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Abstract: Alluvial parent material soil is an important soil type found on the Qinghai–Tibet Plateau
(QTP) in China. However, due to the limited age data for alluvial soils, the relationship between
alluvial geomorphological processes and soil pedogenic processes remains unclear. In this study,
three representative alluvial parent material profiles on the Buha River alluvial plain in the Qinghai
Lake Basin, northeast QTP, were analyzed using the optical luminescence (OSL) dating method.
Combined with physical and chemical analyses of the soil, we further analyzed the pedogenic process
of alluvial soil. The alluvial parent material of the Buha alluvial plain predominately yielded ages
between 11.9 and 9.1 ka, indicating that the alluvial soil began to form during the early Holocene.
The development of the alluvial soil on the first-order terrace presents characteristics of entisol with
multiple burial episodes, mainly between 8.5 and 4.0 ka, responding to the warm and humid middle
Holocene and high lake levels.

Keywords: Qinghai–Tibet Plateau; OSL dating; alluvial soil; soil genesis

1. Introduction

The soil of the Qinghai–Tibet Plateau (QTP) is critical for maintaining the ecological
security of the plateau. Therefore, understanding the formation and evolution of this
soil is necessary for reasonable soil conservation and sustainable utilization in the region.
Preliminary analysis suggests that formation of the plateau soil is closely related to the input
of aeolian dust, especially the development of meadow soil in mountainous areas [1–7].
The significant contribution of aeolian dust input in mountain soil formation has been
reported worldwide [8,9].

Alluvial soil is widely developed on the vast lakeside and alluvial plains, which
represent important components of the plateau soil. However, the formation and pedo-
genic processes of the alluvial soil have been rarely studied. Nevertheless, chronological
information on alluvial soil is key to understanding the relationship between the relevant
pedogenic process and climatic background. The pedogenic process can be simplified as a
function of time and climate change with a minor contribution from topography, parental
material, and vegetation. The well-documented paleoclimate record on the plateau pro-
vides an ideal data source for determining the climatic environment during the evolution
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of the soil [10]. Therefore, our study seeks to determine the formation ages of the soils.
In addition, studies of soil chronology can reveal the coupling processes underlying the
accumulation of alluvial soil and the erosion of mountain soil.

The Qinghai Lake Basin is located in the northeastern part of the Qinghai–Tibet
Plateau (Figure 1). Qinghai Lake, situated in the center of the basin, represents the largest
inland saltwater lake in China. The northwestern part of the lake basin is dominated by
alluvial–proluvial parent material types, which are mainly distributed on lakeside plains
and floodplain landforms. Alluvium is a type of migration parent material composed
of inorganic minerals [11]. Weathered detrital material is deposited after transportation
via river flow, and soil formation initiates. Therefore, the alluvial material represents the
parent material of the soil. Precise determination of the age of the parent material in the soil
formation layer is of major importance, as it delineates the maximum age of the soil [4].
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Previous studies found that optical stimulated luminescence (OSL) dating is suitable
for measuring the alluvial and colluvium of rivers [12,13]. Previous studies have focused
on the formation age of the alluvial fans around the Qinghai Lake Basin, providing a
framework for the evolution of the basin. The age of the oldest dated alluvial–proluvial
fan in the southern Qinghai Lake is about 38.8 ka [14]. However, the age of river alluvium
in the northeast part of the lake may be older than 100 ka [15]. Samples from the eastern
alluvial–proluvial profile were dated to about 102.5 ka [14]. The youngest age of the alluvial
fan in the Qinghai Lake Basin is about 34–21 ka [16]. However, results on the age of
alluvial parent soil in the Qinghai Lake Basin are still unclear. In this paper, we selected
three representative profiles of alluvial soil for chronological analyses in the Buha River
alluvial plain, the largest basin in the west of Qinghai Lake (Figure 1). Here, we combine
chronological data with studies on the physical and chemical characteristics of the alluvial
soil to reveal the pedogenic process of alluvial soil in the Qinghai Lake Basin.

2. Study Area

The Qinghai Lake Basin is located at an elevation of 3059–5303 m in the northeastern
part of the Qinghai–Tibet Plateau, with an area of 29,661 km2. This basin is a closed
intermountain inland type, sloping from northwest to southeast. The relative height
difference from the lake to the foothills is more than 2000 m, and the eroded structures,
accumulation landforms, and aeolian geomorphology in this space developed as rings
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with different widths. The Qinghai Lake Basin is characterized by a temperate semi-arid
continental climate [17,18]. Gangcha weather station (1975–2011) located 10 km to the north
of Qinghai Lake indicates that the area has an average annual temperature of −0.6 ◦C and
total precipitation of 370 mm [5]. The main rivers in the basin include the Buha River,
Shaliu River, and Hargai River (Figure 1). The Buha River, originating from the branch of
the Qilian Mountains at the northern foot of the Mantan Rigeng Peak of Shule Nanshan,
with the largest amount of water and the longest flow into Qinghai Lake, contributes about
54% of the total runoff and occupies 50% of the area in the Qinghai Lake Basin.

The Qinghai Lake Basin includes three uplift belt units—Datong Mountain, Nanshan
Mountain, and Tuanbaoshan Riyue Mountain; three graben tectonic units—Buha River,
Daotang River, and Ganzi River; and the Qinghai Lake fault basin [19]. According to
geological investigations, the Buha River Basin is mainly composed of mountains with a
combination of gneiss and quartz sandstone, with an alluvial plain landform type [20]. The
soil types in the Qinghai Lake Basin mainly include alpine meadow soil, black calcareous
soil, chestnut calcareous soil, grassland soil, sandy soil, desert soil, and saline soil. Different
vegetation grows under different soil types and moisture conditions, and alpine meadows
and grasslands are widely distributed within the watershed [21]. In addition, the water
volume of Qinghai Lake is mainly supplied by rivers [22]. There are five rivers in the basin,
namely Buha River, Shaliu River, Halgai River, Quanji River, and Heima River. Buha River
and Shaliu River in the northwest provide the main water supply with large river runoff,
accounting for 48.7% and 15.3% of Qinghai Lake’s inflow [23].

3. Samples and Analytical Methods
Sample Profiles

The soil profile data of alluvial parent material investigated in our study were mainly
sampled along the Buha River in the western Qinghai Lake Basin (Figure 1). This material
was collected along three representative profiles at an average altitude of about 3300 m
(Figure 2g). The soil samples exhibited characteristics of typical entisol and embryonic soil,
with chestnut soil and meadow soil representing the main soil types. The Maohong (MH)
and Tianjun (TJ) soil profiles were obtained from second-level alluvial–proluvial terraces
of the Buha River. The Tianjun Xisha (TJXS) profile was samples on the first terrace of the
Buha River (Table 1).
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Table 1. Summary of studied soil profiles in the Qinghai Lake Basin.

Name Latitude Longitude Altitude
/m Soil Type Landform Type

Maohong 37.1934◦ 99.2251◦ 3346 Prototype soil Alluvial–proluvial terraces (second-level
terraces of the Buha River)

Tianjun 37.2559◦ 99.0807◦ 3384 Prototype soil Alluvial–proluvial terraces (second-level
terraces of the Buha River)

Tianjunxisha 37.2119◦ 99.1720◦ 3348 Entisol First-level terraces of the Buha River

The Maohong profile (MH) is located on the second terrace of the Buha River (Figure 2d);
the profile thickness of the whole layer is 50 cm. In addition, a 10 cm grass root system
developed on the surface layer, followed by a grass mat layer. Sandy soil with 10 cm thickness
at the lower part directly overlies the lower river gravel layer (Figure 2a), with thickness of
almost 35 cm and grassroots distributed at different depths throughout the profile. A small
amount of gravel intrusion occurs at a depth of 45 cm in the profile. A thick river gravel layer
more than 5 m deep constitutes the lower part of the profile. OSL samples were collected at
15 cm, 30 cm, and 45 cm.

The Tianjun profile (TJ) is located on the second-level alluvial–proluvial terrace of the
Buha River and has a thickness of 65 cm (Figure 2e). A grass mat layer is present in the
uppermost 15 cm, and a humus layer occurs between 15 and 60 cm. The soil layer contains
fine particles above 30 cm and more coarse particles below 30 cm. A thick alluvial–proluvial
gravel layer constitutes the bottom of the profile. Three OSL samples were collected at
intervals of 20 cm, and one additional OSL sample was collected from the lower sandy lens
of the alluvial gravels (Figure 2b).

The entire soil profile of TJXS is exposed due to river erosion (Figure 2f). The thickness
of the profile is about 138 cm, with multiple layers of river sand occurring in the middle
section. The bottom of the profile is composed of a gravel layer (Figure 2c) 3 m higher than
the modern river level. OSL samples were collected from the profile at 20 cm, 50 cm, 85 cm,
115 cm, and 136 cm.

4. Results
4.1. Luminescence Characteristics

OSL dating was carried out at the Laboratory of Qinghai Normal University after
dating samples were pretreated under subdued red light. Quartz grain of 63–90 µm was
extracted following the method of E et al. (2018) [24]. Quartz purity was assessed using an
IR depletion ratio test (Duller, 2003) [25]. Equivalent doses (De) were determined via the
single-aliquot regenerative-dose (SAR) protocol [26]. All De measurements were carried
out on a standard Risø TL/OSL DA-20 reader [27]. The quartz OSL decay curve and growth
curve for samples TJXS-1 are represented in Figure 3. Here, the quartz OSL signal quickly
decreased to background noise in the first 2 s, indicating a fast component. We applied a
preheating temperature of 240 ◦C for 10 s and a cut-heat temperature of 200 ◦C to determine
De for the TJXS-1 sample (Figure 3). The decay curve and growth curves for the other
two samples are presented in Appendix A.

Typically, 11–18 aliquots were measured for each sample, and the weighted mean
De (with one standard error of uncertainty) was calculated. The rejection criteria were
restricted via two test measurements (e.g., 0.9 < R5/R1 < 1.1 and R4/ N < 5%). The
concentrations of U, Th, and K were determined with inductively coupled plasma mass
spectrometry (ICP-MS) and converted to beta and gamma dose rates using the conversion
factors reported by Guérin et al. (2012) [28]. The cosmic ray dose rate was calculated for
each sample following the method of Prescott and Hutton (1994) [29]. An internal dose
rate of 0.01 ± 0.002 Gy ka−1 was set based on the work of Vandenberghe and Tremblay
(2008) [30]. The water content was assumed to be 15 ± 7% due to the samples’ proximity to
the river.
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4.2. OSL Dating of Alluvial Parent Material in the Qinghai Lake Basin

The age of the contact area between the bottom of the MH profile and the overlying
gravel layer at a 40 cm depth is 11.9 ± 0.9 ka, indicating the formation of alluvium in the
last deglacial period. The age of the soil at a 30 cm depth is 11.0 ± 1.1 ka, and the age of
the soil near the surface (at a 15 cm depth) is ~1.6 ± 0.1 ka. These ages indicate a hiatus
interval of about 9 ka at a depth of 30 to 15 cm.

The age at the contact point between the gravel layer and soil layer (60 cm depth)
in the TJ profile is 10.0 ± 0.6 ka, and the lens of the underlying gravel layer (80 cm
depth) is 10.5 ± 0.6 ka, indicating the almost simultaneous development of soil and alluvial
deposition. The ages of the upper 20 cm grass mat layer and the 40 cm humus layer are
6.0 ka and 9.8 ka, respectively.

The ages of the TJXS profile are 3.9 ± 0.2 ka at a 20 cm depth, 6.2 ± 0.3 ka at an 85 cm
depth, 8.5 ± 0.5 ka at a 115 cm depth, and 9.1 ± 0.6 ka at a 136 cm depth at the bottom of the
profile. As the TJSX profile represents the variable characteristics of the sand and silt layer,
all these OSL data for TJSX indicate different periods of alluvial soil formation (Table 2).

Table 2. Summary of the OSL dating results for alluvial parent soil in the Qinghai Lake Basin.

Sample
No.

Depth
/m

Th
(ppm)

U
(ppm)

K
(%)

Dose Rate
/(Gy/ka)

Particle
Size /µm

Number
/discs

De
/Gy

Age
/ka

MH1 0.15 13.7 ± 0.7 2.5 ± 0.4 1.7 ± 0.04 3.4 ± 0.15 63–90 17 5.4 ± 0.2 1.6 ± 0.1
MH2 0.3 12.4 ± 0.7 2.4 ± 0.4 1.6 ± 0.04 3.13 ± 0.14 63–90 16 34.7 ± 3.0 11.1 ± 1.1
MH3 0.45 11.9 ± 0.7 2.3 ± 0.4 1.6 ± 0.04 3.07 ± 0.14 63–90 14 36.5 ± 2.1 11.9 ± 0.9
TJ1 0.15 10.5 ± 0.7 2.4 ± 0.4 1.4 ± 0.03 2.87 ± 0.13 63–90 17 17.4 ± 0.4 6.1 ± 0.3
TJ2 0.3 11.4 ± 0.7 2.9 ± 0.4 1.5 ± 0.04 3.08 ± 0.14 63–90 18 30.3 ± 0.8 9.8 ± 0.6
TJ3 0.4 12.7 ± 0.7 3.5 ± 0.4 1.8 ± 0.04 3.53 ± 0.16 63–90 16 35.2 ± 1.2 10.0 ± 0.6
TJ4 0.6 17.6 ± 0.7 3.2 ± 0.4 2.2 ± 0.04 4.07 ± 0.18 63–90 17 42.7 ± 1.3 10.5 ± 0.6

TJXS1 0.2 10.0 ± 0.7 2.6 ± 0.4 1.7 ± 0.03 3.1 ± 0.14 63–90 17 12.1 ± 0.3 3.9 ± 0.2
TJXS2 0.85 8.7 ± 0.6 2.0 ± 0.3 1.6 ± 0.03 2.71 ± 0.12 63–90 17 16.8 ± 0.5 6.2 ± 0.3
TJXS3 1.15 12.7 ± 0.7 2.0 ± 0.3 1.9 ± 0.04 3.24 ± 0.14 63–90 11 27.5 ± 1.2 8.5 ± 0.5
TJXS4 1.36 15.3 ± 0.8 2.2 ± 0.4 2.2 ± 0.04 3.46 ± 0.16 63–90 16 31.4 ± 1.7 9.1 ± 0.7

4.3. Soil Grain Size and Organic Matter Content Analyses

The studied soil samples possess typical alluvial characteristics according to the results
of the particle size measurements. These soils are mainly composed of sand and silt, with
the grain sizes varying significantly at different depths and in different sedimentary strata.
Notably, the samples comprised 72.6% sand (Figure 4). The results of the three types of soil
particle size distribution curves are shown in Figure 5. Here, the soil particle size curves of
the MH and TJ profiles are basically consistent, showing a bimodal distribution, with the
main peak mainly concentrated at 50 µm. The soil particle size curve of the TJXS profile
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also shows a bimodal distribution but varies with high frequency and amplitude. The main
peak particle size is concentrated at 900 µm, indicating strong hydrodynamic conditions.

The median particle size of the MH profile shows a significant upward trend, with a
decrease in organic matter content. At a depth of 20–30 cm, the median particle size of the
TJ profile slightly decreases, while the organic matter content shows an opposite trend to
the average particle size curve. The median particle size of the TJXS profile ranges from
12 to 215 µm, with an average value of 79.1 µm. The soil organic matter content of TJSX
ranges from 16.1 to 45.6 g/kg—much higher than that of MH and TJ—with a slight increase
from the bottom to the surface (Figure 5).
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5. Discussion

The OSL ages of alluviums from different soil profiles reflect the formation age of
the alluvial parental materials (Figure 5), indicating the maximum age of the alluvial soil
formation. All of the studied soil profiles formed during the Holocene. The initial age of
alluvial soil was concentrated in the early Holocene (9.1–11.9 ka). Here, the initial OSL
ages of the TJ (10.5 ka) and MH (11.9 ka) profiles on the second terrace are slightly older
than the age of TJSX (9.1 ka) on the first terrace. Thus, the general fluvial geomorphological
process should be mainly controlled while considering the base level of erosion, i.e., the
Qinghai Lake level.

The lake level of Qinghai Lake in the Early Holocene was about 10 m lower than the
modern lake level [31]. Moreover, the drop of the erosion base promoted the erosion of
upstream materials. During this time, the Buha River was dominated by downcutting,
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with the gravel stratum indicating a high-energy environment and strong hydrodynamic
conditions. As the river cut through and formed river terraces or exposed land surfaces,
vegetation started to grow on the alluvium, which serves as the initial soil-forming parent
material in the process of soil pedogenesis. However, with the subsequent increase in
vegetation cover, the accumulation of abundant aeolian dust material on the plateau
became the dominant soil formation process. The second terrace is 10 m higher than the
first, making it difficult for the Buha River to impact. Thus, the alluvial process changed
to an aeolian sand and atmospheric dust deposition process. The striking similarities
in soil grainsize between the upper soils and dust fall indicate that the upper soil was
mainly developed through aeolian dust accumulation, which is consistent with the results
of previous studies in the Three River Source Region on the plateau [7]. However, the
relatively low SOM content likely indicates weak pedogenic intensity; the temperature
increased with relatively high-frequency and -amplitude oscillations and there were strong
aeolian activities during the early Holocene. During the middle Holocene, the temperature
remained relatively high and stable, with the weakest aeolian activities and intensified
pedogenesis. During the late Holocene, the temperature decreased at a relatively high
amplitude, with renewed aeolian activities and weak pedogenesis [10,32]. The climatic
system exhibits greater complexity in the Qinghai Lake Basin, situated at the periphery
of the East Asian Summer Monsoon and the Indian Summer Monsoon influences, as
compared to other sectors of the Qinghai–Tibet Plateau [33]. Therefore, we propose that the
end of the last deglacial period and the early stage of the Early Holocene represented major
formation periods for alluvial parental material in the alluvial plain of the Buha River.

However, during the middle Holocene, the Qinghai Lake level gradually increased
from ~8 ka to ~10 m higher than the modern lake by ~6 ka [31,34]. The rise in the erosion
base level diminished the downcutting erosion ability of the Buha River, with the dominant
mode being lateral erosion. The TJXS profile on the first-order terrace indicates frequent
increases in sand content but fewer gravel and silt-sandwiched sand layers (Figure 6),
indicating a relatively low-energy environment and weak hydrodynamic conditions. Soils
frequently developed on these alluviums and were buried by subsequently deposited
alluvial materials. The river sand exposed to the surface was nutrient-rich soil, directly
supporting the growth of vegetation. Vegetation serves as a natural dust collector and
captures silt-sized dust. Subsequently, another stronger fluvial event occurred with alluvial
deposition, burying the previously developed soil. Until the height of the soil profile
became high enough that the Buha River could not wash across the riverbanks, alluvium
was not deposited. However, aeolian dust was continuously deposited during this period.
In the TJSX profile, frequent alluvial deposition occurred during 8.5–4.0 ka. At least three
layers of paleosols developed from this alluvium, responding to the rising lake level
and warm–wet climate conditions [18,31,32,34–42]. The remarkably high SOM content in
TJSX indicates high vegetation productivity during the middle Holocene, suggesting an
intensified pedogenic period. Therefore, the middle Holocene would have represented a
significantly intensified developmental period for alluvial soils. The magnetic susceptibility
of aeolian dust is a sensitive proxy for soil development and also indicates intensified soil
development in Qinghai lake during 8.5–4.0 ka [32]. Figure 7C shows the intensity variation
of the East Asian summer monsoon, indicating a stronger EASM from ~8 to 3 ka and the
maximum monsoon (30% higher precipitation than present) from ~7.8 to 5.3 ka [39,43,44],
which is consistent with the timing of alluvial soil development. The increased frequency
of palaeosol indicates intensified soil development from ~8.6 to 3.2 ka in the Chinese Loess
Plateau [45]. This intensified soil development based on different parent materials was
mainly concentrated during the middle Holocene, indicating that climate was the dominant
factor in soil development, rather than the parent material or landform.
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The median grain size in the TJ and MH profiles is primarily composed of medium
silt, which is much finer than silt in the TJSX profile. The grain size frequency distribution
curves in the TJ and MH profiles resemble the atmospheric dust fall at Xiaobohu station in
the eastern portion of Qinghai Lake [4,46]. This result indicates that the soils on second
terrace of Buha River mainly follow the “wind dust accretion type” mode on the upper
profile [4–6]. The bottom soils on the second terrace and top soil on the first terrace represent
an “alluvial parent material with aeolian dust accumulation” type, which is similar to the
alpine meadow soil in the Three River Source Region [7].

The similarities show that the upper soil mainly developed via the accumulation of
aeolian dust, consistent with previous studies. This process followed a “wind dust accretion
type” mode of accumulation [4,5,31]. Based on the early alluvial process, the soil formation
mode of alluvial soil in Qinghai Lake represents an “alluvial parent material with aeolian
dust accumulation” type, similar to that of the alpine meadow soil in the Three River Source
Region studied by Xianba et al., 2022 [7] (Figure 7).

6. Conclusions

Fluvial geomorphological processes and fluctuations in the lake level have important
impacts on the formation of alluvial soil and pedogenesis processes in the Qinghai Lake
Basin. The initial formation age of the alluvial parent material in the Qinghai Lake Basin
is between 11.9 and 9.1 ka, while the formation ages of the alluvial soil are concentrated
between 8.5 and 4.0 ka. Most alluvial soils formed during the middle Holocene.

1. The alluvial parent material in the Qinghai Lake Basin was buried several times during
the middle Holocene, which was affected by the warm and wet climatic condition
during that period. Soil pedogenesis and humus accumulation during 8.5–4 ka were
relatively strong in response to the high lake levels.

2. The underlying alluvial parent material is characteristic of typical fluvial sediment
and mainly composed of gravel and river sand components, while the upper soil
is characteristic of wind dust. Therefore, alluvial soils followed the “alluvial parent
material with aeolian dust accumulation mode” in the Qinghai Lake Basin.

The Qinghai Lake Basin covers a vast area and has many types of parent materials.
However, the content of this study is limited. Only the typical alluvial parent material types
in the Buha River basin were studied, with minimal consideration of age or the physical
and chemical properties of other types of parent materials. In addition, few profiles have
been considered. In future research, we should collect and study other different types of
parent material profiles in the Qinghai Lake basin.
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