A New SLF/ELF Algorithm of Fields Excited by a Radiator in a Soil Foundation in the Earth–Ionosphere Cavity
<p>Reciprocal geometry relation of transmitting and receiving antennas.</p> "> Figure 2
<p>Variation in the electric field component <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>r</mi> </msub> </mrow> </semantics></math> along the propagation distance.</p> "> Figure 3
<p>Variation in the electromagnetic field components along the distance from antipode. (<b>a</b>) electric field component; (<b>b</b>) magnetic field component.</p> "> Figure 4
<p>Variation in the electric field component <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>r</mi> </msub> </mrow> </semantics></math> along the propagation distance with different frequency.</p> ">
Abstract
:1. Introduction
2. Fields in the Earth–Ionosphere Cavity
2.1. Reciprocity Theorem of Electromagnetic Fields
2.2. Expressions of Fields in the Earth–Ionosphere Cavity
3. Algorithms of the Legendre Function and Its Differential Coefficient
3.1. Asymptotic Approximation Algorithm
3.2. Numerical Integral Algorithm
4. Calculation Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mavromatis, F.; Boursianis, A.; Samaras, T.; Koukourlis, C.; Sahalos, J.N. A broadband monitoring system for electromagnetic-radiation assessment. IEEE Antennas Propag. Mag. 2009, 51, 71–79. [Google Scholar] [CrossRef]
- Hisatoshi, B. Investigation of electromagnetic radiation associated with earthquakes observational results related to earthquakes. Tokai Daigaku Sogo Kagaku Gijutsu Kenkyujo Kenkyukai Shiryoshu 2000, 19, 67–74. [Google Scholar]
- Larkina, V.I.; Nalivayko, A.V.; Gerhenzon, N.I.; Gokhberg, M.B.; Liperovskiy, V.A.; Shalimov, S.L. Observations of VLF emissions related with seismic activity, on the Interkosmos-19 satellite. Geomagn. Aeron. 1983, 23, 684–687. [Google Scholar]
- Gaffet, S.; Guglielmi, Y.; Virieux, J.; Waysand, G.; Chwala, A.; Stolz, R.; Emblanch, C.; Auguste, M.; Boyer, D.; Cavaillou, A. Simultaneous seismic and magnetic measurements in the Low-Noise underground laboratory (LSBB) of Rustrel, France, during the 2001 January 26 Indian earthquake. Geophys. J. Int. 2003, 155, 981–990. [Google Scholar] [CrossRef]
- Boudjada, M.Y.; Schwingenschuh, K.; Biernat, H.K.; Berthelier, J.J.; Blecki, J.; Parrot, M.; Stachel, M.; Aydogar, Ö.; Stangl, G.; Weingrill, J. Similar behaviors of natural ELF/VLF ionospheric emissions and transmitter signals over seismic Adriatic regions. Nat. Hazards Earth Syst. Sci. 2008, 8, 1229–1236. [Google Scholar] [CrossRef]
- Pan, W.Y. Long Wave beyond Long Wave Extremely Long Wave Propagation; Electric Scientific and Technical University Press: Chengdu, China, 2004; pp. 343–350. [Google Scholar]
- Bannister, P. Far-field Extremely Low Frequency (ELF) propagation measurements, 1970–1972. IEEE Trans. Commun. 1974, 22, 468–474. [Google Scholar] [CrossRef]
- Galejs, J. Terrestrial Propagation of Long Electromagnetic Wave; Pergamon Press: Oxford, UK, 1972; pp. 87–96. [Google Scholar]
- Wang, Y.-X.; Jin, R.-H.; Geng, J.-P.; Liang, X.-L. Exact SLF/ELF underground HED field strengths in earth-ionosphere cavity and Schumann Resonance. IEEE Trans. Antennas Propag. 2011, 59, 3031–3039. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Jin, R.-H.; Geng, J.-P.; Liang, X.-L. Propagation of SLF/ELF electromagnetic waves excited by an underground HED in the lower ionosphere. IEEE Trans. Antennas Propag. 2012, 60, 5412–5418. [Google Scholar] [CrossRef]
- Bannister, P. Some notes on ELF earth-ionosphere waveguide daytime propagation parameters. IEEE Trans. Antennas Propag. 1979, 27, 696–698. [Google Scholar] [CrossRef]
- Tripathi, V.K.; Chang, C.L.; Papadopoulos, K. Excitation of the Earth-ionosphere waveguide by an ELF source in the ionosphere. Radio Sci. 1982, 17, 1321–1326. [Google Scholar] [CrossRef]
- Cummers, S.A. Modeling electromagnetic propagation in the Earth-ionosphere waveguide. IEEE Trans. Antennas Propag. 2000, 48, 1420–1429. [Google Scholar] [CrossRef]
- King, R.W.P.; Owens, M.; Wu, T.T. Lateral Electromagnetic Wave; Springer: Berlin, Germany, 1992; pp. 134–152. [Google Scholar]
- Wait, J.R. Electromagntic Waves in Stratified Media; IEEE: New York, NY, USA, 1962; pp. 126–138. [Google Scholar]
- Li, K.; Lu, Y.; Li, M. Approximate formulas for lateral electromagnetic pulses from a horizontal electric dipole on the surface of one-dimensionally anisotropic medium. IEEE Trans. Antennas Propag. 2005, 53, 933–937. [Google Scholar]
- Barrick, D.E. Exact ULF/ELF dipole field strengths in the Earth-ionosphere cavity over the Schumann resonance region: Idealized boundaries. Radio Sci. 1999, 34, 209–227. [Google Scholar]
- Wang, Y.-X.; Jin, R.-H.; Geng, J.-P. Fast convergence algorithm for earthquake prediction using SLF/ELF HED during day and night and Schumann resonance. Wirel. Pers. Commun. 2012, 67, 149–163. [Google Scholar] [CrossRef]
- Dong, H.; Yan, Y.-B.; Li, Q.-L. FDTD analysis of fields excited by horizontal electric dipole in asymmetric earth-ionosphere cavity. Chin. J. Radio Sci. 2010, 25, 276–280. [Google Scholar]
- Soriano, A.; Navarro, E.A.; Paul, D.L.; Porti, J.A.; Morente, J.A.; Craddock, I.J. Finite difference time domain simulation of the earth-ionosphere resonant cavity: Schumann Resonance. IEEE Trans. Antennas Propag. 2005, 53, 1535–1541. [Google Scholar] [CrossRef]
- Simpson, J.J.; Taflove, A. Three-dimensional FDTD modeling of impulsive ELF antipodal propagation and Schumann resonance of the Earth-sphere. IEEE Trans. Antennas Propag. 2004, 52, 443–451. [Google Scholar] [CrossRef]
- Otsuyama, T.; Sakuma, D.; Hayakawa, M. FDTD analysis of ELF wave propagation and Schumann resonance for a subionosphere waveguide model. Radio Sci. 2003, 38, 1103. [Google Scholar] [CrossRef]
- Simpson, J.J. Global FDTD Maxwell’s Equations Modeling of Electromagnetic Propagation From Currents in the Lithosphere. IEEE Trans. Antennas Propag. 2008, 56, 199–203. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bannister, P.R. Reception of ELF signals at antipodal distances. Radio Sci. 1998, 33, 83–88. [Google Scholar] [CrossRef]
- Jeffrey, A. Table of Integrals, Series, and Products; Academic Press: New York, NY, USA, 1980; pp. 256–269. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, J.; Hao, S.; Chen, J.; Liang, Y.; Zheng, Y. A New SLF/ELF Algorithm of Fields Excited by a Radiator in a Soil Foundation in the Earth–Ionosphere Cavity. Atmosphere 2023, 14, 1450. https://doi.org/10.3390/atmos14091450
Wang Y, Yang J, Hao S, Chen J, Liang Y, Zheng Y. A New SLF/ELF Algorithm of Fields Excited by a Radiator in a Soil Foundation in the Earth–Ionosphere Cavity. Atmosphere. 2023; 14(9):1450. https://doi.org/10.3390/atmos14091450
Chicago/Turabian StyleWang, Yuanxin, Jutao Yang, Shuji Hao, Jing Chen, Yonggan Liang, and Yanshuai Zheng. 2023. "A New SLF/ELF Algorithm of Fields Excited by a Radiator in a Soil Foundation in the Earth–Ionosphere Cavity" Atmosphere 14, no. 9: 1450. https://doi.org/10.3390/atmos14091450