A Reliable Medium for Monitoring Atmospheric Deposition near Emission Sources by Using Snow from Agricultural Areas
<p>The specific location of the area of study in China (<b>a</b>) and snow sampling sites surrounding factories and agricultural fields (<b>b</b>).</p> "> Figure 2
<p>The concentrations of elements in the snow at Anyang for all the samples (<b>a</b>) and for the sites near the factories versus the background farmlands (<b>b</b>). Note: from top to bottom, the three lines in the box plot indicate the upper quartile (Q3), median, and lower quartile (Q1), respectively, and the circular dots indicate outliers in the data, defined as values less than Q1 − 1.5 × IQR or greater than Q3 + 1.5 × IQR, with IQR being the interquartile spacing, the same as below.</p> "> Figure 3
<p>Enrichment factors of metal elements in snow.</p> "> Figure 4
<p>The spatial distribution of Cd concentrations across the entire area studied (<b>a</b>) and surrounding specific factories (<b>b</b>).</p> "> Figure 5
<p>A time series analysis of PM<sub>2.5</sub> and PM<sub>10</sub> (<b>a</b>) and a rose diagram of the wind direction and speed (<b>b</b>) in December in Anyang.</p> "> Figure 6
<p>The relationship between the concentration of Cd in snow and distance from the factories.</p> "> Figure 7
<p>A clustered tree map of the samples (<b>a</b>) and the spatial distribution of the sampling sites (<b>b</b>).</p> "> Figure 8
<p>The spatial distribution of Cd concentration in the snow versus PM<sub>2.5</sub> emissions (<b>a</b>) and the SO<sub>4</sub><sup>2−</sup> concentration in the snow versus the SO<sub>2</sub> satellite column concentration in the air (<b>b</b>).</p> "> Figure 9
<p>The correlation of Cd concentration with the production capacity (<b>a</b>) and total permitted emissions (<b>b</b>) of the factories. Note: the Cd concentration is the mean value across the two sampling sites closest to the emission sources along the upwind and downwind directions to each of the factories G, J, M, N and Q.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area and Sampling Sites
2.2. Sample Collection and Snowfall Analysis
2.3. The Determination of Enrichment Factors (EFs)
2.4. Statistical Analysis
2.5. Other Data Sources
3. Results and Discussion
3.1. The Concentrations and Enrichment Characteristics of Metal Elements in the Snow
Site | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | As | Mo | Cd | Sb | Pb | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anyang, China | Average | 1.77 | 1.34 | 61.12 | 481.54 | 0.49 | 1.25 | 3.91 | 85.33 | 4.32 | 0.17 | 5.31 | 13.45 | 23.32 | This study |
Min-Max | 0.08–9.07 | 0.16–6.03 | 3.80–272.65 | 12.58–2657.62 | 0.02–3.72 | 0.18–4.68 | 0.57–20.31 | 5.91–521.14 | 0.21–24.57 | 0.01–0.54 | 0.03–41.09 | 8.05–22.53 | 1.17–186.04 | This study | |
Surface | 2.63 | 2.29 | 110.72 | 956.74 | 0.78 | 2.00 | 6.04 | 95.61 | 7.72 | 0.24 | 7.84 | 13.63 | 35.99 | This study | |
Subsurface | 0.46 | 0.47 | 19.53 | 123.92 | 0.13 | 0.61 | 1.71 | 28.39 | 1.25 | 0.10 | 0.70 | 11.55 | 4.94 | This study | |
Niihama, Japan | 0.03 | / | / | / | / | 0.41 | / | / | / | / | 0.11 | / | / | [24] | |
Central Pyrenees, Spain | / | / | 0.50 | 9.01 | / | 0.06 | 0.06 | 2.72 | / | / | / | / | 1.92 | [25] | |
Tianjin, China | 0.34 | 0.93 | 13.63 | 106.00 | 0.17 | 1.25 | 1.96 | 22.10 | 1.37 | / | 0.66 | / | 0.17 | [26] | |
Tyumen, Russia | 0.15 | 7.30 | 20.20 | / | 0.95 | 4.68 | 13.20 | 0.51 | 0.05 | 0.10 | 0.10 | 1.34 | [27] | ||
Moscow, Russia | 0.92 | 0.66 | 11.00 | 93.00 | 0.28 | 4.60 | 5.20 | 16.00 | / | 0.26 | 0.07 | 0.38 | 0.35 | [16] | |
Lake Saint-Charles, Canada | / | 0.40 | 27.90 | 263.30 | 0.10 | 0.80 | 0.80 | 4.80 | / | 0.20 | 0.03 | / | 0.20 | [28] | |
Sivas, Turkey | / | / | 14.93 | / | / | 4.93 | 6.02 | 13.15 | / | / | 3.71 | / | 13.53 | [29] | |
Poznań, Poland | / | 0.40 | / | / | / | 3.77 | 2.03 | 13.20 | 0.71 | / | 0.08 | / | 4.93 | [30] | |
Northwestern, Russia | / | 3.40 | 15.90 | / | 18.30 | 702.00 | 525.00 | 46.70 | 2.20 | / | 0.18 | / | 8.60 | [19] | |
Valday, Russia | / | / | 6.70 | 45.50 | / | 2.40 | 3.30 | 41.00 | / | / | 0.06 | / | 1.60 | [31] | |
Thessaloniki, Greece | / | 1.10–16.80 | 1.80–16.60 | 7.80–580.00 | / | 0.80–16.19 | 55.50–42.10 | 10.00–262.00 | 0.06–2.50 | / | 0.15–3.76 | / | 11.90–24.00 | [17] | |
Harbin, China | 12.90 | 15.10 | 197.00 | 300.00 | 4.09 | 10.50 | 24.30 | 151.00 | 22.80 | / | 2.07 | / | 25.30 | [18] | |
Northeastern China | 0.70 | 0.90 | 22.00 | 62.00 | / | 1.80 | 1.30 | 23.00 | 3.00 | / | 0.10 | / | 2.50 | [32] | |
Southern Tibetan Plateau | 1.76 | 1.99 | 42.67 | 497.37 | 0.70 | 2.74 | 5.28 | 18.73 | / | / | 0.02 | / | 2.14 | [33] | |
Beijing, China | / | / | 1.16–54.62 | / | / | / | N.D.-9.63 | 3.91–71.33 | N.D.-3.36 | / | / | 0.55–2.86 | / | [34] | |
Hungary | / | 0.55 | / | / | / | / | 2.87 | / | 1.14 | / | 0.04 | / | 2.18 | [35] |
3.2. The Spatial Distribution of Cd Concentrations in the Snow
3.3. Spatial Clustering by the Chemical Composition of the Snow
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Liu, L.; Chen, X.; Hu, L.; Tang, J. Plant Growth, Lead Uptake and Partitioning of Maize (Zea mays L.)Under Simulated Mild/ Moderate Lead Pollution Stress. J. Agro-Environ. Sci. 2010, 29, 2260–2267. (In Chinese) [Google Scholar]
- Ministry of Environmental Protection, Ministry of Land and Resources of the People’s Republic of China. Bulletin of the National Soil Pollution Survey. Available online: https://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf (accessed on 17 April 2014).
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Nziguheba, G.; Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 2008, 390, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Bao, D.; Li, L.; Pan, G.; Zhang, A.; Haishi, J. Analysis and Pollution Evaluation of Farmland Heavy Metal Content around The Dump. Chin. J. Soil Sci. 2011, 42, 185–189. (In Chinese) [Google Scholar] [CrossRef]
- Pan, Y.; Liu, J.; Zhang, L.; Cao, J.; Hu, J.; Tian, S.; Li, X.; Xu, W. Bulk Deposition and Source Apportionment of Atmospheric Heavy Metals and Metalloids in Agricultural Areas of Rural Beijing during 2016–2020. Atmosphere 2021, 12, 283. [Google Scholar] [CrossRef]
- Liu, J.; Pan, Y.; Shi, H. Atmospheric deposition as a dominant source of cadmium in agricultural soils of north China. J. Agro-Environ. Sci. 2022, 41, 1698–1708. (In Chinese) [Google Scholar]
- Peng, H.; Chen, Y.; Weng, L.; Ma, J.; Ma, Y.; Li, Y.; Islam, M.S. Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Sci. Total Environ. 2019, 660, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Yang, Z.; Cui, Y.; Li, Y.; Hou, Q.; Yu, T. Soil heavy metal concentrations and their typical input and output fluxes on the southern Song-nen Plain, Heilongjiang Province, China. J. Geochem. Explor. 2014, 139, 85–96. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Q.; Hu, W.; Tian, K.; Huang, B.; Zhao, Y. Effects of atmospheric deposition on heavy metals accumulation in agricultural soils: Evidence from field monitoring and Pb isotope analysis. Environ. Pollut. 2023, 330, 121740. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Y. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmos. Chem. Phys. 2015, 15, 951–972. [Google Scholar] [CrossRef]
- Li, Y. Maximum Ground Level Concentration and Location of Elevated Sources of Pollution. J. Saf. Environ. 2010, 10, 89–91. (In Chinese) [Google Scholar] [CrossRef]
- Lei, W.; Li, X.; Zhang, L.; Xu, J.; Zhao, W.; Liu, Z. Pollution Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 Collected in Baoding. Environ. Sci. 2021, 42, 38–44. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Gu, X.; Li, X. Pollution Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 in Autumn and Winter in Yuncheng City. Environ. Monit. Forewarning 2023, 15, 163–170+186. (In Chinese) [Google Scholar]
- China National Environmental Monitoring Centre. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990; pp. 330–455. (In Chinese) [Google Scholar]
- Vlasov, D.; Vasil’chuk, J.; Kosheleva, N.; Kasimov, N. Dissolved and Suspended Forms of Metals and Metalloids in Snow Cover of Megacity: Partitioning and Deposition Rates in Western Moscow. Atmosphere 2020, 11, 907. [Google Scholar] [CrossRef]
- Tsamos, P.; Kolias, P.; Lambropoulou, D.; Noli, F. Distribution and temporal variability of uranium and toxic metal(loid)s in snow and rainwater from an oil industry and urban area in Thessaloniki-Greece. Sci. Total Environ. 2022, 838, 155604. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, L.; Tian, C.; Li, K.; Chen, P.; Jia, Z.; Hu, P.; Cui, S. Chemical characteristics, distribution patterns, and source apportionment of particulate elements and inorganic ions in snowpack in Harbin, China. Chemosphere 2024, 349, 140886. [Google Scholar] [CrossRef] [PubMed]
- Kashulina, G.; de Caritat, P.; Reimann, C. Snow and rain chemistry around the “Severonikel” industrial complex, NW Russia: Current status and retrospective analysis. Atmos. Environ. 2014, 89, 672–682. [Google Scholar] [CrossRef]
- Ma, X.; Sha, Z.; Li, Y.; Si, R.; Tang, A.; Fangmeier, A.; Liu, X. Temporal-spatial characteristics and sources of heavy metals in bulk deposition across China. Sci. Total Environ. 2024, 926, 171903. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-E.; Han, Y.-J.; Kim, P.-R.; Holsen, T.M. Factors influencing atmospheric wet deposition of trace elements in rural Korea. Atmos. Res. 2012, 116, 185–194. [Google Scholar] [CrossRef]
- Kamani, H.; Hoseini, M.; Safari, G.H.; Jaafari, J.; Mahvi, A.H. Study of trace elements in wet atmospheric precipitation in Tehran, Iran. Environ. Monit. Assess. 2014, 186, 5059–5067. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, Y.; Li, W.J.; Chen, J.M.; Wang, T.; Wang, W.X. Concentrations and solubility of trace elements in fine particles at a mountain site, southern China: Regional sources and cloud processing. Atmos. Chem. Phys. 2015, 15, 8987–9002. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Oka, K.; Tokoro, S.; Nishii, N.; Kikuchi, Y.; Nishimoto, J.; Imai, S. Investigation of the concentration ratios of anthropogenic metal elements in fresh snow at mountain area as a tracer for the discrimination between short- and long-range transport contributions. Anal. Sci. 2023, 39, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Bacardit, M.; Camarero, L. Atmospherically deposited major and trace elements in the winter snowpack along a gradient of altitude in the Central Pyrenees: The seasonal record of long-range fluxes over SW Europe. Atmos. Environ. 2010, 44, 582–595. [Google Scholar] [CrossRef]
- Wu, G.; Wei, Q.; Sun, C.; Gao, J.; Pan, L.; Guo, L. Determination of major and trace elements in snow in Tianjin, China: A three-heating-season survey and assessment. Air Qual. Atmos. Health 2015, 9, 687–696. [Google Scholar] [CrossRef]
- Moskovchenko, D.; Pozhitkov, R.; Zakharchenko, A.; Tigeev, A. Concentrations of Major and Trace Elements within the Snowpack of Tyumen, Russia. Minerals 2021, 11, 709. [Google Scholar] [CrossRef]
- Fournier, I.B.; Galvez-Cloutier, R.; Vincent, W.F. Roadside snowmelt: A management target to reduce lake and river contamination. Inland Waters 2020, 12, 47–60. [Google Scholar] [CrossRef]
- Elİk, A. Monitoring of Heavy Metals in Urban Snow as Indicator of Atmosphere Pollution. Int. J. Environ. Anal. Chem. 2002, 82, 37–45. [Google Scholar] [CrossRef]
- Siudek, P.; Frankowski, M.; Siepak, J. Trace element distribution in the snow cover from an urban area in central Poland. Environ. Monit. Assess. 2015, 187, 225. [Google Scholar] [CrossRef]
- Dinu, M.; Moiseenko, T.; Baranov, D. Snowpack as Indicators of Atmospheric Pollution: The Valday Upland. Atmosphere 2020, 11, 462. [Google Scholar] [CrossRef]
- Wang, X.; Pu, W.; Zhang, X.; Ren, Y.; Huang, J. Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China. Atmos. Environ. 2015, 114, 57–65. [Google Scholar] [CrossRef]
- Huang, J.; Kang, S.; Zhang, Q.; Guo, J.; Chen, P.; Zhang, G.; Tripathee, L. Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau. Chemosphere 2013, 92, 871–881. [Google Scholar] [CrossRef]
- Hu, Z.; Shi, Y.; Niu, H.; Cai, Y. Synthetic musk fragrances and heavy metals in snow samples of Beijing urban area, China. Atmos. Res. 2012, 104–105, 302–305. [Google Scholar] [CrossRef]
- Ajtony, Z.; Laczai, N.; Szoboszlai, N.; Bencs, L. Quantitation of Toxic Elements inVarious Water Samples by Multi-element Graphite Furnace Atomic Absorption Spectrometry. At. Spectrosc. 2014, 35, 33–42. [Google Scholar] [CrossRef]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.; Zheng, B.; Zhang, Q.; Huang, T.; Kimoto, T.; Chang, D.; et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 2015, 15, 2969–2983. [Google Scholar] [CrossRef]
- Engelhard, C.; De Toffol, S.; Lek, I.; Rauch, W.; Dallinger, R. Environmental impacts of urban snow management—The alpine case study of Innsbruck. Sci. Total Environ. 2007, 382, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Caritat, P.d.; Reimann, C.; Chekushin, V.; Bogatyrev, I.; Niskavaara, H.; Braun, J. Mass balance between emission and deposition of airborne contaminants. Environ. Sci. Technol. 1997, 31, 2966–2972. [Google Scholar] [CrossRef]
- Li, Y.; Long, Y.; Yang, H.; Huang, Z.; Huang, G. Atmospheric Deposition of Cadmium Around a Large Copper Smelter: Characteristics and Correlations with Meteorological Factors. Water Air Soil Pollut. 2023, 234, 188. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.; Han, Q.; Lin, X.; Yuan, H.; Wang, M.; Jiang, F.; Wang, W. Assessment of source-oriented health risk associated with the oral ingestion of heavy metals in dust within an iron/steel smelting-affected area of the North China Plain. Environ. Res. 2023, 237, 117101. [Google Scholar] [CrossRef]
- Liu, X.; Hu, J.; Wang, H.; Yang, L.; Zhang, H. Emission Inventory of Building Material Industry in Henan Province Based on Multisource Data Integration. Environ. Sci. 2023, 44, 1924–1932. [Google Scholar] [CrossRef]
- Lin, Y.; Yu, M.; Xie, F.; Zhang, Y. Anthropogenic Emission Sources of Sulfate Aerosols in Hangzhou, East China: Insights from Isotope Techniques with Consideration of Fractionation Effects between Gas-to-Particle Transformations. Environ. Sci. Technol. 2022, 56, 3905–3914. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, Y.; Chen, T.; Xu, Y.; Qi, M.; Sun, G.; Wu, X.; Chen, M.; Xu, W.; Liu, C. Combining Cd and Pb isotope analyses for heavy metal source apportionment in facility agricultural soils around typical urban and industrial areas. J. Hazard. Mater. 2024, 466, 133568. [Google Scholar] [CrossRef] [PubMed]
- Sosa Echeverría, R.; Alarcón Jiménez, A.L.; Torres Barrera, M.d.C.; Sánchez Alvarez, P.; Granados Hernandez, E.; Vega, E.; Jaimes Palomera, M.; Retama, A.; Gay, D.A. Nitrogen and sulfur compounds in ambient air and in wet atmospheric deposition at Mexico city metropolitan area. Atmos. Environ. 2023, 292, 119411. [Google Scholar] [CrossRef]
Sampling Site | Region | Longitude (°E) | Latitude (°N) | Type of Snow | Factories Nearby |
---|---|---|---|---|---|
A1N (0–3 cm) | YDQ | 113.9952 | 36.0569 | Surface snow | A |
A1N (3–6 cm) | YDQ | 113.9952 | 36.0569 | Subsurface snow | A |
A1S (0–3 cm) | YDQ | 114.0001 | 36.0449 | Surface snow | A |
A1S (3–6 cm) | YDQ | 114.0001 | 36.0449 | Subsurface snow | A |
B1N | YDQ | 114.0824 | 36.1073 | Surface snow | B |
B1S | YDQ | 114.0796 | 36.0958 | Surface snow | B |
C1N | YDQ | 114.0756 | 36.1829 | Surface snow | C, D |
C1S | YDQ | 114.0742 | 36.1509 | Surface snow | C, D |
C2N (0–3 cm) | YDQ | 114.0653 | 36.1749 | Surface snow | C, D |
C2N (3–6 cm) | YDQ | 114.0653 | 36.1749 | Subsurface snow | C, D |
C2S (0–3 cm) | YDQ | 114.0730 | 36.1560 | Surface snow | C, D |
C2S (3–6 cm) | YDQ | 114.0730 | 36.1560 | Subsurface snow | C, D |
F1N | YDQ | 114.2044 | 36.1392 | Surface snow | F |
F1S | YDQ | 114.2011 | 36.1308 | Surface snow | F |
G1N | YDQ | 114.2830 | 36.1604 | Surface snow | G, H, I |
G1S | YDQ | 114.2756 | 36.0839 | Surface snow | G, H, I |
J1N | LAQ | 114.2828 | 36.0358 | Surface snow | J, K, L |
J1S | LAQ | 114.2776 | 36.0173 | Surface snow | J, K, L |
J2N (0–5 cm) | LAQ | 114.2735 | 36.0404 | Surface snow | J, K, L |
J2N (5–10 cm) | LAQ | 114.2735 | 36.0404 | Subsurface snow | J, K, L |
J2S | LAQ | 114.2845 | 36.0097 | Surface snow | J, K, L |
J3N (0–5 cm) | LAQ | 114.2715 | 36.0476 | Surface snow | J, K, L |
J3N (5–10 cm) | LAQ | 114.2715 | 36.0476 | Subsurface snow | J, K, L |
J3S | LAQ | 114.2827 | 36.0224 | Surface snow | J, K, L |
M1N | LAQ | 114.2939 | 36.0140 | Surface snow | M |
M1S | LAQ | 114.2911 | 35.9967 | Surface snow | M |
M2N | LAQ | 114.2932 | 36.0101 | Surface snow | M |
M2S | LAQ | 114.2927 | 36.0017 | Surface snow | M |
N1N (0–5 cm) | LAQ | 114.3057 | 36.0277 | Surface snow | N, O |
N1N (5–10 cm) | LAQ | 114.3057 | 36.0277 | Subsurface snow | N, O |
N1S | LAQ | 114.3031 | 36.0130 | Surface snow | N, O |
Q1N | YDQ | 114.3214 | 36.1831 | Surface snow | Q |
Q1S | YDQ | 114.3213 | 36.1706 | Surface snow | Q |
Q2N | YDQ | 114.3230 | 36.1804 | Surface snow | Q |
Q2S | YDQ | 114.3215 | 36.1730 | Surface snow | Q |
S1N | TYX | 114.3477 | 35.8581 | Surface snow | S |
S1S | TYX | 114.3415 | 35.8423 | Surface snow | S |
S2N | TYX | 114.3467 | 35.8546 | Surface snow | S |
S2S | TYX | 114.3393 | 35.8471 | Surface snow | S |
LONGANQU * | LAQ | 114.1173 | 36.0473 | Surface snow | / |
YINDUQU * | YDQ | 114.2285 | 36.1605 | Surface snow | / |
TANGYINXIAN * | TYX | 114.3075 | 35.8255 | Surface snow | / |
GD1 * | LAQ | 114.4809 | 35.9804 | Surface snow | / |
GD2 * | YDQ | 114.2989 | 36.0662 | Surface snow | / |
GD3 * | TYX | 114.2434 | 36.0328 | Surface snow | / |
GD4 * | TYX | 114.3460 | 36.0013 | Surface snow | / |
GD5 * | LAQ | 114.2855 | 35.9718 | Surface snow | / |
GD6 * | LAQ | 114.3665 | 35.9658 | Surface snow | / |
GD7 * | LAQ | 114.3281 | 35.9036 | Surface snow | / |
GD8 * | LAQ | 114.1173 | 36.0473 | Surface snow | / |
GD9 * | TYX | 114.2285 | 36.1605 | Surface snow | / |
GD10 * | TYX | 114.3075 | 35.8255 | Surface snow | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Sun, Z.; Lei, W.; Xu, J.; Sun, Q.; Shen, Z.; Lyu, Y.; Shi, H.; Zhou, Y.; Zhang, L.; et al. A Reliable Medium for Monitoring Atmospheric Deposition near Emission Sources by Using Snow from Agricultural Areas. Atmosphere 2025, 16, 26. https://doi.org/10.3390/atmos16010026
Liu J, Sun Z, Lei W, Xu J, Sun Q, Shen Z, Lyu Y, Shi H, Zhou Y, Zhang L, et al. A Reliable Medium for Monitoring Atmospheric Deposition near Emission Sources by Using Snow from Agricultural Areas. Atmosphere. 2025; 16(1):26. https://doi.org/10.3390/atmos16010026
Chicago/Turabian StyleLiu, Jiayang, Zaijin Sun, Wenkai Lei, Jingwen Xu, Qian Sun, Zhicheng Shen, Yixuan Lyu, Huading Shi, Ying Zhou, Lan Zhang, and et al. 2025. "A Reliable Medium for Monitoring Atmospheric Deposition near Emission Sources by Using Snow from Agricultural Areas" Atmosphere 16, no. 1: 26. https://doi.org/10.3390/atmos16010026
APA StyleLiu, J., Sun, Z., Lei, W., Xu, J., Sun, Q., Shen, Z., Lyu, Y., Shi, H., Zhou, Y., Zhang, L., Wu, Z., & Pan, Y. (2025). A Reliable Medium for Monitoring Atmospheric Deposition near Emission Sources by Using Snow from Agricultural Areas. Atmosphere, 16(1), 26. https://doi.org/10.3390/atmos16010026