Prioritization of Volatile Organic Compound Reduction in the Tire Manufacturing Industry through Speciation of Volatile Organic Compounds Emitted at the Fenceline
<p>Locations and measurement points of the target tire manufacturing facilities: (<b>a</b>) research target facility A, (<b>b</b>) research target facility B.</p> "> Figure 2
<p>VOC Capture Methods: (<b>a</b>) Active Sampling (<b>b</b>) Passive Sampling. The meaning of the phrase in the figure is ‘Measuring VOCs’.</p> "> Figure 3
<p>Total VOCs in active and passive modes at research target facility A. (<b>a</b>) Total VOCs, (<b>b</b>) wind rose diagram.</p> "> Figure 4
<p>Total VOCs in active and passive modes at research target facility B. (<b>a</b>) Total VOCs, (<b>b</b>) wind rose diagram.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Tire Manufacturing Process
2.2. Status of the Research Target Facilities
2.3. Collection and Analytical Methods for Targeted VOC Samples
3. Results
3.1. Results for Research Target Facility A
3.2. Findings from Research Target Facility B
3.3. Prioritization of Reduction Measures Based on VOCs with High POCP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sueyoshi, T.; Goto, M. Should the US clean air act include CO2 emission control? Examination by data envelopment analysis. Energy Policy 2010, 38, 5902–5911. [Google Scholar] [CrossRef]
- Wiederkehr, P. Emission reduction programmes for VOC in some OECD countries. In Studies in Environmental Science; Elsevier: Amsterdam, The Netherlands, 1994; Volume 61, pp. 11–28. [Google Scholar]
- Amoatey, P.; Omidvarborna, H.; Baawain, M.S.; Al-Mamun, A. Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000–2018). Process Saf. Environ. Prot. 2019, 123, 215–228. [Google Scholar] [CrossRef]
- Expert Group on Techno-Economic Issues. Guidance Document on Control Techniques for Emissions of Sulphur, NOX, VOC, Dust (Including PM10, PM2.5 and Black Carbon) from Stationary Sources; United Nations Economic Commission for Europe: New York, NY, USA, 2012. [Google Scholar]
- Jenkin, M.E.; Hayman, G.D. Photochemical ozone creation potentials for oxygenated volatile organic compounds: Sensitivity to variations in kinetic and mechanistic parameters. Atmos. Environ. 1999, 33, 1275–1293. [Google Scholar] [CrossRef]
- Jazil, M.O.; Brown, J.A. The Cross-State Air Pollution Rule: Will EPA Learn from Experience. Trends 2012, 44, 24. [Google Scholar]
- Bondarouk, E.; Liefferink, D.; Mastenbroek, E. Politics or management? Analysing differences in local implementation performance of the EU Ambient Air Quality directive. J. Public Policy 2020, 40, 449–472. [Google Scholar] [CrossRef]
- Amann, M.; Borken-Kleefeld, J.; Cofala, J.; Hettelingh, J.P.; Heyes, C.; Höglund-Isaksson, L.; Holland, M.; Kiesewetter, G.; Klimont, Z.; Rafaj, P.; et al. The Final Policy Scenarios of the EU Clean Air Policy Package; DG-Environment of the European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Knoepfel, P.; Weidner, H. Implementing air quality control programs in Europe: Some results of a comparative study. Policy Stud. J. 1982, 11, 103. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Cangialosi, F.; Bruno, E.; De Santis, G. Application of machine learning for fenceline monitoring of odor classes and concentrations at a wastewater treatment plant. Sensors 2021, 21, 4716. [Google Scholar] [CrossRef]
- Thoma, E.D.; Miller, M.C.; Chung, K.C.; Parsons, N.L.; Shine, B.C. Facility fence-line monitoring using passive samplers. J. Air Waste Manag. Assoc. 2011, 61, 834–842. [Google Scholar] [CrossRef]
- North, C.M.; Rooseboom, M.; Kocabas, N.A.; Schnatter, A.R.; Faulhammer, F.; Williams, S.D. Modes of action considerations in threshold expectations for health effects of benzene. Toxicol. Lett. 2020, 334, 78–86. [Google Scholar] [CrossRef]
- Derwent, R.; Jenkin, M.; Passant, N.; Pilling, M. Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a Master Chemical Mechanism. Atmos. Environ. 2007, 41, 2570–2579. [Google Scholar] [CrossRef]
- Hong, S.-H.; Shin, D.-C.; Lee, Y.-J.; Kim, S.-H.; Lim, Y.-W. Health risk assessment of volatile organic compounds in urban areas. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 1454–1465. [Google Scholar] [CrossRef]
- Kim, M.-G.; Kim, J.H.; Yoon, S.J.; Cho, S.H.; Yu, J.U.; Kang, C.W.; Moon, K.W.; Lee, H.E. Evaluating the feasibility of air environment management system for VOCs through ‘VOCs specification’ of petroleum refining industry. J. Air Waste Manag. Assoc. 2023, 73, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Jain, R.; Meena, M.L.; Dangayach, G.S. Six-sigma application in tire-manufacturing company: A case study. J. Ind. Eng. Int. 2018, 14, 511–520. [Google Scholar] [CrossRef]
- Daves, G. Refinery fence-line monitoring to impact petrochemical operators. Oil Gas J. 2017, 115, 68–73. [Google Scholar]
- Eisele, A.P.; Mukerjee, S.; Smith, L.A.; Thoma, E.D.; Whitaker, D.A.; Oliver, K.D.; Wu, T.; Colon, M.; Alston, L.; Cousett, T.A.; et al. Volatile organic compounds at two oil and natural gas production well pads in Colorado and Texas using passive samplers. J. Air Waste Manag. Assoc. 2016, 66, 412–419. [Google Scholar] [CrossRef]
- Mukerjee, S.; Smith, L.; Caudill, M.P.; Oliver, K.D.; Whipple, W.; Whitaker, D.; Cousett, T. Application of passive sorbent tube and canister samplers for volatile organic compounds at refinery fenceline locations in Whiting, Indiana. J. Air Waste Manag. Assoc. 2018, 68, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.; Pawliszyn, J. Configurations and calibration methods for passive sampling techniques. J. Chromatogr. A 2007, 1168, 226–235. [Google Scholar] [CrossRef]
- Kim, M.-G.; Lee, J.Y.; Kim, J.H.; Lee, H.E.; Cho, S.H.; Yu, J.U.; Kang, C.W.; Moon, K.W. Study of Chemical Substances Emitted during Paint Manufacturing through VOC Speciation. Atmosphere 2022, 13, 1245. [Google Scholar] [CrossRef]
- The Meteorological Administration Weather Service. Available online: https://www.kma.go.kr/ (accessed on 12 January 2024).
- Thompson, R.N.; Nau, C.A.; Lawrence, C.H. Identification of vehicle tire rubber in roadway dust. Am. Ind. Hyg. Assoc. J. 1966, 27, 488–495. [Google Scholar] [CrossRef]
- Schwetz, B.A.; Leong, B.K.J.; Gehring, P.J. Embryo-and fetotoxicity of inhaled carbon tetrachloride, 1, 1-dichloroethane and methyl ethyl ketone in rats. Toxicol. Appl. Pharmacol. 1974, 28, 452–464. [Google Scholar] [CrossRef]
- Ghittori, S.; Marraccini, P.; Franco, G. Methylene chloride exposure in industrial workers. Am. Ind. Hyg. Assoc. J. 1993, 54, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Lee, H.E.; Yoon, S.J. Study on the Speciation of VOCs at Oil Refining Plant Fenceline through Active Sampling. Atmosphere 2023, 14, 485. [Google Scholar] [CrossRef]
- Nazarparvar-Noshadi, M.; Yadegari, M.; Mohammadian, Y.; Fakhri, Y. The exposure to BTEX/Styrene and their health risk in the tire manufacturing. Toxin Rev. 2022, 41, 437–445. [Google Scholar] [CrossRef]
- de Vocht, F.; Sobala, W.; Wilczynska, U.; Kromhout, H.; Szeszenia-Dabrowska, N.; Peplonska, B. Cancer mortality and occupational exposure to aromatic amines and inhalable aerosols in rubber tire manufacturing in Poland. Cancer Epidemiol. 2009, 33, 94–102. [Google Scholar] [CrossRef]
- Khasraghi, S.S.; Momenilandi, M.; Shojaei, A. Tire tread performance of silica-filled SBR/BR rubber composites incorporated with nanodiamond and nanodiamond/nano-SiO2 hybrid nanoparticle. Diam. Relat. Mater. 2022, 126, 109068. [Google Scholar] [CrossRef]
- Forrest, M. The Composition and Nature of Vulcanisation Fumes in the Rubber Industry—A Technical Review. Prog. Rubber Plast. Recycl. Technol. 2015, 31, 219–264. [Google Scholar] [CrossRef]
Process Name | Process Characteristics |
---|---|
Mixing (Refining) Process | The production of tires begins with the refining process, where all the constituent elements of the tire—including natural or synthetic rubber, reinforcing agents such as carbon black, and chemicals including sulfur—are blended to create tire-grade rubber. This refining process imbues the necessary properties into the tire. |
Extrusion Process | The refined rubber undergoes substantial pressure to shape it into the desired dimensions and form. The demarcation between extrusion and calendering processes for the refined rubber is based on whether the resultant product is exclusively composed of rubber. Extrusion refers to the process of shaping rubber sheets, specifically created for treads and sidewalls, to match the specifications of the intended product. |
Calendering Process | The calendering process involves layering the compound created during the refining process onto both sides of the steel and textile cords, thereby forming internal layers within the tire. The number and placement of these cords can influence the tire’s performance characteristics. |
Bead Process | The bead process encompasses coating steel wire with a compound, winding the wire a designated number of times, and affixing a triangular rubber piece known as the bead filler. The bead serves to secure the tire to the wheel, preventing it from dislodging. |
Building Process | The building process involves assembling the semi-finished products from the extrusion, calendering, and bead processes, making the form of a tire using a building machine. The size of the tire is determined at this stage, with the resultant form resembling a doughnut. |
Curing Process | During the curing process, the flexible tire that was shaped during the building process is placed into a specific mold, and subjected to heat and pressure. This process results in the creation of the final tire shape, the tread pattern, and the elastic rubber material. |
Inspection and Dispatch Process | The inspection process involves performing both visual and instrumental examinations on the finished tire. |
Classification | Research Target Facility A | Research Target Facility B |
Site Area | 74.89 acres (3030.69 m2) | 103.76 acres (419,901.82 m2) |
Annual Product Output | Approximately 30 million units annually | Approximately 45 million units annually |
Product Characteristics | Tires for passenger cars, trucks, winter conditions, and agricultural machinery | Tires for passenger cars, trucks, off-road vehicles, and SUVs |
Monitoring Method | Sampling Times | Description | Advantages and Disadvantages |
---|---|---|---|
Passive Diffusive-Tube Monitoring Network | 14-day period Research Target Facility A 27.05.22~10.06.22 Research Target Facility A 21.07.22~08.08.22 | A direct-measurement approach that adsorbs target pollutants onto a tube monitor. | (Advantages) Ideal for situations with low setup and maintenance costs. (Disadvantages) Reduced temporal resolution during sample movement and potential contamination of samples. |
Active Monitoring Station Networks | 5 times a day 9:00~10:00 10:00~11:00 13:00~14:00 14:00~15:00 15:00~16:00 Research Target Facility A 1~6 points 26.05.22 7~12 points 27.05.22 Research Target Facility B 1~6 points 08.08.22 7~12 points 09.08.22 | Akin to passive diffusive tubes, this involves a direct-measurement method utilizing a pump for air intake. | (Advantages) Pump usage allows for quicker collection, thereby improving temporal resolution. (Disadvantages) Though applicable in various environments, it involves significant costs. |
Compound | CarbopackTM Xa | CarbopackTM 1TD | CarbopackTM B |
---|---|---|---|
1,1-Dichloroethene | 0.57 ± 0.1 | Not available | Not available |
3-Chloropropene | 0.51 ± 0.3 | Not available | Not available |
1,1-Dichloroethane | 0.57 ± 0.1 | Not available | Not available |
1,2-Dichloroethane | 0.57 ± 0.1 | Not available | Not available |
1,1,1-Trichloroethane | 0.51 ± 0.1 | Not available | Not available |
Benzene | 0.67 ± 0.1 | 0.63 ± 0.7 | 0.63 ± 0.1 |
Carbon tetrachloride | 0.51 ± 0.1 | Not available | Not available |
1,2-Dichloropropane | 0.52 ± 0.1 | Not available | Not available |
Trichloroethene | 0.5 ± 0.1 | Not available | Not available |
1,1,2-Trichloroethane | 0.49 ± 0.1 | Not available | Not available |
Toluene | 0.52 ± 0.1 | 0.56 ± 0.6 | 0.56 ± 0.1 |
Tetrachloroethene | 0.48 ± 0.1 | Not available | Not available |
Chlorobenzene | 0.51 ± 0.1 | Not available | Not available |
Ethylbenzene | 0.46 ± 0.1 | Not available | 0.50 |
m,p-Xylene | 0.46 ± 0.1 | 0.47 ± 0.4 | 0.47 ± 0.1 |
Styrene | 0.5 ± 0.1 | Not available | Not available |
o-Xylene | 0.46 ± 0.1 | 0.47 ± 0.4 | 0.47 ± 0.1 |
p-Dichlorobenzene | 0.45 ± 0.1 | Not available | Not available |
Sample Analysis Conditions (GC/MSD) | Sample Analysis Conditions (TD) | ||
---|---|---|---|
Analysis Equipment | QP-2020 Plus (Shimadzu) | Analysis Equipment | TD-20 (Shimadzu) |
Column | DB-1(60 m × 250 μg, 0.25 μg) HP-PLOT(50 m × 320 μg, 0.32 μg) | Primary desorption temp. | 300 °C |
Carrier gas | He, 1.0 mL/min, constant flow | Desorb time | 10 min |
Split/Splitless | Splitless, split on after 1 min (30:1) | Desorb flow | 50 mL/min |
Oven temperature | 40 °C, hold 2 min 5.0 °C/min to 150 °C, hold 5 min 5.0 °C/min to 250 °C, hold 10 min Transfer line 230 °C | Cold trap holding time | 5 min |
MS source temperature | 230 °C | Cold trap low temp. | −20 °C |
Ionization mode | EI mode(70 eV) | Cold trap packing | Carbopack + CS |
Scan mass range | 20~350 amu | Valve and line temp. | 180 °C |
Substance Name | Sampling Method | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 | Point 10 | Point 11 | Point 12 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Toluene | Active | - | - | - | 0.01 | - | 0.17 | 0.03 | 0.03 | 0.27 | 0.07 | 0.09 | 0.13 | 0.10 |
Passive | 0.15 | 0.24 | 0.64 | 0.01 | - | - | - | - | - | - | - | - | 0.26 | |
m,p-Xylene | Active | 0.42 | 0.93 | 0.57 | 1.34 | 0.55 | 0.48 | 0.48 | 0.57 | 0.60 | 0.57 | 0.62 | 0.71 | 0.65 |
Passive | 0.63 | 0.26 | 0.50 | 0.53 | 0.49 | 0.41 | 0.45 | 0.26 | 0.40 | 0.39 | 0.38 | 0.43 | 0.43 | |
Carbon tetrachloride | Active | 1.47 | 1.44 | 1.42 | 1.41 | 1.41 | 1.41 | 0.86 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 | 1.38 |
Passive | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.80 | 0.81 | 0.80 | 0.80 | 0.81 | 0.80 | 0.80 | 0.81 | |
1,2-Dichloropropane | Active | 0.72 | 0.54 | 0.18 | - | - | - | 0.55 | 0.91 | 0.92 | 1.11 | 0.91 | 0.91 | 0.75 |
Passive | 0.51 | 0.51 | 0.51 | 0.51 | - | - | 0.51 | 0.51 | - | - | - | - | 0.51 |
Substance Name | CAS No. | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 | Point 10 | Point 11 | Point 12 | Average | Composition |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Methylene chloride | 75-09-2 | 1.95 | 1.92 | 1.91 | 1.91 | 1.91 | 1.90 | 1.19 | 1.96 | 1.97 | 1.94 | 1.96 | 1.96 | 1.87 | 20.7% |
Carbon tetrachloride | 56-23-5 | 1.47 | 1.44 | 1.42 | 1.41 | 1.41 | 1.41 | 0.86 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 | 1.38 | 15.3% |
Isoprene | 78-79-50 | - | - | - | - | - | - | 0.49 | 0.06 | 4.26 | 4.40 | 2.06 | 2.45 | 1.14 | 12.6% |
Dichlorodifluoromethane | 75-71-8 | - | 0.99 | 0.93 | 1.13 | 1.08 | 1.10 | 0.87 | 1.34 | 1.55 | 1.36 | 1.40 | 1.57 | 1.11 | 12.3% |
Isopentane | 78-78-4 | - | - | 2.38 | 2.13 | 2.44 | 1.96 | - | - | - | - | - | - | 0.74 | 8.2% |
m,p-Xylene | 108-38-3 | 0.42 | 0.93 | 0.57 | 1.34 | 0.55 | 0.48 | 0.48 | 0.57 | 0.60 | 0.57 | 0.62 | 0.71 | 0.65 | 7.2% |
1,2-Dichloropropane | 78-87-5 | 0.72 | 0.54 | 0.18 | - | - | - | 0.55 | 0.91 | 0.92 | 1.11 | 0.91 | 0.91 | 0.56 | 6.2% |
Chloroform | 67-66-3 | 0.45 | - | 0.44 | 0.44 | 0.22 | - | 0.44 | 0.67 | 1.11 | 1.11 | 0.67 | 0.89 | 0.54 | 5.9% |
Cyclohexane | 110-82-7 | - | 0.47 | 0.36 | 0.56 | - | - | - | - | 0.09 | - | 1.14 | 0.07 | 0.22 | 2.5% |
Methylcyclopentane | 96-37-7 | - | 2.09 | - | 0.00 | - | - | - | - | - | - | 0.10 | - | 0.18 | 2.0% |
1,3,5-Trimethylbenzene | 108-67-8 | - | 0.91 | - | 0.62 | - | - | - | - | - | - | - | - | 0.13 | 1.4% |
Ethylbenzene | 100-41-4 | - | - | - | 0.91 | - | - | - | - | - | - | - | - | 0.08 | 0.8% |
Toluene | 108-88-3 | - | - | - | 0.01 | - | 0.17 | 0.03 | 0.03 | 0.27 | 0.07 | 0.09 | 0.13 | 0.07 | 0.7% |
1,3-Dichlorobenzene | 541-73-1 | - | - | - | 0.73 | - | - | - | - | - | - | - | - | 0.06 | 0.7% |
Isobutane | 75-28-5 | - | 0.44 | - | - | - | - | 0.29 | - | - | - | - | - | 0.06 | 0.7% |
Substance Name | CAS No. | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 | Point 10 | Point 11 | Point 12 | Average | Composition |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Carbon tetrachloride | 56-23-5 | 8.40 | 8.38 | 8.33 | 8.33 | 8.33 | 8.31 | 8.32 | 8.29 | 8.29 | 8.32 | 8.27 | 8.28 | 8.32 | 43.4% |
m,p-Xylene | 108-38-3 | 5.90 | 2.45 | 4.64 | 4.97 | 4.53 | 3.86 | 4.23 | 2.44 | 3.72 | 3.59 | 3.51 | 3.97 | 3.98 | 20.8% |
1,2-Dichloropropane | 78-87-5 | 5.34 | 5.37 | 5.34 | 5.34 | - | - | 5.36 | 5.33 | - | - | - | - | 2.67 | 13.9% |
Dichlorodifluoromethane | 75-71-8 | - | - | - | - | 5.73 | 5.63 | - | 4.88 | - | 4.94 | - | 4.97 | 2.18 | 11.4% |
1,3,5-Trimethylbenzene | 108-67-8 | - | 6.70 | - | - | - | - | 6.70 | - | - | - | - | - | 1.12 | 5.8% |
Toluene | 108-88-3 | 1.53 | 2.48 | 6.71 | 0.14 | 0.05 | - | - | - | - | - | - | - | 0.91 | 4.7% |
Isobutane | 75-28-5 | - | 0.44 | - | - | - | - | 0.29 | - | - | - | - | - | 0.06 | 0.7% |
Substance Name | Sampling Method | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 | Point 10 | Point 11 | Point 12 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Benzene | Active | - | - | - | - | - | - | - | - | - | - | - | - | - |
Passive | - | 0.30 | - | - | - | - | - | - | - | - | - | - | 0.30 | |
Toluene | Active | 0.78 | - | - | - | - | - | - | - | - | 0.72 | - | - | 0.75 |
Passive | 1.46 | 1.38 | 1.34 | 1.75 | 1.21 | 1.04 | 1.33 | 0.95 | 1.08 | 1.41 | 1.23 | - | 1.29 | |
Ethylbenzene | Active | - | - | - | - | - | - | - | - | - | - | - | - | - |
Passive | 0.85 | 0.81 | 0.85 | 0.92 | 0.78 | 0.68 | 0.85 | 0.64 | 0.76 | 0.79 | 0.66 | - | 0.78 | |
m,p-Xylene | Active | - | - | - | - | - | - | - | - | - | - | - | - | |
Passive | 0.72 | 0.66 | 0.71 | 0.75 | 0.63 | 0.52 | 0.70 | 0.49 | 0.58 | 0.65 | 0.52 | - | 0.63 | |
Styrene | Active | - | - | - | - | - | - | - | - | - | - | - | - | - |
Passive | 0.74 | 0.72 | 0.75 | 0.81 | 0.73 | 0.67 | 0.75 | - | - | 0.79 | 0.67 | - | 0.74 | |
o-Xylene | Active | - | - | - | - | - | - | - | - | - | - | - | - | - |
Passive | 0.69 | 0.66 | 0.70 | 0.73 | 0.65 | 0.57 | 0.70 | 0.55 | 0.61 | 0.66 | 0.56 | - | 0.64 |
Substance Name | CAS No. | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 | Point 10 | Point 11 | Point 12 | Average | Composition |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n-Pentane | 109-66-0 | 0.08 | - | 0.75 | 0.89 | 3.54 | 5.24 | 4.14 | 2.01 | 1.08 | - | - | 0.43 | 1.51 | 45.5% |
Isoprene | 78-79-50 | 2.58 | 1.68 | - | - | - | - | - | - | 0.28 | - | - | - | 0.38 | 11.4% |
n-Heptane | 142-82-5 | - | - | - | - | - | - | - | - | - | 1.33 | 2.92 | - | 0.35 | 10.6% |
Isopentane | 78-78-4 | - | - | - | - | 0.59 | 1.23 | 1.37 | 0.34 | - | - | - | - | 0.29 | 8.8% |
iso-Hexane | 107-83-5 | - | - | - | 1.04 | - | - | - | - | - | - | - | 1.00 | 0.17 | 5.1% |
3-Methylhexane | 589-34-4 | - | - | - | - | - | - | - | - | - | - | 2.02 | - | 0.17 | 5.1% |
Toluene | 108-88-3 | 0.78 | - | - | - | - | - | - | - | - | 0.72 | - | - | 0.12 | 3.8% |
n-Butane | 106-97-8 | - | - | - | - | - | - | 0.65 | 0.26 | 0.38 | - | - | - | 0.11 | 3.2% |
Methylcyclohexane | 108-87-2 | - | - | - | - | - | - | - | - | - | 1.25 | - | - | 0.10 | 3.1% |
Isobutane | 75-28-5 | - | - | - | - | - | - | 0.75 | 0.15 | - | - | - | - | 0.08 | 2.3% |
n-Octane | 111-65-9 | - | - | - | - | - | - | - | - | - | - | - | 0.45 | 0.04 | 1.1% |
Substance Name | CAS No. | Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | Point 9 | Point 10 | Point 11 | Point 12 | Average | Composition |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Toluene | 108-88-3 | 14.85 | 13.97 | 13.64 | 17.72 | 12.27 | 10.51 | 13.45 | 9.61 | 11.00 | 14.35 | 12.53 | - | 11.99 | 21.3% |
iso-Hexane | 107-83-5 | 9.59 | 11.73 | 9.96 | 10.75 | 9.82 | 7.19 | 9.48 | 7.51 | 9.35 | 12.95 | 8.54 | - | 8.91 | 15.8% |
Ethylbenzene | 100-41-4 | 7.66 | 7.31 | 7.60 | 8.29 | 6.99 | 6.07 | 7.59 | 5.72 | 6.79 | 7.12 | 5.95 | - | 6.42 | 11.4% |
Styrene | 100-42-5 | 7.27 | 7.02 | 7.33 | 7.86 | 7.11 | 6.50 | 7.27 | - | - | 7.74 | 6.56 | - | 5.39 | 9.6% |
o-Xylene | 95-47-6 | 6.20 | 5.94 | 6.30 | 6.53 | 5.85 | 5.11 | 6.27 | 4.95 | 5.51 | 5.92 | 5.05 | - | 5.30 | 9.4% |
m,p-Xylene | 108-38-3 | 6.48 | 5.91 | 6.37 | 6.72 | 5.62 | 4.64 | 6.29 | 4.38 | 5.25 | 5.83 | 4.63 | - | 5.18 | 9.2% |
3-Methylhexane | 589-34-4 | - | 4.51 | - | 4.69 | - | - | 6.80 | 4.14 | 3.96 | 6.55 | 13.82 | - | 3.71 | 6.6% |
n-Heptane | 142-82-5 | - | - | - | - | - | - | 6.47 | - | - | 7.64 | 16.43 | - | 2.55 | 4.5% |
1,2,4-Trimethylbenzene | 95-63-6 | 5.84 | 5.79 | 5.89 | - | - | - | 5.78 | - | - | 5.62 | - | - | 2.41 | 4.3% |
n-Decane | 124-18-5 | 5.93 | 6.59 | - | - | - | - | - | - | - | - | - | - | 1.04 | 1.9% |
n-Pentane | 109-66-0 | - | - | - | 2.54 | 1.58 | 1.44 | 1.60 | 1.28 | 1.13 | 1.11 | 1.07 | - | 0.98 | 1.7% |
Methylcyclohexane | 108-87-2 | - | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 6.12 | - | - | 0.51 | 0.9% |
Rank | Substance Name (POCP) | Research Target Facility A | Research Target Facility B | ||||||
---|---|---|---|---|---|---|---|---|---|
Active (µg/m3) | Active Ratio (%) | Passive (µg/m3) | Passive Ratio (%) | Active (µg/m3) | Active Ratio (%) | Passive (µg/m3) | Passive Ratio (%) | ||
1 | 1-Butene (113) | N/D | N/D | N/D | - | N/D | N/D | N/D | N/D |
2 | Propylene (108) | N/D | N/D | N/D | - | N/D | N/D | N/D | N/D |
3 | Ethylene (100) | N/D | N/D | N/D | - | N/D | N/D | N/D | N/D |
4 | m/p-Xylene (109/95) | 0.65 | 73.26 | 0.25 | 85.41 | N/D | N/D | 0.63 | 19.28 |
5 | Ethylbenzene (81) | 0.08 | 8.50 | N/D | - | N/D | N/D | 0.78 | 24.08 |
6 | Toluene (77) | 0.07 | 7.39 | 0.43 | 14.59 | 0.12 | 26.24 | 1.29 | 44.08 |
7 | 3-Methylhexane (73) | N/D | N/D | N/D | N/D | 0.17 | 35.39 | N/A | 12.56 |
8 | n-Hexane (65) | N/D | N/D | N/D | N/D | N/D | N/D | N/D | N/D |
9 | n-Butane (60 | 0.04 | 4.05 | N/D | N/D | 0.11 | 22.51 | N/D | N/D |
10 | Isobutane (43) | 0.06 | 6.08 | N/D | N/D | 0.08 | 15.86 | N/D | N/D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.E.; Kim, J.H.; Seo, D.; Yoon, S.J. Prioritization of Volatile Organic Compound Reduction in the Tire Manufacturing Industry through Speciation of Volatile Organic Compounds Emitted at the Fenceline. Atmosphere 2024, 15, 223. https://doi.org/10.3390/atmos15020223
Lee HE, Kim JH, Seo D, Yoon SJ. Prioritization of Volatile Organic Compound Reduction in the Tire Manufacturing Industry through Speciation of Volatile Organic Compounds Emitted at the Fenceline. Atmosphere. 2024; 15(2):223. https://doi.org/10.3390/atmos15020223
Chicago/Turabian StyleLee, Hyo Eun, Jeong Hun Kim, Daram Seo, and Seok J. Yoon. 2024. "Prioritization of Volatile Organic Compound Reduction in the Tire Manufacturing Industry through Speciation of Volatile Organic Compounds Emitted at the Fenceline" Atmosphere 15, no. 2: 223. https://doi.org/10.3390/atmos15020223
APA StyleLee, H. E., Kim, J. H., Seo, D., & Yoon, S. J. (2024). Prioritization of Volatile Organic Compound Reduction in the Tire Manufacturing Industry through Speciation of Volatile Organic Compounds Emitted at the Fenceline. Atmosphere, 15(2), 223. https://doi.org/10.3390/atmos15020223