Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems
<p>Flow chart of the literature search strategy.</p> "> Figure 2
<p>Geographic distribution of study areas where relevant literature was found.</p> "> Figure 3
<p>Number of publications per year.</p> "> Figure 4
<p>Word cloud illustrating the frequency of terms in titles of reviewed articles.</p> "> Figure 5
<p>Clustered co-occurrence map of most relevant terms from titles of the compiled articles.</p> ">
Abstract
:1. Introduction
2. Scientometric Review of Remote Sensing in Snow Avalanche Research
3. Major Factors Influencing Avalanche Formation
3.1. Geomorphological Factors
3.1.1. Slope and Its Influence
3.1.2. Elevation and Avalanche Activity
3.1.3. Aspect and Snowpack Stability
3.1.4. Curvature and Its Effects on Snow Movement
3.1.5. Terrain Roughness and Avalanche Dynamics
3.2. Land Cover and Vegetation
3.2.1. Influence of Land Cover and Vegetation on Avalanche Formation
3.2.2. Mutual Relationship Between Avalanches and Vegetation
3.3. Meteorological Factors
3.3.1. Temperature
3.3.2. Precipitation: Snowfall and Rainfall
3.3.3. Wind
3.3.4. Integrating Meteorological Data for Avalanche Prediction
4. Remote Sensing Techniques
4.1. Satellite Imagery: Overview of Satellite Technologies Used for Avalanche Monitoring
4.2. Aerial Photography and Drones: Use of High-Resolution Imagery from Drones and Aircraft
4.3. Data Analysis Methods: Processing and Analyzing Remote Sensing Data
4.3.1. Machine Learning Techniques
4.3.2. Data Fusion
4.3.3. Change Detection Algorithms
4.4. Building Hazard Monitoring Systems
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahzad, L.; Tahir, A.; Sharif, F.; Khan, W.U.D.; Farooq, M.A.; Abbas, A.; Saqib, Z.A. Vulnerability, Well-Being, and Livelihood Adaptation under Changing Environmental Conditions: A Case from Mountainous Region of Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 26748–26764. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Srivastava, P.K. Snehmani GIS-Based MCDA–AHP Modelling for Avalanche Susceptibility Mapping of Nubra Valley Region, Indian Himalaya. Geocarto Int. 2017, 32, 1254–1267. [Google Scholar] [CrossRef]
- Varol, N. Avalanche Susceptibility Mapping with the Use of Frequency Ratio, Fuzzy and Classical Analytical Hierarchy Process for Uzungol Area, Turkey. Cold Reg. Sci. Technol. 2022, 194, 103439. [Google Scholar] [CrossRef]
- McClung, D.M. Avalanche Character and Fatalities in the High Mountains of Asia. Ann. Glaciol. 2016, 57, 114–118. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Malnes, E. Manual Detection of Snow Avalanche Debris Using High-Resolution Radarsat-2 SAR Images. Cold Reg. Sci. Technol. 2015, 120, 205–218. [Google Scholar] [CrossRef]
- Horton, S.; Towell, M.; Haegeli, P. Examining the Operational Use of Avalanche Problems with Decision Trees and Model-Generated Weather and Snowpack Variables. Nat. Hazards Earth Syst. Sci. 2020, 20, 3551–3576. [Google Scholar] [CrossRef]
- Rafique, A.; Dasti, M.Y.S.; Ullah, B.; Awwad, F.A.; Ismail, E.A.A.; Saqib, Z.A. Snow Avalanche Hazard Mapping Using a GIS-Based AHP Approach: A Case of Glaciers in Northern Pakistan from 2012 to 2022. Remote Sens 2023, 15, 5375. [Google Scholar] [CrossRef]
- Canadian Avalanche Association. Observation Guidelines and Recording Standards for Weather, Snowpack and Avalanches; Canadian Avalanche Association: Revelstoke, BC, Canada, 2024. [Google Scholar]
- American Avalanche Association. Snow, Weather, and Avalanches: Observation Guidelines for Avalanche Programs in the United States, 4th ed.; American Avalanche Association: Summit County, CO, USA, 2022. [Google Scholar]
- Zhang, X.-P.; Hu, K.-H.; Liu, S.; Nie, Y.; Han, Y.-Z. Comprehensive Interpretation of the Sedongpu Glacier-Related Mass Flows in the Eastern Himalayan Syntaxis. J. Mt. Sci. 2022, 19, 2469–2486. [Google Scholar] [CrossRef]
- Han, W.; Zhang, X.; Wang, Y.; Wang, L.; Huang, X.; Li, J.; Wang, S.; Chen, W.; Li, X.; Feng, R.; et al. A Survey of Machine Learning and Deep Learning in Remote Sensing of Geological Environment: Challenges, Advances, and Opportunities. ISPRS J. Photogramm. Remote Sens. 2023, 202, 87–113. [Google Scholar] [CrossRef]
- Hafner, E.D.; Techel, F.; Leinss, S.; Bühler, Y. Mapping Avalanches with Satellites-Evaluation of Performance and Completeness. Cryosphere 2021, 15, 983–1004. [Google Scholar] [CrossRef]
- Abermann, J.; Eckerstorfer, M.; Malnes, E.; Hansen, B.U. A Large Wet Snow Avalanche Cycle in West Greenland Quantified Using Remote Sensing and in Situ Observations. Nat. Hazards 2019, 97, 517–534. [Google Scholar] [CrossRef]
- Bühler, Y.; Adams, M.S.; Stoffel, A.; Boesch, R. Photogrammetric Reconstruction of Homogenous Snow Surfaces in Alpine Terrain Applying Near-Infrared UAS Imagery. Int. J. Remote Sens. 2017, 38, 3135–3158. [Google Scholar] [CrossRef]
- Leinss, S.; Wicki, R.; Holenstein, S.; Baffelli, S.; Bühler, Y. Snow Avalanche Detection and Mapping in Multitemporal and Multiorbital Radar Images from TerraSAR-X and Sentinel-1. Nat. Hazards Earth Syst. Sci. 2020, 20, 1783–1803. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Hu, C.; Wang, B.; Yang, Z.; Sun, X.; Yao, S. A Study on Avalanche-Triggering Factors and Activity Characteristics in Aerxiangou, West Tianshan Mountains, China. Atmosphere 2023, 14, 1439. [Google Scholar] [CrossRef]
- Akay, H. Spatial Modeling of Snow Avalanche Susceptibility Using Hybrid and Ensemble Machine Learning Techniques. Catena 2021, 206, 105524. [Google Scholar] [CrossRef]
- Reuter, B.; Van Herwijnen, A.; Veitinger, J.; Schweizer, J. Relating Simple Drivers to Snow Instability. Cold Reg. Sci. Technol. 2015, 120, 168–178. [Google Scholar] [CrossRef]
- Yang, J.; He, Q.; Liu, Y. Winter–Spring Prediction of Snow Avalanche Susceptibility Using Optimisation Multi-Source Heterogeneous Factors in the Western Tianshan Mountains, China. Remote Sens. 2022, 14, 1340. [Google Scholar] [CrossRef]
- McClung, D.M. Effects of Triggering Mechanism on Snow Avalanche Slope Angles and Slab Depths from Field Data. Nat. Hazards 2013, 69, 1721–1731. [Google Scholar] [CrossRef]
- Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A. Automated Identification of Potential Snow Avalanche Release Areas Based on Digital Elevation Models. Nat. Hazards Earth Syst. Sci. 2013, 13, 1321–1335. [Google Scholar] [CrossRef]
- Součková, M.; Juras, R.; Dytrt, K.; Moravec, V.; Blöcher, J.R.; Hanel, M. What Weather Variables Are Important for Wet and Slab Avalanches under a Changing Climate in a Low-Altitude Mountain Range in Czechia? Nat. Hazards Earth Syst. Sci. 2022, 22, 3501–3525. [Google Scholar] [CrossRef]
- Grenier, J.; Bhiry, N.; Decaulne, A. Meteorological Conditions and Snow-Avalanche Occurrence over Three Snow Seasons (2017–2020) in Tasiapik Valley, Umiujaq, Nunavik. Arct. Antarct. Alp. Res. 2023, 55, 2194492. [Google Scholar] [CrossRef]
- Selçuk, L. An Avalanche Hazard Model for Bitlis Province, Turkey, Using GIS Based Multicriteria Decision Analysis. Turk. J. Earth Sci. 2013, 22, 523–535. [Google Scholar] [CrossRef]
- Yilmaz, B. Application of Gis-Based Fuzzy Logic and Analytical Hierarchy Process (Ahp) to Snow Avalanche Susceptibility Mapping, North San Juan, Colorado. Master’s Thesis, University of Colorado Boulde, Boulder, CO, USA, 2016. [Google Scholar]
- Yariyan, P.; Avand, M.; Abbaspour, R.A.; Karami, M.; Tiefenbacher, J.P. GIS-Based Spatial Modeling of Snow Avalanches Using Four Novel Ensemble Models. Sci. Total Environ. 2020, 745, 141008. [Google Scholar] [CrossRef] [PubMed]
- Snehmani; Bhardwaj, A.; Pandit, A.; Ganju, A. Demarcation of Potential Avalanche Sites Using Remote Sensing and Ground Observations: A Case Study of Gangotri Glacier. Geocarto Int. 2014, 29, 520–535. [Google Scholar] [CrossRef]
- Singh, V.; Thakur, P.K.; Garg, V.; Aggarwal, S.P. Assessment of Snow Avalanche Susceptibility of Road Network—A Case Study of Alaknanda Basin. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–5, 461–468. [Google Scholar] [CrossRef]
- Fischer, J.-T.; Kowalski, J.; Pudasaini, S.P. Topographic Curvature Effects in Applied Avalanche Modeling. Cold Reg. Sci. Technol. 2012, 74–75, 21–30. [Google Scholar] [CrossRef]
- Peitzsch, E.H.; Martin-Mikle, C.; Hendrikx, J.; Birkeland, K.; Fagre, D. Characterizing Vegetation and Return Periods in Avalanche Paths Using Lidar and Aerial Imagery. Arct. Antarct. Alp. Res. 2024, 56, 2310333. [Google Scholar] [CrossRef]
- Bian, R.; Huang, K.; Liao, X.; Ling, S.; Wen, H.; Wu, X. Snow Avalanche Susceptibility Assessment Based on Ensemble Machine Learning Model in the Central Shaluli Mountain. Front. Earth Sci. 2022, 10, 880711. [Google Scholar] [CrossRef]
- Teich, M.; Bartelt, P.; Grêt-Regamey, A.; Bebi, P. Snow Avalanches in Forested Terrain: Influence of Forest Parameters, Topography, and Avalanche Characteristics on Runout Distance. Arct. Antarct. Alp. Res. 2012, 44, 509–519. [Google Scholar] [CrossRef]
- Brožová, N.; Fischer, J.-T.; Bühler, Y.; Bartelt, P.; Bebi, P. Determining Forest Parameters for Avalanche Simulation Using Remote Sensing Data. Cold Reg. Sci. Technol. 2020, 172, 102976. [Google Scholar] [CrossRef]
- Varade, D.; Manickam, S.; Singh, G. Remote Sensing for Snowpack Monitoring and Its Implications. In Geographic Information Science for Land Resource Management; Wiley: Hoboken, NJ, USA, 2021; pp. 99–117. ISBN 978-111978637-5/978-111978632-0. [Google Scholar]
- Mainieri, R.; Favillier, A.; Lopez-Saez, J.; Eckert, N.; Zgheib, T.; Morel, P.; Saulnier, M.; Peiry, J.L.; Stoffel, M.; Corona, C. Impacts of Land-Cover Changes on Snow Avalanche Activity in the French Alps. Anthropocene 2020, 30, 100244. [Google Scholar] [CrossRef]
- Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P. Forest Damage and Snow Avalanche Flow Regime. Nat. Hazards Earth Syst. Sci. 2015, 15, 1275–1288. [Google Scholar] [CrossRef]
- Munteanu, A.; Nedelea, A.; Comanescu, L. The Dynamics of the Snow Avalanche Affected Areas in Piatra Mica Mountains (Romania). Comptes Rendus Geosci. 2011, 343, 691–700. [Google Scholar] [CrossRef]
- Kapper, K.L.; Goelles, T.; Muckenhuber, S.; Trügler, A.; Abermann, J.; Schlager, B.; Gaisberger, C.; Eckerstorfer, M.; Grahn, J.; Malnes, E.; et al. Automated Snow Avalanche Monitoring for Austria: State of the Art and Roadmap for Future Work. Front. Remote Sens. 2023, 4, 1156519. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, X.; Cui, P.; Li, L.; Wang, Y.; Zhang, G.; Li, C. Impacts of Climate Change on Snow Avalanche Activity Along a Transportation Corridor in the Tianshan Mountains. Int. J. Disaster Risk Sci. 2023, 14, 510–522. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, Z.; Li, L. Timing and Identification of Potential Snow Avalanche Types: A Case Study of the Central Tianshan Mountains. Landslides 2021, 18, 3845–3856. [Google Scholar] [CrossRef]
- Acharya, A.; Steiner, J.F.; Walizada, K.M.; Ali, S.; Zakir, Z.H.; Caiserman, A.; Watanabe, T. Review Article: Snow and Ice Avalanches in High Mountain Asia—Scientific, Local and Indigenous Knowledge. Nat. Hazards Earth Syst. Sci. 2023, 23, 2569–2592. [Google Scholar] [CrossRef]
- Omirzhanova, Z.T.; Urazaliev, A.S.; Aimenov, A.T. GIS for Predicting the Avalanche Zones in the Mountain Regions of Kazakhstan. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society for Photogrammetry and Remote Sensing: Nice, France, 2015; Volume 40, pp. 39–44. [Google Scholar]
- Medeu, A.; Blagovechshenskiy, V.; Gulyayeva, T.; Zhdanov, V.; Ranova, S. Interannual Variability of Snowiness and Avalanche Activity in the Ile Alatau Ridge, Northern Tien Shan. Water 2022, 14, 2936. [Google Scholar] [CrossRef]
- Bühler, Y.; Hafner, E.D.; Zweifel, B.; Zesiger, M.; Heisig, H. Where Are the Avalanches? Rapid Mapping of a Large Snow Avalanche Period with Optical Satellites. Cryosphere 2019, 13, 3225–3238. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Guo, Q.; Yang, Z.; Wang, B.; Yao, S.; Xie, H.; Hu, C. Snow Avalanche Susceptibility Mapping of Transportation Corridors Based on Coupled Certainty Factor and Geodetector Models. Atmosphere 2024, 15, 1096. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Christiansen, H.H. Meteorology, Topography and Snowpack Conditions Causing Two Extreme Mid-Winter Slush and Wet Slab Avalanche Periods in High Arctic Maritime Svalbard. Permafr. Periglac. Process 2012, 23, 15–25. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Bühler, Y.; Frauenfelder, R.; Malnes, E. Remote Sensing of Snow Avalanches: Recent Advances, Potential, and Limitations. Cold Reg. Sci. Technol. 2016, 121, 126–140. [Google Scholar] [CrossRef]
- Ressl, C.; Pfeifer, N. Evaluation of the Elevation Model Influence on the Orthorectification of Sentinel-2 Satellite Images over Austria. Eur. J. Remote Sens. 2018, 51, 693–709. [Google Scholar] [CrossRef]
- Aberle, R.; Enderlin, E.; O’Neel, S.; Florentine, C.; Sass, L.; Dickson, A.; Marshall, H.-P.; Flores, A. Automated Snow Cover Detection on Mountain Glaciers Using Space-Borne Imagery. EGUsphere 2024, 2024, 1–28. [Google Scholar] [CrossRef]
- Meena, S.R.; Bhuyan, K.; Chauhan, A.; Singh, R.P. Snow Covered with Dust after Chamoli Rockslide: Inference Based on High-Resolution Satellite Data. Remote Sens. Lett. 2021, 12, 704–714. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Yang, J.; Li, L.; Wang, T. Snow Avalanche Susceptibility Mapping from Tree-Based Machine Learning Approaches in Ungauged or Poorly-Gauged Regions. Catena 2023, 224, 106997. [Google Scholar] [CrossRef]
- Shaw, T.E.; Gascoin, S.; Mendoza, P.A.; Pellicciotti, F.; McPhee, J. Snow Depth Patterns in a High Mountain Andean Catchment from Satellite Optical Tristereoscopic Remote Sensing. Water Resour. Res. 2020, 56, e2019WR024880. [Google Scholar] [CrossRef]
- Wesselink, D.S.; Malnes, E.; Eckerstorfer, M.; Lindenbergh, R.C. Automatic Detection of Snow Avalanche Debris in Central Svalbard Using C-Band SAR Data. Polar Res. 2017, 36, 1333236. [Google Scholar] [CrossRef]
- Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H. A Method for Automated Snow Avalanche Debris Detection through Use of Synthetic Aperture Radar (SAR) Imaging. Earth Space Sci. 2016, 3, 446–462. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Vickers, H.; Malnes, E.; Grahn, J. Near-Real Time Automatic Snow Avalanche Activity Monitoring System Using Sentinel-1 SAR Data in Norway. Remote Sens. 2019, 11, 2863. [Google Scholar] [CrossRef]
- Solberg, R.; Salberg, A.-B.; Due Trier, Ø.; Rudjord, Ø.; Stancalie, G.; Diamandi, A.; Irimescu, A.; Craciunescu, V. Remote Sensing of Snow Wetness in Romania by Sentinel-1 and Terra MODIS Data. Rom. J. Phys. 2017, 62, 821. [Google Scholar]
- Kneib, M.; Dehecq, A.; Brun, F.; Karbou, F.; Charrier, L.; Leinss, S.; Wagnon, P.; Maussion, F. Mapping and Characterization of Avalanches on Mountain Glaciers with Sentinel-1 Satellite Imagery. Cryosphere 2024, 18, 2809–2830. [Google Scholar] [CrossRef]
- Kumar, S.; Srivastava, P.K. Snehmani Geospatial Modelling and Mapping of Snow Avalanche Susceptibility. J. Indian Soc. Remote Sens. 2018, 46, 109–119. [Google Scholar] [CrossRef]
- Darychuk, S.E.; Shea, J.M.; Menounos, B.; Chesnokova, A.; Jost, G.; Weber, F. Snowmelt Characterization from Optical and Synthetic-Aperture Radar Observations in the La Joie Basin, British Columbia. Cryosphere 2023, 17, 1457–1473. [Google Scholar] [CrossRef]
- Tompkin, C.; Leinss, S. Backscatter Characteristics of Snow Avalanches for Mapping with Local Resolution Weighting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4452–4464. [Google Scholar] [CrossRef]
- Lu, Y.; James, T.; Schillaci, C.; Lipani, A. Snow Detection in Alpine Regions with Convolutional Neural Networks: Discriminating Snow from Cold Clouds and Water Body. GIsci. Remote Sens. 2022, 59, 1321–1343. [Google Scholar] [CrossRef]
- Gao, M.; Gu, X.; Liu, Y.; Zhan, Y.; Wei, X.; Yu, H.; Liang, M.; Weng, C.; Ding, Y. An Improved Spatiotemporal Data Fusion Method for Snow-Covered Mountain Areas Using Snow Index and Elevation Information. Sensors 2022, 22, 8524. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Malnes, E.; Müller, K. A Complete Snow Avalanche Activity Record from a Norwegian Forecasting Region Using Sentinel-1 Satellite-Radar Data. Cold Reg. Sci. Technol. 2017, 144, 39–51. [Google Scholar] [CrossRef]
- Turbe, C.; Karbou, F.; Rabatel, A.; Gouttevin, I. Snowmelt Dynamics in a Temperate Glacier Using Sentinel-1 SAR Images: A Case Study on Saint-Sorlin Glacier, French Alps. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 8904–8917. [Google Scholar] [CrossRef]
- Kurt, T. Avalanche Hazards with Mitigation in Turkey and Qualitative Risk Assessment for Snow Avalanches in Ayder (Rize, NE Turkey) Using Combination of GIS, Remote Sensing Techniques and Field Studies. In Applications of Space Techniques on the Natural Hazards in the MENA Region; Springer International Publishing: New York, NY, USA, 2022; pp. 533–567. ISBN 978-303088874-9/978-303088873-2. [Google Scholar]
- Mock, C.J.; Carter, K.C.; Birkeland, K.W. Some Perspectives on Avalanche Climatology. Ann. Am. Assoc. Geogr. 2017, 107, 299–308. [Google Scholar] [CrossRef]
- Durlević, U.; Valjarević, A.; Novković, I.; Ćurčić, N.B.; Smiljić, M.; Morar, C.; Stoica, A.; Barišić, D.; Lukić, T. GIS-Based Spatial Modeling of Snow Avalanches Using Analytic Hierarchy Process. A Case Study of the Šar Mountains, Serbia. Atmosphere 2022, 13, 1229. [Google Scholar] [CrossRef]
- Wang, S.; Yang, B.; Zhou, Y.; Wang, F.; Zhang, R.; Zhao, Q. Snow Cover Mapping and Ice Avalanche Monitoring from the Satellite Data of the Sentinels. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; Liang, X., Osmanoglu, B., Soergel, U., Honkavaara, E., Scaioni, M., Peled, A., Shaker, A., Wu, L., Abdulmuttalib, H.M., Zhang, H., et al., Eds.; International Society for Photogrammetry and Remote Sensing: Nice, France, 2018; Volume 42, pp. 1765–1772. [Google Scholar]
- Rakhymberdina, M.; Bekishev, Y.; Denissova, N.; Daumova, G.; Assylkhanova, Z.; Rakhymberdina, M. Investigation of Avalanche-Prone Areas of East Based on Space Imagery Materials. In Proceedings of the 9th International Conference on Cartography and GIS, Nessebar, Bulgaria, 16–21 June 2024. [Google Scholar]
- Favillier, A.; Guillet, S.; Trappmann, D.; Morel, P.; Lopez-Saez, J.; Eckert, N.; Zenhäusern, G.; Peiry, J.L.; Stoffel, M.; Corona, C. Spatio-Temporal Maps of Past Avalanche Events Derived from Tree-Ring Analysis: A Case Study in the Zermatt Valley (Valais, Switzerland). Cold Reg. Sci. Technol. 2018, 154, 9–22. [Google Scholar] [CrossRef]
- Korzeniowska, K.; Bühler, Y.; Marty, M.; Korup, O. Regional Snow-Avalanche Detection Using Object-Based Image Analysis of near-Infrared Aerial Imagery. Nat. Hazards Earth Syst. Sci. 2017, 17, 1823–1836. [Google Scholar] [CrossRef]
- Deems, J.S.; Gadomski, P.J.; Vellone, D.; Evanczyk, R.; LeWinter, A.L.; Birkeland, K.W.; Finnegan, D.C. Mapping Starting Zone Snow Depth with a Ground-Based Lidar to Assist Avalanche Control and Forecasting. Cold Reg. Sci. Technol. 2015, 120, 197–204. [Google Scholar] [CrossRef]
- Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar Measurement of Snow Depth: A Review. J. Glaciol. 2013, 59, 467–479. [Google Scholar] [CrossRef]
- Fox, J.; Siebenbrunner, A.; Reitinger, S.; Peer, D.; Rodríguez-Sánchez, A. Automating Avalanche Detection in Ground-Based Photographs with Deep Learning. Cold Reg. Sci. Technol. 2024, 223, 104179. [Google Scholar] [CrossRef]
- Fees, A.; Van Herwijnen, A.; Altenbach, M.; Lombardo, M.; Schweizer, J. Glide-Snow Avalanche Characteristics at Different Timescales Extracted from Time-Lapse Photography. Ann. Glaciol. 2023, 1–12. [Google Scholar] [CrossRef]
- Heck, M.; Hammer, C.; van Herwijnen, A.; Schweizer, J.; Fäh, D. Automatic Detection of Snow Avalanches in Continuous Seismic Data Using Hidden Markov Models. Nat. Hazards Earth Syst. Sci. 2018, 18, 383–396. [Google Scholar] [CrossRef]
- Guo, R.; Jiang, L.; Xu, Z.; Li, C.; Huang, R.; Zhou, Z.; Li, T.; Liu, Y.; Wang, H.; Fan, X. Seismic and Hydrological Triggers for a Complex Cascading Geohazard of the Tianmo Gully in the Southeastern Tibetan Plateau. Eng. Geol. 2023, 324, 107269. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Li, L.; Ding, J.; Zhang, R.; Han, T.; Liu, Y. Automatic Detection of Regional Snow Avalanches with Scattering and Interference of C-Band SAR Data. Remote Sens. 2020, 12, 2781. [Google Scholar] [CrossRef]
- Wen, H.; Wu, X.; Liao, X.; Wang, D.; Huang, K.; Wünnemann, B. Application of Machine Learning Methods for Snow Avalanche Susceptibility Mapping in the Parlung Tsangpo Catchment, Southeastern Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2022, 198, 103535. [Google Scholar] [CrossRef]
- Hafner, E.D.; Barton, P.; Daudt, R.C.; Wegner, J.D.; Schindler, K.; Bühler, Y. Automated Avalanche Mapping from SPOT 6/7 Satellite Imagery with Deep Learning: Results, Evaluation, Potential and Limitations. Cryosphere 2022, 16, 3517–3530. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, S.; Sushil, R. A Neural Network Model for Automated Prediction of Avalanche Danger Level. Nat. Hazards Earth Syst. Sci. 2023, 23, 2523–2530. [Google Scholar] [CrossRef]
- Rahmati, O.; Ghorbanzadeh, O.; Teimurian, T.; Mohammadi, F.; Tiefenbacher, J.P.; Falah, F.; Pirasteh, S.; Ngo, P.T.T.; Bui, D.T. Spatial Modeling of Snow Avalanche Using Machine Learning Models and Geo-Environmental Factors: Comparison of Effectiveness in Two Mountain Regions. Remote Sens. 2019, 11, 2995. [Google Scholar] [CrossRef]
- Pozdnoukhov, A.; Matasci, G.; Kanevski, M.; Purves, R.S. Spatio-Temporal Avalanche Forecasting with Support Vector Machines. Nat. Hazards Earth Syst. Sci. 2011, 11, 367–382. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.; Wang, H.; Xiao, P.; Wang, Y. Estimating Daily Snow Density Through a Spatiotemporal Random Forest Model. Water Resour. Res. 2024, 60, e2023WR036942. [Google Scholar] [CrossRef]
- Cetinkaya, S.; Kocaman, S. Impact of Learning Set and Sampling for Snow Avalanche Susceptibility Mapping with Random Forest. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; Altan, O., Sunar, F., Klein, D., Eds.; International Society for Photogrammetry and Remote Sensing: Nice, France, 2023; Volume 48, pp. 57–64. [Google Scholar]
- Liu, Y.; Chen, X.; Qiu, Y.; Hao, J.; Yang, J.; Li, L. Mapping Snow Avalanche Debris by Object-Based Classification in Mountainous Regions from Sentinel-1 Images and Causative Indices. Catena 2021, 206, 105559. [Google Scholar] [CrossRef]
- Nissen, K.M.; Rupp, S.; Kreuzer, T.M.; Guse, B.; Damm, B.; Ulbrich, U. Quantification of Meteorological Conditions for Rockfall Triggers in Germany. Nat. Hazards Earth Syst. Sci. 2022, 22, 2117–2130. [Google Scholar] [CrossRef]
- Bühler, Y.; Meier, L.; Ginzler, C. Potential of Operational High Spatial Resolution Near-Infrared Remote Sensing Instruments for Snow Surface Type Mapping. IEEE Geosci. Remote Sens. Lett. 2015, 12, 821–825. [Google Scholar] [CrossRef]
- Lato, M.J.; Frauenfelder, R.; Bühler, Y. Automated Detection of Snow Avalanche Deposits: Segmentation and Classification of Optical Remote Sensing Imagery. Nat. Hazards Earth Syst. Sci. 2012, 12, 2893–2906. [Google Scholar] [CrossRef]
- Schlaffer, S.; Schlogl, M. Snow Avalanche Debris Analysis Using Time Series of Dual-Polarimetric Synthetic Aperture Radar Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 12567–12578. [Google Scholar] [CrossRef]
- Baumer, J.; Metzger, N.; Hafner, E.D.; Daudt, R.C.; Wegner, J.D.; Schindler, K. Automatic Image Compositing and Snow Segmentation for Alpine Snow Cover Monitoring. In Proceedings of the Proceedings—2023 10th IEEE Swiss Conference on Data Science, SDS 2023, Zurich, Switzerland, 22–23 June 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023; pp. 77–84. [Google Scholar]
- Buhler, Y.; Adams, M.S.; Bosch, R.; Stoffel, A. Mapping Snow Depth in Alpine Terrain with Unmanned Aerial Systems (UASs): Potential and Limitations. Cryosphere 2016, 10, 1075–1088. [Google Scholar] [CrossRef]
- Wen, H.; Wu, X.; Shu, X.; Wang, D.; Zhao, S.; Zhou, G.; Li, X. Spatial heterogeneity and temporal tendency of channeled snow avalanche activity retrieved from Landsat images in the maritime snow climate of the Parlung Tsangpo catchment, southeastern Tibet. Cold Reg. Sci. Technol. 2024, 223, 104206. [Google Scholar] [CrossRef]
- Darvishi, M.; Ahmadi, G.R. Application of Radar Polarimetry Techniques for Retrieval Snow and Rain Characteristics in Remote Sensing. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Xuzhou, China, 11–12 November 2013; Arefi, H., Sharifi, M.A., Reinartz, P., Delavar, M.R., Eds.; International Society for Photogrammetry and Remote Sensing: Nice, France, 2013; Volume 40, pp. 111–115. [Google Scholar]
- Malnes, E.; Eckerstorfer, M.; Larsen, Y.; Frauenfelder, R.; Jónsson, Á.; Jaedicke, C.; Solbø, S.A. Remote Sensing of Avalanches in Northern Norway Using Synthetic Aperture Radar; Montana State University Library: Bozeman, MT, USA, 2013. [Google Scholar]
- Ma, Z.; Mei, G. Deep Learning for Geological Hazards Analysis: Data, Models, Applications, and Opportunities. Earth Sci. Rev. 2021, 223, 103858. [Google Scholar] [CrossRef]
- El Oufir, M.K.; Chokmani, K.; El Alem, A.; Agili, H.; Bernier, M. Seasonal Snowpack Classification Based on Physical Properties Using Near-infrared Proximal Hyperspectral Data. Sensors 2021, 21, 5259. [Google Scholar] [CrossRef]
Year | Terms (Frequency) |
---|---|
2010 | [(“snow”, 12), (“density”, 6), (“data”, 5), (“using”, 3), (“polarization”, 3), (“algorithm”, 3), (“hh”, 3), (“radar”, 2), (“estimating”, 2), (“scattering”, 2)] |
2011 | [(“avalanche”, 20), (“la”, 15), (“de”, 14), (“des”, 12), (“snow”, 11), (“à”, 10), (“les”, 7), (“pour”, 7), (“using”, 6), (“model”, 6)] |
2012 | [(“avalanche”, 22), (“snow”, 15), (“avalanches”, 10), (“curvature”, 9), (“risk”, 8), (“wet”, 8), (“high”, 6), (“slush”, 6), (“including”, 5), (“based”, 5)] |
2013 | [(“avalanche”, 31), (“snow”, 30), (“triggering”, 12), (“high”, 11), (“using”, 10), (“release”, 8), (“areas”, 8), (“cover”, 8), (“remote”, 8), (“avalanches”, 7)] |
2014 | [(“snow”, 5), (“terrestrial”, 4), (“potential”, 4), (“avalanche”, 3), (“changes”, 3), (“local”, 3), (“monitoring”, 2), (“automated”, 2), (“laser”, 2), (“scanner”, 2)] |
2015 | [(“snow”, 45), (“avalanche”, 29), (“depth”, 11), (“instability”, 9), (“using”, 7), (“use”, 7), (“field”, 6), (“data”, 6), (“resolution”, 6), (“sar”, 5)] |
2016 | [(“snow”, 18), (“avalanche”, 17), (“depth”, 11), (“data”, 8), (“remote”, 8), (“avalanches”, 7), (“sensing”, 7), (“spatial”, 6), (“detection”, 6), (“high”, 5)] |
2017 | [(“avalanche”, 47), (“snow”, 26), (“using”, 13), (“avalanches”, 11), (“data”, 9), (“detection”, 9), (“used”, 8), (“method”, 7), (“remote”, 7), (“climate”, 6)] |
2018 | [(“avalanche”, 28), (“snow”, 22), (“data”, 12), (“mapping”, 10), (“potential”, 10), (“recurrence”, 7), (“cover”, 6), (“avalanches”, 6), (“based”, 6), (“image”, 6)] |
2019 | [(“avalanche”, 46), (“snow”, 34), (“using”, 11), (“data”, 11), (“study”, 9), (“remote”, 9), (“sensing”, 9), (“cover”, 9), (“livelihood”, 8), (“monitoring”, 8)] |
2020 | [(“avalanche”, 53), (“snow”, 21), (“avalanches”, 18), (“forest”, 17), (“using”, 10), (“mapping”, 10), (“model”, 10), (“remote”, 9), (“sensing”, 9), (“results”, 9)] |
2021 | [(“snow”, 64), (“avalanche”, 57), (“low”, 15), (“avalanches”, 14), (“spectral”, 14), (“double”, 13), (“results”, 13), (“density”, 12), (“using”, 10), (“snowpack”, 10)] |
2022 | [(“avalanche”, 99), (“snow”, 82), (“avalanches”, 39), (“results”, 24), (“method”, 23), (“susceptibility”, 20), (“data”, 20), (“model”, 19), (“high”, 19), (“using”, 18)] |
2023 | [(“avalanche”, 72), (“snow”, 59), (“avalanches”, 31), (“data”, 25), (“study”, 15), (“mapping”, 13), (“remote”, 12), (“high”, 12), (“models”, 12), (“sensing”, 11)] |
2024 | [(“avalanche”, 61), (“snow”, 25), (“using”, 16), (“model”, 15), (“avalanches”, 9), (“vegetation”, 9), (“density”, 8), (“coupled”, 8), (“data”, 7), (“detection”, 7)] |
Satellite | Sensor | Resolution | Type | Key Features | Application |
---|---|---|---|---|---|
Sentinel-1 | Synthetic Aperture Radar (SAR) (C-band) | 5–20 m | Radar | All-weather, day and night imaging; interferometric capabilities | Snow cover mapping, avalanche detection, terrain mapping |
TerraSAR-X | SAR (X—band) | 1–40 m | Radar | High-resolution, all-weather imaging | Avalanche debris detection, terrain mapping |
Sentinel-2 | Multispectral Imager (MSI) | 10–60 m | Optical | Multi-spectral, frequent revisits, wide area coverage | snow cover, avalanche debris mapping, snow albedo tracking, vegetation assessment |
Landsat-8 | Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) | 30 m | Optical/Thermal | Long-term record of Earth’s surface, ideal for studying historical avalanche patterns, thermal infrared data, long-term records | Historical snowpack analysis, climate change impact analysis, vegetation Monitoring |
SPOT-6 | High-Resolution Visible (HRV) | 1.5 m | Optical | High-resolution, fast revisit | Avalanche path mapping, snow cover monitoring, land use mapping |
RADARSAT-2 | SAR (C-band) | 3–100 m | Radar | Flexible imaging options, fine resolution capabilities; all-weather, day and night imaging | Detailed terrain analysis, change detection in avalanche-prone areas, snow depth measurement |
WorldView | HRV | 0.31 m panchromatic, 1.24 m multispectral | Optical | Very high spatial resolution, high Accuracy | High-precision mapping, avalanche risk zoning |
Pleides | HRV | 0.5 m panchromatic, 2 m multispectral | Optical | High-resolution imagery, fast revisit | Snow cover mapping, avalanche detection, detailed terrain analysis |
Planet | HRV | 3–5 m | Optical | Daily revisit, global coverage | Snowpack monitoring, avalanche risk assessment, vegetation assessment |
ALOS- PALSAR | SAR (L-band) | 10–100 m | Radar | Penetrates vegetation, wide-area mapping | Avalanche susceptibility, terrain roughness analysis |
ASTER GDEM | VNIR, TIR | 30 m | Optical | Digital elevation model (DEM) | Topography mapping, avalanche runout zones |
ALOS World 3D | SAR (L-band) | 5 m | SAR | 3D terrain model | High-accuracy terrain mapping, avalanche risk |
SuperView-1 | HRV | 0.5 m panchromatic, 2 m multispectral | Optical | High-resolution, short revisit time | Snow cover mapping, avalanche detection, detailed terrain analysis |
Rapid Eye | HRV | 5 m panchromatic, 15 m multispectral | Optical | Large-area monitoring, daily revisit | Snow and ice monitoring, avalanche risk |
Super Dove | HRV | 3 m panchromatic, 12 m multispectral | Optical | Daily global coverage, high revisit | Snow cover tracking, terrain mapping |
Parameter | Influence | RS Dataset Available | Literature |
---|---|---|---|
Geomorphological | |||
Slope | Influences snow stability and avalanche dynamics based on steepness. | Sentinel-1, TerraSAR-X, ALOS-DEM, LiDAR (drones), ASTER GDEM, SRTM DEM | [21,28,51,57,58,59] |
Elevation | Affects snow accumulation, temperature gradients, and avalanche frequency. | Sentinel-1, ALOS-DEM, ASTER GDEM, RADARSAT-2 | [2,19,59,60] |
Aspect | Determines snow stability through exposure to sunlight, influencing melt. | Sentinel-1, ALOS-DEM, ASTER GDEM, SRTM DEM | [3,7,25,28,59] |
Curvature | Influences snow accumulation and release; convex/concave slopes. | Sentinel-1, TerraSAR-X, ALOS-DEM, ASTER GDEM | [27,28,29,58] |
Terrain Roughness | Affects snow cohesion and avalanche release by interrupting snow layers. | Sentinel -1, ALOS-DEM, ASTER GDEM, SRTM DEM, TerraSAR-X, LiDAR (drones) | [7,21] |
Geobotanical | |||
Land Cover | Influences snow deposition and stability by interrupting snow accumulation. | Sentinel -1, Sentinel-2, Landsat-8, WorldView, Planet, RapidEye | [30,34,58,59] |
Vegetation | Reduces or exacerbates avalanche risk through interception or windbreaks. | Sentinel-1, SPOT-6, LiDAR, Landsat-8, WorldView, Planet, RapidEye | [7,31,61] |
Meteorological | |||
Precipitation | Directly increases snowpack load, influencing avalanche likelihood. | Weather Radar, GPM (Global Precipitation Measurement), TRMM, MODIS | [16,22,51] |
Wind Speed and Direction | Redistributes snow, forming dangerous wind slabs. | Weather Radar, Wind LiDAR, ESA’s Aeolus | [44,46] |
Temperature | Affects snowmelt and refreeze cycles, destabilizing snowpack. | Weather Radar, Sentinel-3, Landsat-8, MODIS | [23,41,42,62] |
Machine Learning Model | Application in Avalanche Monitoring | Key Advantages | References |
---|---|---|---|
Support Vector Machines (SVMs) | Classifying snow types and avalanche risks | High accuracy, works well with limited data | [17,83] |
Convolutional Neural Networks (CNNs) | Detecting avalanche deposits in SAR data | Superior in feature extraction, deep layers for complex data | [61,74] |
Random Forests | Predicting high-risk avalanche zones | Handles large datasets, robust to overfitting | [81,84,85] |
Object-Based Image Analysis (OBIA) | Segmenting snow-covered areas in satellite imagery | Good for high-resolution imagery | [71,86] |
Remote Sensing Data Fusion Type | Sensors Combined | Application | Example of Use Case |
---|---|---|---|
Multi-Sensor Fusion | Sentinel-1 (SAR) + Sentinel-2 (Optical) | Continuously monitor snow cover in variable weather conditions | Monitoring snow cover in cloudy conditions with Sentinel-1 and Sentinel-2 for clear days |
Temporal–spatial Fusion | TerraSAR-X + Sentinel-1 | Enhanced temporal resolution for rapid snow changes | Sentinel-1’s frequent revisits combined with TerraSAR-X’s high resolution for precise detection |
Ground-Based and Satellite Fusion | Weather stations + SAR data | Enhanced snowpack models by combining in situ measurements and satellite data | Integrating SAR data with snow pit observations for real-time avalanche predictions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denissova, N.; Nurakynov, S.; Petrova, O.; Chepashev, D.; Daumova, G.; Yelisseyeva, A. Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems. Atmosphere 2024, 15, 1343. https://doi.org/10.3390/atmos15111343
Denissova N, Nurakynov S, Petrova O, Chepashev D, Daumova G, Yelisseyeva A. Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems. Atmosphere. 2024; 15(11):1343. https://doi.org/10.3390/atmos15111343
Chicago/Turabian StyleDenissova, Natalya, Serik Nurakynov, Olga Petrova, Daniker Chepashev, Gulzhan Daumova, and Alena Yelisseyeva. 2024. "Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems" Atmosphere 15, no. 11: 1343. https://doi.org/10.3390/atmos15111343