospheric and Ionospheric Waves Based on Airglow Images Collected Over 10 Years: Comparison of Magadan, Russia, and Athabasca, Canada. J. Geophys. Res. Space Phys. 2019, 124, 8110–8124. [Google Scholar] [CrossRef]
- Terra, P.; Vargas, F.; Brum, C.G.M.; Miller, E.S. Geomagnetic and Solar Dependency of MSTIDs Occurrence Rate: A Climatology Based on Airglow Observations From the Arecibo Observatory ROF. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027770. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shinbori, A.; Tsugawa, T.; Nishioka, M. Solar Activity Dependence of Medium-Scale Traveling Ionospheric Disturbances Using GPS Receivers in Japan. Earth Planets Space 2021, 73, 22. [Google Scholar] [CrossRef]
- Huba, J.D.; Joyce, G. Equatorial Spread F Modeling: Multiple Bifurcated Structures, Secondary Instabilities, Large Density ‘Bite-Outs,’ and Supersonic Flows. Geophys. Res. Lett. 2007, 34, L07105. [Google Scholar] [CrossRef]
- Kelley, M.C.; Makela, J.J. Resolution of the Discrepancy between Experiment and Theory of Midlatitude F-Region Structures. Geophys. Res. Lett. 2001, 28, 2589–2592. [Google Scholar] [CrossRef]
- Figueiredo, C.A.O.B.; Takahashi, H.; Wrasse, C.M.; Otsuka, Y.; Shiokawa, K.; Barros, D. Investigation of Nighttime MSTIDS Observed by Optical Thermosphere Imagers at Low Latitudes: Morphology, Propagation Direction, and Wind Filtering. J. Geophys. Res. Space Phys. 2018, 123, 7843–7857. [Google Scholar] [CrossRef]
- Saito, A.; Nishimura, M.; Yamamoto, M.; Fukao, S.; Tsugawa, T.; Otsuka, Y.; Miyazaki, S.; Kelley, M.C. Observations of Traveling Ionospheric Disturbances and 3-m Scale Irregularities in the Nighttime F-Region Ionosphere with the MU Radar and a GPS Network. Earth Planets Space 2002, 54, 31–44. [Google Scholar] [CrossRef]
- Liu, Y. Three-Dimensional Simulation Results of Perkins Instability in the Midlatitude F-Region Ionosphere [Dataset]. Zenodo 2024. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Magnetic field | 4.6 × 10−5 T |
Geomagnetic dip angle | 45° |
Ion gyrofrequency | 299 s−1 |
Ion mass(oxygen) | 2.67 × 10−26 kg |
Atmospheric scale height | 45,000 m |
Temperature | 916 K |
Gravitational acceleration | 9.8 ms−2 |
Boltzmann constant | 1.38 × 10−23 JK−1 |
Electron charge | 1.6 × 10−19 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Lan, T.; Zhou, Y.; Zhu, Y.; Fan, Z.; Wu, Y.; Zhang, Y.; Wang, X. Numerical Simulation of Perkins Instability in the Midlatitude F-Region Ionosphere: The Influence of Background Ionospheric Multi-Factors. Atmosphere 2025, 16, 221. https://doi.org/10.3390/atmos16020221
Liu Y, Lan T, Zhou Y, Zhu Y, Fan Z, Wu Y, Zhang Y, Wang X. Numerical Simulation of Perkins Instability in the Midlatitude F-Region Ionosphere: The Influence of Background Ionospheric Multi-Factors. Atmosphere. 2025; 16(2):221. https://doi.org/10.3390/atmos16020221
Chicago/Turabian StyleLiu, Yi, Ting Lan, Yufeng Zhou, Yunzhou Zhu, Zhiqiang Fan, Yewen Wu, Yuqiang Zhang, and Xiang Wang. 2025. "Numerical Simulation of Perkins Instability in the Midlatitude F-Region Ionosphere: The Influence of Background Ionospheric Multi-Factors" Atmosphere 16, no. 2: 221. https://doi.org/10.3390/atmos16020221
APA StyleLiu, Y., Lan, T., Zhou, Y., Zhu, Y., Fan, Z., Wu, Y., Zhang, Y., & Wang, X. (2025). Numerical Simulation of Perkins Instability in the Midlatitude F-Region Ionosphere: The Influence of Background Ionospheric Multi-Factors. Atmosphere, 16(2), 221. https://doi.org/10.3390/atmos16020221