Advanced Understanding of Sea Surface Cooling Off Northeastern Taiwan to Tropical Cyclone by Using Numerical Modeling
<p>(<b>a</b>) Study area with topography (unit: meters). Typhoon tracks and intensities of three TC cases are shown as 6 hourly markers with different colors. The large red dot denotes the location of the Longdong buoy northeast of Taiwan. The pink line denotes the current transect used in Figures 4 and 5. (<b>b</b>) Schema of Kuroshio flowing path and background physical state of SST (climatology of August, which was retrieved from <a href="https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html" target="_blank">https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html</a>) (accessed on 1 March 2024) corresponding to the passages of three TCs.</p> "> Figure 2
<p>Study area with topography (unit: meters). The red and blue rectangles denote the domains of parent and nested grids for ROMS. The red dot denotes the location of the Longdong buoy in the northeast of Taiwan.</p> "> Figure 3
<p>Near-surface temperature drops centered at 25.09° N, 121.92° E in response to passages of three historical typhoons, Utor (2001), Nuri (2008), and Hagupit (2008). The yellow, red, and blue lines denote the temperature variabilities derived from the moored buoy (temperature at 0.6 m depth), model simulations without tidal forcing (EXP<sub>STD</sub>), and model simulations with tidal forcing (EXP<sub>TIDE</sub>, temperatures at 0 m depth).</p> "> Figure 4
<p>Latitudinal transects (from 121.93° E to 123.00° E, along 25.09° N) of temperature (°C, color shading) and the position where KC passed through simulated in UTOR<sub>TIDE</sub> (<b>left</b> panel), NURI<sub>TIDE</sub> (<b>middle</b> panel), and HAGUPIT<sub>TIDE</sub> (<b>right</b> panel). The position of KC was defined by outlines with northward current speeds greater than 50 cm/s (contours of 50 and 70 cm/s: dashed lines, contours above 90 cm/s: solid lines). The dashed-red contours denote 20 °C isotherms and the white cross indicates where the meridional current speed is strongest along the transect.</p> "> Figure 5
<p>Similar to <a href="#atmosphere-15-00663-f004" class="html-fig">Figure 4</a>, but for the results derived from UTOR<sub>IE-1</sub> (<b>left</b> panel), NURI<sub>IE-1</sub> (<b>middle</b> panel), and HAGUPIT<sub>IE-1</sub> (<b>right</b> panel).</p> "> Figure 6
<p>Surface wind forcing (wind stress, unit: N/m<sup>2</sup>) during passages of three typhoon cases. In general, variations of wind stress corresponding to three typhoon passages show similar patterns and moving timing during their passages.</p> "> Figure 7
<p>Local wind measurements (unit: m/s) sampled at the Longdong site northeast of Taiwan.</p> "> Figure 8
<p>Depth-time variations (Hovmoller plot) of each term (unit: 10<sup>−4</sup> °C/s) in the HBA for the results of EXP<sub>STD</sub> during the passage of typhoon Utor, for the model grid centered approximately closest to the maximum sea surface cooling (25.09° N, 122° E). The color shadings in blue (red) denote negative (positive) tendencies. The gray solid contours denote zero values.</p> "> Figure 9
<p>Similar to <a href="#atmosphere-15-00663-f008" class="html-fig">Figure 8</a>, but for the results of HBA during the passage of Typhoon Nuri.</p> "> Figure 10
<p>Similar to <a href="#atmosphere-15-00663-f008" class="html-fig">Figure 8</a>, but for the results of HBA during the passage of Typhoon Hagupit.</p> "> Figure 11
<p>Depth-time variations of the individual term (unit: 10<sup>−4</sup> °C/s) in the heat budget analysis for the model grid centered at 122° E, 25.09° N but for the component of tidal residual. The color shadings in blue (red) denote negative (positive) tendencies. The gray solid contours denote zero values.</p> "> Figure 12
<p>Model-simulated current responses (blue arrows) centered at 25.09° N, 122° E at different depths during the passage of Utor for experiments (<b>a</b>) UTOR<sub>STD</sub> and (<b>b</b>) UTOR<sub>TIDE</sub>, respectively. The red lines (<b>upper</b> panels) denote the variations in sea surface heights during typhoon passage.</p> "> Figure 13
<p>(<b>a</b>) Transects (red bars) for volume transport calculations (from surface to 100 m) at the Luzon Strait and (bar-A) Taiwan Strait (bar-B) during typhoon passage. (<b>b</b>) Variations in volume transports (unit: Sv) passing through the Luzon Strait (<b>left</b> panel) and the Taiwan Strait (<b>right</b> panel) during the passage of Utor. The color panels surrounding <a href="#atmosphere-15-00663-f010" class="html-fig">Figure 10</a>a denote sea surface current responses during the passage of Utor, including current speed in color shading (unit: m/s) and current directions in arrows.</p> "> Figure 14
<p>Time series of simulated SST variations centered at 25.09° N, 122° E in UTOR<sub>TIDE</sub> (blue line), UTOR<sub>IE-2</sub> (red line), and UTOR<sub>IE-3</sub> (yellow line).</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Moored Buoy Data
2.2. Typhoons
2.3. Ocean Model Description and Experimental Design
3. Results
3.1. Model Simulations of Three Cooling Events
3.2. Key Mechanism Leading to SST Coolings to Three Typhoon Cases
4. Heat Budget Analysis (HBA)
4.1. How Tidal Forcing Enhances the Cooling Process
5. Other Influencing Factors
5.1. Influence of Different Tidal Phases
5.2. Influence of Taiwan Strait Current
5.3. Influence of Different Initial Oceanic Environments (Upper Ocean Thermal Structures)
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Price, J.F. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef]
- Schade, L.R.; Emanuel, K.A. The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere ocean model. J. Atmos. Sci. 1999, 56, 642–651. [Google Scholar] [CrossRef]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on Hurricane Opal. Mon. Weather Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Cione, J.; Uhlhorn, E. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Weather Rev. 2003, 131, 1783–1796. [Google Scholar] [CrossRef]
- Lin, I.-I.; Liu, W.T.; Wu, C.-C.; Wong, G.T.F.; Hu, C.; Chen, Z.; Liang, W.-D.; Yang, Y.; Liu, K.-K. New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett. 2003, 30, 1718. [Google Scholar] [CrossRef]
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. Oceans 2004, 109, C03043. [Google Scholar] [CrossRef]
- Siswanto, E.; Ishizaka, J.; Yokouchi, K.; Tanaka, K.; Tan, C.K. Estimation of interannual and interdecadal variations of typhoon-induced primary production: A case study for the outer shelf of the East China Sea. Geophys. Res. Lett. 2007, 34, L03604. [Google Scholar] [CrossRef]
- Lin, I.-I.; Wu, C.-C.; Pun, I.-F.; Ko, D.-S. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Weather Rev. 2008, 136, 3288–3306. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Ho, C.-R.; Zheng, Q.; Lo, Y.-T.; Kuo, N.-J.; Gopalakrishnan, G. Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific. J. Geophys. Res. Oceans 2010, 115, C09013. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Lin, I.-I.; Wang, B.; Huang, H.-C.; Chen, C.-H. A long neglected damper in the El Nino-typhoon relationship: A Gaia-like process. Sci. Rep. 2015, 5, 11103. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Zheng, Z.-W.; Zheng, Q.; Gopalakrishnan, G.; Lee, H.-Y. Typhoon-Kuroshio interaction in an air-sea coupled system: Case study of typhoon Nanmadol (2011). Ocean Model. 2018, 132, 130–138. [Google Scholar] [CrossRef]
- Mohanty, S.; Nadimpalli, R.; Osuri, K.K.; Pattanayak, S.; Mohanty, U.C.; Sil, S. Role of sea surface temperature in modulating life cycle of tropical cyclones over bay of Bengal. Trop. Cyclone Res. Rev. 2019, 8, 68–83. [Google Scholar] [CrossRef]
- Lin, J.Y.; Ho, H.; Zheng, Z.W. Improved Understanding of Typhoon-Induced Immediate Chlorophyll-A Response Using Advanced Himawari Imager (AHI) Onboard Himawari-8. Remote Sens. 2022, 14, 6055. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Teague, W.J.; Jarosz, E.; Wang, W. Observed currents over the outer continental shelf during Hurricane Ivan. Geophys. Res. Lett. 2005, 32, L11610. [Google Scholar] [CrossRef]
- Teague, W.J.; Jarosz, E.; Wang, D.W.; Mitchell, D.A. Observed oceanic response over the upper continental slope and outer shelf during Hurricane Ivan. J. Phys. Oceanogr. 2007, 37, 2181–2206. [Google Scholar] [CrossRef]
- Tsai, Y.; Chern, C.S.; Wang, J. Typhoon induced upper ocean cooling off northeastern Taiwan. Geophys. Res. Lett. 2008, 35, L14605. [Google Scholar] [CrossRef]
- Morimoto, A.; Kojima, S.; Jan, S.; Takahashi, D. Movement of the Kuroshio axis to the northeast shelf of Taiwan during typhoon events. Estuar. Coast. Shelf Sci. 2009, 82, 547–552. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Zheng, Q.; Gopalakrishnan, G.; Kuo, Y.C.; Yeh, T.K. Response of upper ocean cooling off northeastern Taiwan to typhoon passages. Ocean Model. 2017, 115, 105–118. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Chen, Y.R. Influences of Tidal Effect on Upper Ocean Responses to Typhoon Passages Surrounding Shore Region off Northeast Taiwan. J. Mar. Sci. Eng. 2022, 10, 1419. [Google Scholar] [CrossRef]
- Doong, D.-J.; Peng, J.P.; Babanin, A.V. Field investigations of coastal sea surface temperature drop after typhoon passages. Earth Syst. Sci. Data 2019, 11, 323–340. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef]
- Song, Y.; Haidvogel, D.B. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys. 1994, 115, 228–244. [Google Scholar] [CrossRef]
- Cummings, J.A. Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 2005, 131, 3583–3604. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. Method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. 2003, 108, 3090. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Zheng, Z.-W.; Zheng, Q.; Lee, C.-Y.; Gopalakrishnan, G. Transient modulation of Kuroshio upper layer flow by directly impinging typhoon Morakot in east of Taiwan in 2009. J. Geophys. Res. Oceans 2014, 119, 4462–4473. [Google Scholar] [CrossRef]
- Shen, D.; Li, X.; Wang, J.; Bao, S.; Pietrafesa, L.J. Dynamical ocean responses to Typhoon Malakas (2016) in the vicinity of Taiwan. J. Geophys. Res. Oceans 2021, 126, e2020JC016663. [Google Scholar] [CrossRef]
- Flather, R.A. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege 1976, 10, 141–164. [Google Scholar]
- Lai, Y.-H.; Lu, C.-Y.; Zheng, Z.-W.; Chiang, L.-C.; Ho, C.-R. Numerical Simulation of the Trajectory of Garbage Falling into the Sea at the Coastal Landfill in Northeast Taiwan. Water 2022, 14, 1251. [Google Scholar] [CrossRef]
- Egbert, G.; Erofeeva, S. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Liang, W.D.; Tang, T.Y.; Yang, Y.J.; Ko, M.T.; Chung, W.S. Upper-ocean current around Taiwan. Deep Sea Res. Part II 2003, 50, 1085–1105. [Google Scholar] [CrossRef]
- Glenn, S.M.; Miles, T.N.; Seroka, G.N.; Xu, Y.; Forney, R.K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J. Stratified coastal ocean interactions with tropical cyclones. Nat. Commun. 2016, 7, 10887. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.S.; Chao, S.Y.; Wu, C.C.; Lin, I.I.; Jan, S. Impacts of tides and Typhoon Fanapi (2010) on seas around Taiwan. Terr. Atmos. Ocean. Sci. 2016, 27, 261–280. [Google Scholar]
- He, Z.; Yang, D.; Wang, Y.; Yin, B. Impact of 4D-Var data assimilation on modelling of the East China Sea dynamics. Ocean Model. 2022, 176, 102044. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Wang, J.; Bai, X. A modeling study of the effects of river runoff, tides, and surface wind-wave mixing on the Eastern and Western Hainan upwelling systems of the South China Sea. China. Ocean Dyn. 2015, 65, 1143–1164. [Google Scholar] [CrossRef]
- Li, P.; Shi, B.; Li, Y.; Wang, S.; Lv, X.; Wang, Y.; Tian, Q. Characterization of longshore currents in southern East China Sea during summer and autumn. Acta Oceanol. Sin. 2020, 39, 1–11. [Google Scholar] [CrossRef]
- Tomczak, M.; Godfrey, J.S. Regional Oceanography: An Introduction; Elsevier: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Chang, Y.-L.; Oey, L.-Y.; Wu, C.-R.; Lu, H.-F. Why are there upwellings on the northern shelf of Taiwan under northeasterly winds? J. Phys. Oceanogr. 2010, 40, 1405–1417. [Google Scholar] [CrossRef]
Suites | Descriptions | Utor (2001) | Nuri (2008) | Hagupit (2008) |
---|---|---|---|---|
EXPSTD (Experiments 1–3) | Runs without tidal forcing | UTORSTD | NURISTD | HAGUPITSTD |
EXPTIDE (Experiments 4–6) | Runs with tidal forcing | UTORTIDE | NURITIDE | HAGUPITTIDE |
IE-1 (Experiments 7–9) | EXPTIDE, removing local wind forcing | UTORIE-1 | NURI IE-1 | HAGUPIT IE-1 |
IE-2 (Experiment 10) | UTORTIDE, but replacing the initial condition from Nuri | UTORIE-2 | N/A | N/A |
IE-3 (Experiment 11) | UTORTIDE, but replacing the initial condition from Hagupit | UTORIE-3 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.-J.; Zheng, Z.-W. Advanced Understanding of Sea Surface Cooling Off Northeastern Taiwan to Tropical Cyclone by Using Numerical Modeling. Atmosphere 2024, 15, 663. https://doi.org/10.3390/atmos15060663
Wu H-J, Zheng Z-W. Advanced Understanding of Sea Surface Cooling Off Northeastern Taiwan to Tropical Cyclone by Using Numerical Modeling. Atmosphere. 2024; 15(6):663. https://doi.org/10.3390/atmos15060663
Chicago/Turabian StyleWu, Hsin-Ju, and Zhe-Wen Zheng. 2024. "Advanced Understanding of Sea Surface Cooling Off Northeastern Taiwan to Tropical Cyclone by Using Numerical Modeling" Atmosphere 15, no. 6: 663. https://doi.org/10.3390/atmos15060663