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Investigating Different Interpolation

Methods for High-Accuracy VTEC

Analysis in Ionospheric Research.

Atmosphere 2024, 15, 986. https://

doi.org/10.3390/atmos15080986

Academic Editors: Nigang Liu and

Si Liu

Received: 9 July 2024

Revised: 5 August 2024

Accepted: 16 August 2024

Published: 17 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Investigating Different Interpolation Methods for High-Accuracy
VTEC Analysis in Ionospheric Research
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Abstract: The dynamic structure of the ionosphere and its changes play an important role in compre-
hending the natural cycle by linking earth sciences and space sciences. Ionosphere research includes
a variety of fields like meteorology, radio wave reflection from the atmosphere, atmospheric anomaly
detection, the impact on GNSS (Global Navigation Satellite Systems) signals, the exploration of
earthquake precursors, and the formation of the northern lights. To gain further insight into this layer
and to monitor variations in the total electron content (TEC), ionospheric maps are created using a
variety of data sources, including satellite sensors, GNSS data, and ionosonde data. In these maps,
data deficiencies are addressed by using interpolation methods. The objective of this study was to
obtain high-accuracy VTEC (Vertical Total Electron Content) information to analyze TEC anomalies as
precursors to earthquakes. We propose an innovative approach: employing alternative mathematical
surfaces for VTEC calculations, leading to enhanced change analytical interpretation for anomaly
detections. Within the scope of the application, the second-degree polynomial method, kriging
(point and block model), the radial basis multiquadric, and the thin plate spline (TPS) methods were
implemented as interpolation methods. During a 49-day period, the TEC values were computed at
three different IGS stations, generating 1176 hourly grids for each interpolation model. As reference
data, the ionospheric maps produced by the CODE (Center for Orbit Determination in Europe)
Analysis Center were used. This study’s findings showed that, based on statistical values, the TPS
model offered more accurate results than other methods. Additionally, it has been observed that the
peak values in TEC calculations based on polynomial surfaces are eliminated in TPSs.

Keywords: interpolation; ionosphere; TEC

1. Introduction

The ionosphere layer, which is a region of Earth’s upper atmosphere, has an impor-
tant role in the propagation of radio waves, the operation of worldwide communication,
geomagnetic storm impact studies, navigation systems, and earthquake precursor stud-
ies. Ionospheric studies are critical for understanding the intricate interactions that occur
within this atmospheric layer, as well as the variables that influence its fluctuation. The
concentration of free electrons along a receiver-satellite signal path, measured as the TEC,
is an essential statistic for monitoring ionospheric activity. The introduction of Global Navi-
gation Satellite Systems (GNSS) has provided a dense satellite network for the continuous
monitoring of the TEC, resulting in a great contribution to the field of ionospheric research.

Several international organizations and analytical centers, like the International GNSS
Service (IGS), the Center for Orbit Determination in Europe (CODE), and the Jet Propulsion
Laboratory (JPL) and so on, have an essential part in furthering ionospheric research by
producing global ionospheric maps (GIMs). These maps are useful for visualizing the spa-
tial and temporal fluctuations in the total electron content (TEC) across Earth’s ionosphere.
These analysis centers use mathematical models that combine data from different GNSS
satellites to provide a comprehensive picture of ionospheric electron density distribution.
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For different studies, GIMs were used as source data for studies or reference data to com-
pare and calculate the accuracies of the studies [1–3]. To generate continuous ionospheric
maps by estimating values at unsampled locations, different interpolation techniques are
implemented. Researchers are executing and improving interpolation algorithms in order
to increase the accuracy of global/regional ionospheric maps. The study referenced in [4]
applied a kriging interpolation algorithm to improve the global ionospheric maps of UPS
(Technical University of Catalonia) produced using GPS measurements. As a result of the
study, the RMS (root mean square) of the STEC (slant total electron content) values was
improved by 16% over the UPS GIM and by 2% over the IGS GIM. When a comparison
was made of the VTEC values retrieved from TOPEX/Poseidon and JASON altimetry data,
the RMS improved by 0.3 TECU (6%) and 0.1 TECU (3%), respectively. Ref. [5] produced a
regional ionospheric map using un-differenced carrier phase data of multi-GNSS measure-
ments to estimate the TEC values by applying the thin plate spline interpolation method.
The RMS values of the produced regional ionospheric map were compared to those of
the IGS, UPC, JPL, CODE, and ESA TEC maps and it was shown that for every station
and day used, the accuracy of the regional map is higher than the accuracy of the maps of
analysis centers. Ref. [6] applied two different weighting algorithms, which are the simple
weighting (WS) algorithm using satellite angles for the weighting step, and the modified
sine weighting (WMS) algorithm defined by the authors as using both satellite angles and
azimuth angles to assess the local solar effect, and three different interpolation algorithms,
which are linear, natural break, and nearest neighbor, in three IGS stations located in low-
latitude, mid-latitude, and high-latitude zones on the days when space weather conditions
were the most disturbed and quietest in 2014. The IGS GIM VTEC values were used as
the reference data. As a result of the study, they found that although the WMS slightly
outperformed the WS function in terms of the results, there are not appreciable distinctions
between the weighting functions. Furthermore, surface interpolation techniques yield
more accurate results than simple weighting strategies; yet, at high latitudes, weighting
techniques outperform the nearest-neighbor method. And on the most disturbed and
quietest days, there is no obvious distinction between the TEC and IGS-VTEC. Ref. [7] con-
ducted research to examine several ionospheric models created by different interpolation
techniques (inverse distance weighting, radial basic functions, global and local polynomial
interpolation, kriging (ordinary, simple, universal, etc.) that the ArcGIS Geostatistical
Analyst toolbox provided. They used GNSS measurements to calculate the TEC values. To
compare the models, the indicator of the parametric assessment of the quality of estimation
(MPQE) produced by themselves was used. The results of the analysis revealed that the
local polynomial interpolation approach produces the fewest mistakes among the subjects.
Ref. [8], in order to better understand the consequences of seismic activity on the TEC
levels, investigated an earthquake with a magnitude of Mw: 6.8 that occurred in Morocco
in 2023. GNSS signals from 11 stations were used to calculate the TEC values, the kriging
interpolation method was used for spatial mapping, and the 15-day moving average and
standard deviation were used to create limit values for the anomaly graphs. The negative
and positive anomalies that occurred were evaluated. In addition, the Dst, Kp, and F10.7
space weather parameters were investigated to find out how space weather conditions
affect the TEC values. Finally, InSAR processing was carried out using Sentinel-1 satellite
data to track ground changes. The study found a correlation between the abrupt uplift
(~15 cm) observed in the InSAR evaluation and positive TEC anomalies 1 week before the
earthquake. Ref. [9] investigated the possible TEC precursors associated with the Mexico
earthquake (Mw: 7.2) that occurred on 4 April 2021. They used data from 200 CORSs (Con-
tinuously Operating Reference Stations) to calculate the TEC fluctuations. It was reported
that there was a noticeable negative anomaly two days prior to the earthquake, and that the
Kp and Dst space climate indices remained steady throughout the study period. Ref. [10]
examined ionospheric disturbances as potential precursors to the 21 May 2021 earthquakes
in Yangsbi (Ms: 6.4) and Maduo (Ms: 7.4) in China. To determine GPS TEC anomalies, they
employed the sliding quartile approach with data from 113 GPS stations and GIM TEC.
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To acquire the temporal and spatial distribution of the TEC anomalies, natural neighbor
interpolation (NNI) was applied as an interpolation method. After removing the days
with high space weather conditions from the anomaly days, they observed that there were
TEC anomalies dispersed around the areas of the earthquakes, which may be connected to
the earthquakes. According to the study’s findings, the earthquake under investigation
had an impact on the ionosphere through the thermal and electric field branches within
the structure of the LAIC (Lithosphere–Atmosphere–Ionosphere Coupling) mechanism.
Ref. [11] analyzed the potential earthquake precursors in terms of b-value analysis, Poisson
probability, and TEC variations for the 2022 Colima/Mexico Earthquake (Mw: 7.7). The
study examined 57 CORSs for TEC variations 45 days before the earthquake using GPS-TEC
analysis software developed by [12]. Natural neighbor interpolation was utilized for the
spatial distribution map. After eliminating the effects of space weather conditions, the anal-
ysis found that several negative TEC anomalies with low b-values (averagely 0.87 ± 0.02)
appeared before the earthquake, indicating a high earthquake possibility with a Poisson
probability of 82%.

Many studies in the literature have utilized variations in the ionosphere as earthquake
precursors. To detect ionospheric changes, TEC values are estimated using specific mathe-
matical functions. Additionally, there have continually been numerous studies employing
different methodologies to estimate TEC values. It is crucial that the mathematical functions
used to calculate and interpret anomalies as earthquake precursors accurately represent
the TEC values. The misbehavior of TEC values due to incorrect or incomplete modeling
can lead to errors in the interpretation of anomalies. Various interpolation techniques
(polynomial, kriging, radial basis functions, natural neighbor, etc.) and methods like ANN
(Artificial Neural Network) continue to be carefully examined in the literature for TEC
value estimation. In this study, the aim was to see the effects of different interpolation algo-
rithms on the calculation of TEC values and interpretations as earthquake precursors. For
this purpose, to calculate the TEC values in the zenith direction of stations, four different
interpolation algorithms, which include the second-degree polynomial method, kriging
(point and block model), the radial basis multiquadric, and the thin plate spline methods,
were implemented on the TEC values produced by GPS (Global Positioning System) data
from three IGS stations for every hour of the 49-day period. IONEX (Ionosphere Exchange)
files of the CODE Analysis Center were utilized as the reference data and several accu-
racy metrics were generated to provide a comprehensive comparison. Lastly, using the
interpolation method with the best accuracy, anomaly graphs of an example earthquake
were generated and compared with the old anomaly graphs from the study in Ref. [13].
Additionally, this reference can provide information regarding the connection between
ionospheric anomalies and earthquakes.

2. Materials and Methods

In this study, the earthquake that occurred in Chignik, Alaska/USA, in 2021, with a
moment magnitude of Mw: 8.2 and a focal depth of 32.2 was used. Figure 1 displays the
study area, and the stations that were evaluated. The radius of the earthquake preparation
area was calculated using the Dobrovolsky formula (Rkm = 100.43M) [14] and was found to
be 3357.376 km.

Because of the ionosphere layer’s acceleration and delay effects on GNSS signals, the
amount of TEC in the ionosphere can be calculated. Observation data from three IGS
stations (WHIT, DRAO, MKEA), satellite ephemeris data, and ionospheric data from the
CODE Analysis Center were downloaded from the NASA/CDDIS (National Aeronautics
and Space Administration/Crustal Dynamics Data Information System) center [15]. The
TEC values of IPPs (Ionospheric Piercing Points) were calculated using smoothed code
measurements of GPS observations. In Figure 2, an instance demonstration of IPPs is given.
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The general equation of the GNSS code observation is given in Equation (1).

PF = ρF + c(∆tr − ∆ts) + T + IF + c(DCBs + DCBr) + α (1)

where PF is code observation (F = 1, 2), ρF is the geometric distance between the satellite
and receiver, c is the velocity of the light in vacuum, ∆tr is the receiver clock error, ∆ts is the
satellite clock error, T is the tropospheric effect, IF is the ionospheric effect. The differential
code biases of the satellite and the receiver are denoted by DCBs and DCBr, respectively.
The relevant DCB values were obtained from IONEX files from the CODE Analysis Center.
Lastly, α is the state noise of signal.

Code measurements were smoothed using the RNXSMT program in Bernese v5.4 soft-
ware to remove outliers and cycle slips [16]. Calculations of smoothed code measurements
are given in Equation (2).

∼
P1(t) = ϕ1(t) + P1 − ϕ1 + 2 f 2

2
f 2
1 − f 2

2

((
ϕ1(t)− ϕ1

)
−
(
ϕ2(t)− ϕ2

))
∼
P2(t) = ϕ2(t) + P2 − ϕ2 + 2 f 2

1
f 2
1 − f 2

2

((
ϕ1(t)− ϕ1

)
−
(
ϕ2(t)− ϕ2

)) (2)

where
∼
PF(t) is the smoothed code measurement (epoch t and frequency F = 1, 2). ϕF(t)

is the carrier phase measurement (epoch t and frequency F = 1, 2) and PF − ϕF is the
mean difference between all the accepted code and phase measurements in the current
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observation arc on frequency F = 1, 2 [16]. After the smoothing step, frequency-independent
effects will be eliminated by creating geometry-free combinations (Equation (3)).

Ps
4,r =

∼
P1 −

∼
P2 = 40.3

(
1/
(

f 2
1

)
− 1/

(
f 2
2

))
STECs

r + DCBs + DCBr (3)

STEC values along the receiver-to-satellite path can be computed using Equation (4):

STECs
r =

1
40.3

(
f 2
1 f 2

2
f 2
2 − f 2

1

)(
Ps

4,r − c(DCBs + DCBr)
)

(4)

STECs
r is the slant total electron content, f1 and f2 refer to the signal frequencies of the carrier

wave, Ps
4,r is the difference in the smoothed codes between

∼
P1 and

∼
P2, c is the velocity of

light. After calculation of the STEC values of IPPs, various interpolation methods were
applied to determine the STEC values in the receiver’s zenith direction. For the STEC value
in the zenith direction of a station, only STEC values of IPPs calculated from that station
and satellites were used as reference points in the interpolations. IONEX files from the
CODE Analysis Center were used to investigate the accuracies of calculated STECs. STEC
values of the station’s zenith direction were obtained using the grid interpolation method
as a suggestion from Ref. [17] in the IONEX: Ionosphere Map Exchange Format Version 1.1
file. As accuracy metrics, standard deviation, RMSE, R2, d (Index of Agreement), Pearson’s
correlation coefficient, c (the confidence index), and KGE (Kling–Gupta efficiency) were
used. The best interpolation model for this study was selected and it was executed in the
following steps.

To calculate the VTEC of IPPs from STEC values, the modified single layer model
(MSLM) mapping function M(z) was used (Equation (5)):

VTEC =
STEC
M(z)

, M(z) =
1√

1 − sin2z’
, z’ = sin−1

(
Re

Re + H
sin(αSLMz)

)
(5)

where Re is the radius of Earth (6371 km), H is the orthometric height of the single layer
model for the ionosphere (450 km determined by CODE Analysis Center), αSLM is the
geocentric angle in the single layer model of the ionosphere, and z states the zenith angle
of the relevant satellite. Following the calculation of the VTEC values of the ionospheric
piercing points, the selected interpolation method was applied to determine the VTEC
value in the receiver’s zenith direction. As a final step, anomaly graphs were generated
by using the moving median method on the interquartile range. In this method, using
the VTEC values from the first 15 days of the data range, the limit boundaries for the
16th day were determined. Then, the limit boundaries for the 17th day were determined
using the VTEC values between the 2nd day and the 16th day. The process continued
in this way over a moving median with a sliding window. Since the boundary values
are determined based on the VTECs obtained from interpolation methods, each method
has its own specific boundaries which are created and evaluated accordingly. The limit
boundaries set by Ref. [18] were implemented (Equation (6)), resulting in a probability of
approximately 65% for a new TEC value between LB and UB. Values that exceeded the
limitations are displayed as anomalies in the graphs.

UB = M + 1.5(UQ − M)
LB = M − 1.5(M − LQ)

(6)

where UB refers to upper bound, M is median value, LB is lower bound, UQ and LQ are
upper and lower quartiles, respectively.

2.1. Interpolation Methods

Interpolation is an important mathematical technique that plays a fundamental role in
data analysis, modeling, and prediction processes in engineering fields. This method is used
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to estimate the values of a continuous function with information extracted from incomplete
or limited datasets. Interpolation comes with a wide range of applications; it is used in
geodetic applications, geographic information systems, image processing, engineering
designs, and many other areas. In this section, it will focus specifically on interpolation
methods such as polynomial interpolation, kriging interpolation, and radial basis functions.
The mathematical foundations and brief introductions of these interpolation methods used
within the scope of the application will be given in this section.

• Polynomial Interpolation Method

Polynomial interpolation is an advanced interpolation technique that strives to identify
the most suitable polynomial function for the given data [19]. For this study, polynomial
surface coefficients were estimated using TEC values and locations using IPPs by the least
squares method. The receiver’s latitude and longitude were inserted into the equation, and
the TEC value in the zenith direction of the receiver was computed [13].

TEC(φIPP, λIPP) = a0 + a1 φIPP + a2λIPP + a3 φ2
IPP + a4 φIPPλIPP + a5λ2

IPP (7)

φIPP = Latitude of the ionosphere piercing point in the solar fixed reference system.
λIPP = Longitude of the ionosphere piercing point in the solar fixed reference system.
ai = Polynomial surface coefficients.
The least squares method was used to derive the model coefficients. Then, using

the latitude and longitude of the station in the solar fixed reference system, and model
coefficients and the TEC values of the zenith direction of the station were calculated.
The method’s phases are given in Equation (8), where A is the coefficient matrix, l is the
measurement vector, and x is the unknown vector.

A =


1 φIPP,1 λIPP.1 φ2

IPP,1 φIPP,1λIPP,1 λ2
IPP,1

1 φIPP,2 λIPP.2 φ2
IPP,2 φIPP,2λIPP,2 λ2

IPP,2
1 φIPP,3 λIPP.2 φ2

IPP,3 φIPP,3λIPP,3 λ2
IPP,3

...
...

...
...

...
...

1 φIPP,n λIPP.n φ2
IPP,n φIPP,nλIPP,n λ2

IPP,n

, l =


TEC1
TEC2
TEC3

...
TECn

, x =



a0
a1
a2
a3
a4
a5


x = (ATA)−1(ATl) (8)

• Kriging Interpolation Method

Kriging is a geostatistics interpolation technique that is extensively applied across
multiple fields, particularly in earth sciences and geographic information systems (GISs).
Kriging interpolation is a reliable method for estimating VTEC values at unknown loca-
tions, resulting in a continuous model of the ionosphere while minimizing the estimated
variance [8]. In order to perform kriging, a variogram must be fit to determine the spa-
tial covariance structure of the reference points. Then, using weights obtained from this
covariance structure, values for new points or blocks belonging to the spatial field are
interpolated. The general equation of the kriging method is as follows:

Ẑ(s0) = ∑N
i=1 λiZ(si) (9)

Z(si) = the value that was measured at the i. location.
λi = an unknown weight at the i. location for the observed value.
s0 = the prediction location.
N = the total number of measurements.
Point kriging (KrigingP) and block kriging (KrigingB) both provide an interpolated

grid. KrigingP calculates the values of points at grid nodes. Through the use of KrigingB,
the average value of the rectangular blocks that are centered around the grid nodes is
estimated. A grid cell’s size and shape correspond to the blocks. KrigingB creates smoother
contours since it estimates a block’s average value. Moreover, KrigingB is not an ideal
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interpolator because it does not estimate the value at a specific point. This means that the
KrigingB estimate for a grid node does not precisely replicate the observed value, even if
the observed value occurs exactly on that node [20–24].

• Radial Basis Function

The radial basis function (RBF) method is a widely used mathematical technique
for solving problems in geophysics, mapping, topography, hydrology, and particularly
in interpolation and machine learning. RBFs are particularly notable for their flexibility,
ease of use, and accuracy when applied to sparse, multidimensional datasets. An RBF-
based interpolation model utilizes fundamental functions based on the radial distances
between the interpolation point and all other points in the dataset. Numerous studies
have shown that accurate results can be obtained using RBF methods, even when the data
are not uniformly distributed across the area or region. This important feature makes
RBFs particularly ideal for sparse data. Radial-based algorithms are among the most
effective for correcting local distortions [5,25–31]. Therefore, in this study, we decided that
it is appropriate to use RBF-based algorithms such as multiquadric (MQ) and thin plate
spline (TPS).

The multiquadric method (MQ) is one of the radial basis algorithms. For each given
reference point, a function in the form of Bi(x, y) is selected using this procedure. The
function f (x, y) = ∑n

i=1 ciBi(x, y) is utilized to compute the coefficients ci, which provides
the interpolation value. The most commonly utilized function type as a Bi(x, y) function is a
single-variable radial function. To achieve this, a radial function in the form Bi(x, y) = B(hi)
is employed, where hi represents the distance between two points [24,32]. The accuracy
of the multiquadric method is determined by a user-specified shape parameter R2 [33].
The interpolation’s smoothness can be impacted by the shape parameter R2, which is most
frequently chosen based on the specifics of the given situation.

hi =

√
(x − xi)

2 + (y − yi)
2 (10)

B(hi) =
√

h2
i + R2 (11)

z = ∑n
i=1 ciB(hi) (12)

where hi represents the Euclidean distance between the data point and the node, R2 is the
user-specified shaping factor, z is the multiquadric surface. There are several proposals in
the literature about the value that the R2 parameter can assume [20,34–36]. Given n data
points, if the MQ basis functions are assumed to pass through these points, meaning they
are equal to the measured or known values (zj), the following equation can be obtained:

zj = ∑n
i=1 ciB

(
hij
)

j = 1, 2, . . . , n (13)

hij =
√(

xj − xi
)2

+
(
yj − yi

)2 (14)

B
(
hij
)
=
√

h2
ij + R2 (15)

hij defines the Euclidean distance between two points, specifically the distance from the
j-th interpolation point to the i-th data point. B

(
hij
)

represents the multiquadric radial
basis function, ci are the unknown coefficients, and zj denotes the measured values at the
j-th data point. When these equations are converted into a linear system, the following
is obtained:

Ψc = z (16)

The solution in matrix form is given by Equation (17):

c =
(

ΨTΨ
)−1

ΨTz (17)
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Here, Ψnxn is the basis function matrix, c1xn is the vector of unknown coefficients, and z1xn
is the measurement vector, which can be defined as follows:

Ψnxn =


B(h11) B(h12) B(h13) · · · B(h1n)
B(h21) B(h22) B(h23) · · · B(h2n)
B(h31) B(h32) B(h33) · · · B(h3n)

...
...

...
. . .

...
B(hn1) B(hn2) B(hn3) · · · B(hnn)

, c1xn =


c1
c2
c3
...

cn

, z1xn =


z1
z2
z3
...

zn

 (18)

Once the unknown coefficients are obtained, the estimated values ( ẑj
)

for the interpo-
lation points are calculated using Equation (19).

ẑj = ∑n
i=1 ciB

(
hij
)

(19)

Thin plate splines (TPSs) belong to the class of radial basis function (RBF) interpolation
algorithms, just like the MQ method. This method’s surface is softer than the multiquadric
surface and responds better to the original surface [32,37]. The TPS approach is another
mathematical methodology used for interpolation and approximation, particularly in
computer graphics, image processing, and surface modeling. The solution for the TPS
method is similar to that of the MQ method. The primary difference lies in the basis
function used. In the TPS method, instead of the basis function used in the MQ method
(Equation (15)), the basis function specified in Equation (20) is used. Essentially, apart from
the basis function, the solution for the TPS method is obtained in a manner similar to the
MQ method, and the values at the interpolation points are calculated. For more detailed
information on the interpolation methods, refer to sources [5–7,25–37].

B
(
hij
)
=
(

h2
ij + R2

)
ln
(

h2
ij + R2

)
(20)

2.2. Evaluation Parameters

In this study, various evaluation metrics were employed to elucidate the relationship
between predicted and reference values and to ascertain the most suitable model. Residuals,
commonly utilized in many studies, such as minimum, maximum, standard deviation (std),
and root mean squared error (RMSE), were considered for model comparison. Additionally,
we explored the appropriateness of models by incorporating metrics like the coefficient
of determination (R2), the Index of Agreement (IA), the confidence index (c), the Pearson
correlation coefficient (R), and the Kling–Gupta efficiency (KGE).

Standard deviation (std) is a statistical term that gauges the dispersion of values around
the average (or mean) in a dataset. It measures how far individual data points deviate
from the central value. A low standard deviation suggests that the data points are closely
clustered around the average, while a high standard deviation indicates a more widespread
distribution. Standard deviation is frequently employed to assess the variability and spread
of a dataset [38]. The standard deviation value is calculated with Equation (21).

std =

√
∑n

i=1(xi − x)2

n − 1
(21)

Root mean squared error (RMSE) is a statistical metric that quantifies the extent to
which a model’s predictions differ from the reference values. A low RMSE suggests close
agreement between the model’s predictions and the reference values, while a high RMSE
indicates a larger degree of deviation. RMSE is calculated using Equation (22), where the
specific formula is used to measure the average magnitude of these prediction errors.

RMSE =

√
∑n

i=1(xi − yi)
2

n
(22)
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The Pearson correlation coefficient (R) is a statistical metric that quantifies the linear
relationship between two variables, taking a value between −1 and 1. This coefficient is
widely used to evaluate both the magnitude and direction of the linear relationship between
variables. A positive correlation signifies that an increase in one variable corresponds to
an increase in the other, while a negative correlation implies an inverse relationship. A
correlation close to 0 signifies the absence of a linear relationship between the variables [39].
The R-value can be calculated with Equation (23).

R =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

,−1 ≤ R ≤ 1 (23)

The Index of Agreement (IA) [40] serves as a metric to assess the likeness between
the model’s predicted values and the reference values. Ranging between 0 and 1, the IA
value indicates the model’s success. A value approaching 1 signifies a higher resemblance
between the model’s predictions and the observed values [41]. The calculation of the IA
value is performed using Equation (24).

IA = 1 − ∑n
i=1(xi − yi)

2

∑n
i=1(|yi − x|+ |xi − x|)2 , 0 ≤ IA ≤ 1 (24)

The confidence index (c) serves as a comprehensive metric, amalgamating both random
and systematic errors with equal importance, thereby providing a holistic quantification of
model error. In Equation (25), the confidence index is calculated by multiplying the Index of
Agreement (IA) with the square root of the coefficient of determination (R2). This formula
considers the agreement (Index of Agreement) between the reference and predicted values
as well as the explanatory power of the model (coefficient of determination). Consequently,
higher confidence index values indicate a more reliable model performance. In practical
terms, interpreting the c is based on predefined performance criteria, ranging from “Best”
to “Worst”. This categorization allows for a qualitative assessment of models, offering
valuable insights into their overall reliability. Notably, if the c exceeds 0.85, it signifies the
model’s exceptional performance [42].

c = IA
√

R2 (25)

The Kling–Gupta efficiency (KGE) assesses the alignment between model predictions
and reference values, taking into account the mean, standard deviation, and correlation
coefficient. The calculation is defined by Equation (26). A KGE value approaching 1 shows
a superior fit of the model predictions to the reference values [41,43,44].

KGE = 1 −

√
(R − 1)2 +

(
sy

sx
− 1
)2

+

(
y
x
− 1
)2

(26)

where x is the reference value, y is the prediction value, x is the average reference value,
y is the average prediction value, sx is the standard deviation of reference value, sy is the
standard deviation of prediction value, and n is the number of reference values.

3. Results and Discussion

STEC readings in the receiver zenith direction were obtained using all the interpolation
procedures. Interpolation methods, including the second-degree polynomial approach,
KrigingP, KrigingB, MQ, and TPS, were implemented in the application’s scope. STEC
values were generated at three IGS stations (WHIT, DRAO, MKEA) over 49 days, resulting
in 1176 hourly grids for each interpolation model. The STEC values from the IONEX file
from the CODE Analysis Center were utilized for a comparison. The interpolation results
for each method were obtained by computing differences from the IONEX file. Additionally,
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the performance of the alternative methods was compared to that of the second-degree
polynomial surface—a widely used approach in the literature for estimating STEC values.
Figures 3–5 illustrate comparison graphs for the WHIT, DRAO, and MKEA stations.
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When examining Figures 3–5, a particularly significant result stands out. As previously
mentioned, a second-degree polynomial method is generally used for VTEC estimations
in the literature. When the results obtained from this method are examined, a striking
outcome is observed with the detection of abrupt jumps. These jumps, especially seen at the
WHIT and DRAO stations located in the earthquake-affected area and at different latitudes,
clearly indicate that they can lead to negative consequences in the detection of anomalies
as earthquake precursors and result in misinterpretations. This is because the UB and LB
values used in anomaly detection are calculated by deriving from these values. If there are
VTEC values exceeding the UB or LB values, they are considered significant anomalies.
When examining the polynomial results at the WHIT station, six sudden jumps are detected,
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whereas these jumps are eliminated in the results obtained from other methods. Similarly,
it is observed that one jump is eliminated at the DRAO station. The last inspection station,
MKEA, is a station located slightly outside the earthquake-affected area. When examining
the results for this station, it is found that there are no noticeable sudden jumps, but larger
difference values are obtained compared to the other stations. Specific comparative values
for the differences for all the stations are presented in Table 1, and the histogram plots are
shown in Figures 6–8.
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Table 1. Evaluation metrics for all stations. The numbers in bold represent the best accuracies of the
relevant station criteria.

Station Criteria CODE-Poly CODE-KrigingP CODE-KrigingB CODE-MQ CODE-TPS

W
H

IT

min −16.100 −3.679 −4.569 −4.355 −5.495
mean −0.389 −0.664 −1.211 −0.083 0.162
max 16.900 3.598 2.886 5.825 7.148
std 1.237 0.959 0.945 1.117 1.221
RMSE 1.297 1.166 1.536 1.120 1.231
R2 0.852 0.917 0.932 0.867 0.833
IA 0.949 0.959 0.933 0.960 0.950
Pearson 0.923 0.958 0.966 0.931 0.913
c 0.876 0.918 0.901 0.894 0.867
KGE 0.817 0.825 0.779 0.856 0.856
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Table 1. Cont.

Station Criteria CODE-Poly CODE-KrigingP CODE-KrigingB CODE-MQ CODE-TPS

D
R

A
O

min −3.600 −3.369 −3.941 −3.558 −3.743
mean −0.495 −0.433 −0.972 −0.056 0.044
max 33.500 1.905 1.538 2.061 2.090
std 1.197 0.756 0.789 0.754 0.760
RMSE 1.295 0.871 1.252 0.756 0.760
R2 0.916 0.966 0.972 0.960 0.958
IA 0.970 0.986 0.973 0.989 0.989
Pearson 0.957 0.983 0.986 0.980 0.979
c 0.929 0.969 0.960 0.969 0.968
KGE 0.869 0.907 0.844 0.951 0.961

Station Criteria CODE-Poly CODE-KrigingP CODE-KrigingB CODE-MQ CODE-TPS

M
K

EA

min −7.700 −7.776 −9.177 −6.347 −6.125
mean −1.909 −1.701 −2.445 −0.932 −0.738
max 4.800 2.042 0.626 2.664 2.668
std 1.427 1.401 1.549 1.211 1.114
RMSE 2.384 2.204 2.894 1.527 1.336
R2 0.983 0.982 0.985 0.983 0.985
IA 0.983 0.985 0.976 0.993 0.994
Pearson 0.992 0.991 0.992 0.991 0.992
c 0.975 0.976 0.968 0.984 0.987
KGE 0.867 0.882 0.832 0.937 0.951
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When examining Table 1, it is seen that the results are analyzed with different eval-
uation criteria. The TEC values obtained from CODE are used as reference data here.
Statistical values are calculated by taking the differences in the values obtained from inter-
polation from the reference values, and the performance of the interpolation methods is
presented. In addition, histogram plots are used to provide a better understanding of the
differences between the values calculated using the interpolation methods and the actual
values (Figures 6–8). Some boundary values are added to the histogram plots to observe the
distribution of the calculated differences. In the figures, the zero line is shown in red, and
the distribution line in the range of (−1 TEC) − (+1 TEC) is shown in blue. Additionally,
the number of data points within the boundary values is included in the upper right part
of the graphs, along with some statistical information.

Based on these findings, it can be said that the KrigingB and MQ methods stand out
with three criteria for evaluation metrics at the WHIT station. However, when a detailed
examination is made, it is seen that the std value for the KrigingB method is 0.945, the
RMSE value is 1.536, and the KGE value is 0.779, whereas for the MQ method, they are
calculated as 1.117, 1.120, and 0.856, respectively. Although the KrigingB model appears
better in terms of the std, it has given worse results than the MQ method in terms of
the RMSE and KGE. The main reason for this is the distribution of differences. When
examining Figure 6, it is clearly seen that the results obtained from the KrigingB method are
negatively skewed compared to the expected value. While the standard deviation shows
the distribution of values around the mean in a dataset, the RMSE value is a statistical
measure that indicates how different the predictions of a model are from the reference
values. Therefore, it is important to obtain and interpret both values in such applications.
Additionally, in Figure 6, while the number of data points within the range of −2 to +2 for
the KrigingB method is found to be 955, it is obtained as 1082 for the MQ method. Similarly,
when examining the number of data points within the range of −1 to +1, it is seen that
439 data points fall into this range for the KrigingB method, while 814 data points do so
for the MQ method. Therefore, it can be said that the MQ method is better in terms of the
distribution of differences, followed closely by the TPS method. One of the other evaluation
criteria, IA, is a measure that evaluates the similarity between the predicted values and the
reference values, while the KGE criterion evaluates the agreement between the predicted
values and the reference values by using the mean, standard deviation, and correlation
coefficient. When examining the WHIT station results with these criteria, it is seen that the
MQ and TPS methods provide the highest values.

If the other two stations, DRAO and MKEA, are evaluated similarly, the following
results are obtained. From Table 1, it is seen that the MQ method stands out for the DRAO
station in terms of the std, RMSE, IA, and c, while the results obtained from the TPS method
are very close to these values, and especially in terms of the IA and KGE values, the TPS
method is in first place. When examining Figure 7, it is found that the number of data
points within the range of −2 to +2 for the MQ method is 1140, while it is obtained as
1145 for the TPS method. Similarly, when examining the number of data points within the
range of −1 to +1, it is seen that 992 data points fall into this range for both the MQ and
TPS methods. This means that the difference values obtained in the remaining 31 epochs
for the TPS method are slightly higher than those obtained for the MQ method. However,
it would not be wrong to say that both methods give very close results in terms of the
distribution. When examining Table 1 for the last station, MKEA, it is clearly seen that the
TPS method provides better results in all criteria. When examining the histogram graphs of
the differences in Figure 8, it can be said that the TPS method stands out, followed closely
by the MQ method.

In conclusion, in light of all this information, it has been decided to use the TPS model
as a sub-model that is expected to provide more accurate anomaly graphs in the next steps
of the VTEC calculations and anomaly studies in this study. Additionally, when comparing
the polynomial method with the TPS method based on the obtained results, it is seen that
there is an improvement in the std and RMSE values by 1.3% and 5.1% for the WHIT
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station, 36.5% and 41.3% for the DRAO station, and 21.9% and 43.9% for the MKEA station,
respectively. The next step is to calculate the VTEC values for all stations using both the
polynomial approach and the TPS method and to obtain the anomaly graphs. Figures 9–11
present the anomaly graphs for the stations obtained from polynomial interpolation and
the TPS methods.
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Space weather conditions, as well as anomaly graphs, should be evaluated together
for earthquake precursor analysis. Ref. [13] analyzed the TEC anomalies together with
the space weather conditions by conducting precursor research for this earthquake using
the polynomial interpolation method. Since the space weather conditions were the same
in both studies, the purpose of this study was to investigate the performance of various
interpolation methods along with the polynomial method. An examination of Figures 9–11
reveals that the graph generated by polynomial integration for the WHIT station has abrupt
jumps at the end of the 199th GPS day before the earthquake, and at the end of the 213th
GPS day after the earthquake, which do not occur in the graph created using the TPS
method. The same situation occurred at the DRAO station at the beginning of the 200th
GPS day. The GPS observation data were smoothed to remove outliers and cycle slips
during the data preparation process. Therefore, the interpolation method is assumed to
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be the cause of these current jumps. When the anomalies were analyzed, it was found
that similar trends occurred for both positive and negative anomalies in both interpolation
methods for all three stations; however, there were some differences of up to 2–2.5 TECU
between the two methods for the same anomaly. This case demonstrates the significance of
the interpolation method used in the analysis of ionospheric TEC values and earthquake
precursor research in order to produce more accurate interpretations.
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4. Conclusions

The purpose of this work was to highlight the significance of interpolation techniques
for ionospheric studies, especially precursor analysis for earthquakes. In this context, three
different IGS stations’ GPS data were used to determine the ionospheric STEC values
at ionospheric piercing points. By using the polynomial, kriging point, kriging block,
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multiquadric, and thin plate spline interpolation techniques, the STEC values of the receiver
in the zenith direction were determined. These values were then compared to values
obtained from the CODE Analysis Center’s IONEX file. Different accuracy metrics, namely,
standard deviation, mean square error, R2, d (Index of Agreement), Pearson’s correlation
coefficient, c (confidence index), and Kling–Gupta efficiency (KGE), have been evaluated.
According to these metrics, the approach with the highest accuracy was found to be the
thin plate spline (TPS) interpolation method. This method complied the VTEC values in the
graph where anomalies were formed in the search for earthquake precursors. In this study,
anomaly graphs made previously using the polynomial interpolation approach for the same
data and earthquake were compared to graphs created using the thin plate spline method.
The comparison revealed that the anomaly patterns were similar for both methods, but
there were differences in the TEC amounts of up to about 2–2.5 TECU. Furthermore, abrupt
jumps in graphs generated with the polynomial interpolation approach were not detected in
the graphs created with the thin plate spline method. In this case, the interpolation method
has the potential to alter possible anomaly interpretations. This study is presented as an
example study in the application of interpolation methods, which aims to determine TEC
values more accurately and analyze their changes. For future research, it is suggested that
TEC values obtained from different interpolation methods will be taken into consideration
for research into the precursors of earthquake and earthquake warning systems, since they
determine boundary values and anomaly quantities in anomaly graphs.
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