3-D Ionospheric Electron Density Variations during the 2017 Great American Solar Eclipse: A Revisit
<p>(<b>a</b>–<b>h</b>) Three-dimensional electron density profiles of the Millstone Hill incoherent scatter radar (red star) for the wide azimuth scan and the corresponding 2-D projection map using the same longitude/latitude information on 21 August 2017. The totality path of the solar eclipse and the 0%, 25%, 50%, 75%, and 95% obscuration lines are plotted on the bottom surface.</p> "> Figure 2
<p>(<b>a</b>–<b>d</b>) The continental US maps with the eclipse totality path and the 0%, 25%, 50%, 75%, and 95% obscuration lines at four UT intervals between 17:15 and 18:45 UT on 21 August 2017. The locations of four ionosondes are marked with stars. (<b>e</b>–<b>l</b>) Comparison of ionosonde electron density profiles between 15 and 24 UT on the eclipse day (21 August) and the day after (22 August). The local eclipse start, maximum, and end times are marked with vertical white lines.</p> "> Figure 3
<p>(<b>a</b>–<b>h</b>) Comparison of TIDAS reconstructed electron density profiles at four ionosonde locations between 15 and 24 UT on the eclipse day (21 August) and the reference day (22 August). (<b>i</b>–<b>l</b>) The electron density difference between the eclipse day and reference day. The local eclipse start, maximum, and end times are marked with vertical lines.</p> "> Figure 4
<p>Three-dimensional distribution of the absolute (<b>upper panels</b>) and percentage (<b>bottom panels</b>) dNe maps reconstructed by TIDAS data assimilation between 200 and 600 km at 18:30 UT on 21 August 2017. The eclipse totality path and different obscuration zones of 95%, 75%, 50%, 25%, and 0% are plotted.</p> "> Figure 5
<p>(<b>a</b>–<b>d</b>) Three-dimensional distribution of the reconstructed dNe maps given by TIDAS data assimilation at eight UT intervals between 17:30 and 19:45 UT. The eclipse totality path and different obscuration zones of 95%, 75%, 50%, 25%, and 0% are plotted.</p> "> Figure 6
<p>(<b>a</b>–<b>d</b>) The same as <a href="#atmosphere-14-01379-f005" class="html-fig">Figure 5</a> but for 3-D distribution of percentage dNe maps.</p> "> Figure 7
<p>(<b>a</b>–<b>d</b>) Two-dimensional regional maps of reanalyzed dTEC and dNmF2 (F2-layer peak density) given by TIDAS data assimilation between 17:15 and 19:30 UT on 21 August 2017. The eclipse totality path and different obscuration zones of 95%, 75%, 50%, 25%, and 0% are plotted.</p> "> Figure 8
<p>(<b>a</b>–<b>d</b>) TIDAS-derived 2-D dNe maps at 450 km and dTEC maps overlapping with the Swarm C satellite orbits (red lines) at 18:40 UT and 20:10 UT on 21 August 2017. The eclipse totality path and different obscuration zones are plotted. The right subpanels show the corresponding latitudinal profiles of Ne or TEC given by Swarm C (red) and TIDAS (black), as compared with the reference values on 22 August 2017 (dotted lines).</p> ">
Abstract
:1. Introduction
2. Datasets and Methodology
3. Results and Discussion
3.1. MHISR and Ionosonde Results
3.2. TIDAS Data Assimilation Results
4. Conclusions
- (1)
- The high-resolution TIDAS products effectively reconstruct the 3-D ionospheric electron density variation during the eclipse, providing important altitude information. This accurately captured the key features of eclipse-induced electron density reduction and the subsequent post-eclipse enhancement in the 3-D domain, which showcase intricate features with details at a finer scale.
- (2)
- The combination of multi-instrumental observations and TIDAS results demonstrate that the eclipse-induced ionospheric electron density depletion exhibits an altitude-dependent feature. This reduction can exceed 50% in the F2 region, especially between altitudes of 200 and 300 km. Furthermore, the recovery of electron density after the end of depletion also exhibits an altitude-dependent behavior, where ionosphere at lower altitudes below 250 km exhibited a faster recovery than that at and above the F2 peak height. This is because the recovery in the photo-ionization rate has a more significant impact on the photo-chemical equilibrium at lower altitude ionosphere.
- (3)
- The multi-instrumental observations and TIDAS data assimilation results revealed the feature of post-eclipse electron density enhancement of 15–30%. This enhancement is more noticeable in the topside ionosphere, above the F2 peak height at altitudes higher than 300 km, especially in midlatitude regions at the poleward of the totality path. It is likely that this enhancement was primarily influenced by the downward plasma flux associated with the eclipse and the accompanying disruption caused by neutral winds.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rishbeth, H. Solar Eclipses and Ionospheric Theory. Space Sci. Rev. 1968, 8, 543–554. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Palamartchouk, K.S.; Perevalova, N.P.; Chernukhov, V.V.; Lukhnev, A.V.; Zalutsky, V.T. Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data. Geophys. Res. Lett. 1998, 25, 465–468. [Google Scholar] [CrossRef]
- Coster, A.J.; Goncharenko, L.; Zhang, S.R.; Erickson, P.J.; Rideout, W.; Vierinen, J. GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. 2017, 44, 12041–12048. [Google Scholar] [CrossRef]
- Ding, F.; Wan, W.; Ning, B.; Liu, L.; Le, H.; Xu, G.; Wang, M.; Li, G.; Chen, Y.; Ren, Z.; et al. GPS TEC response to the 22 July 2009 total solar eclipse in East Asia. J. Geophys. Res. Space Phys. 2010, 115, A07308. [Google Scholar] [CrossRef]
- Hoque, M.M.; Wenzel, D.; Jakowski, N.; Gerzen, T.; Berdermann, J.; Wilken, V.; Kriegel, M.; Sato, H.; Borries, C.; Minkwitz, D. Ionospheric response over Europe during the solar eclipse of March 20, 2015. J. Space Weather Space Clim. 2016, 6, A36. [Google Scholar] [CrossRef]
- Jakowski, N.; Stankov, S.M.; Wilken, V.; Borries, C.; Altadill, D.; Chum, J.; Buresova, D.; Boska, J.; Sauli, P.; Hruska, F.; et al. Ionospheric behavior over Europe during the solar eclipse of 3 October 2005. J. Atmos. Sol.-Terr. Phys. 2008, 70, 836–853. [Google Scholar] [CrossRef]
- Salah, J.E.; Oliver, W.L.; Foster, J.C.; Holt, J.M.; Emery, B.A.; Roble, R.G. Observations of the May 30, 1984, annular solar eclipse at Millstone Hill. J. Geophys. Res. 1986, 91, 1651–1660. [Google Scholar] [CrossRef]
- Tsai, H.F.; Liu, J.Y. Ionospheric total electron content response to solar eclipses. J. Geophys. Res. 1999, 104, 12657–12668. [Google Scholar] [CrossRef]
- Evans, J.V. On the behavior of foF2 during solar eclipses. J. Geophys. Res. 1965, 70, 733–738. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Erickson, P.J.; Zhang, S.R.; Galkin, I.; Coster, A.J.; Jonah, O.F. Ionospheric Response to the Solar Eclipse of 21 August 2017 in Millstone Hill (42N) Observations. Geophys. Res. Lett. 2018, 45, 4601–4609. [Google Scholar] [CrossRef]
- Hairston, M.R.; Mrak, S.; Coley, W.R.; Burrell, A.; Holt, B.; Perdue, M.; Depew, M.; Power, R. Topside Ionospheric Electron Temperature Observations of the 21 August 2017 Eclipse by DMSP Spacecraft. Geophys. Res. Lett. 2018, 45, 7242–7247. [Google Scholar] [CrossRef]
- MacPherson, B.; González, S.A.; Sulzer, M.P.; Bailey, G.J.; Djuth, F.; Rodriguez, P. Measurements of the topside ionosphere over Arecibo during the total solar eclipse of February 26, 1998. J. Geophys. Res. 2000, 105, 23055–23068. [Google Scholar] [CrossRef]
- Wang, W.; Dang, T.; Lei, J.; Zhang, S.; Zhang, B.; Burns, A. Physical Processes Driving the Response of the F2 Region Ionosphere to the 21 August 2017 Solar Eclipse at Millstone Hill. J. Geophys. Res. Space Phys. 2019, 124, 2978–2991. [Google Scholar] [CrossRef]
- Huba, J.D.; Drob, D. SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. 2017, 44, 5928–5935. [Google Scholar] [CrossRef]
- Yau, A.W.; Foss, V.; Howarth, A.D.; Perry, G.W.; Watson, C.; Huba, J. Eclipse-Induced Changes to Topside Ion Composition and Field-Aligned Ion Flows in the August 2017 Solar Eclipse: E-POP Observations. Geophys. Res. Lett. 2018, 45, 10829–10837. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Erickson, P.J.; Goncharenko, L.P.; Coster, A.J.; Jonah, O.F.; Lei, J.; Huang, F.; Dang, T.; Liu, L. Coordinated Ground-Based and Space-Borne Observations of Ionospheric Response to the Annular Solar Eclipse on 26 December 2019. J. Geophys. Res. Space Phys. 2020, 125, e28296. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, C.H.C.; Matsuo, T. Ionospheric responses to the 21 August 2017 solar eclipse by using data assimilation approach. Prog. Earth Planet. Sci. 2019, 6, 13. [Google Scholar] [CrossRef]
- Choudhary, R.K.; St.-Maurice, J.P.; Ambili, K.M.; Sunda, S.; Pathan, B.M. The impact of the January 15, 2010, annular solar eclipse on the equatorial and low latitude ionospheric densities. J. Geophys. Res. Space Phys. 2011, 116, A09309. [Google Scholar] [CrossRef]
- Harding, B.J.; Drob, D.P.; Buriti, R.A.; Makela, J.J. Nightside Detection of a Large-Scale Thermospheric Wave Generated by a Solar Eclipse. Geophys. Res. Lett. 2018, 45, 3366–3373. [Google Scholar] [CrossRef]
- Müller-Wodarg, I.C.F.; Aylward, A.D.; Lockwood, M. Effects of a mid-latitude solar eclipse on the thermosphere and ionosphere—A modelling study. Geophys. Res. Lett. 1998, 25, 3787–3790. [Google Scholar] [CrossRef]
- St.-Maurice, J.P.; Ambili, K.M.; Choudhary, R.K. Local electrodynamics of a solar eclipse at the magnetic equator in the early afternoon hours. Geophys. Res. Lett. 2011, 38, L04102. [Google Scholar] [CrossRef]
- Liu, J.Y.; Sun, Y.Y.; Kakinami, Y.; Chen, C.H.; Lin, C.H.; Tsai, H.F. Bow and stern waves triggered by the Moon’s shadow boat. Geophys. Res. Lett. 2011, 38, L17109. [Google Scholar] [CrossRef]
- Zhang, S.R.; Erickson, P.J.; Goncharenko, L.P.; Coster, A.J.; Rideout, W.; Vierinen, J. Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. 2017, 44, 12067–12073. [Google Scholar] [CrossRef]
- Altadill, D.; Solé, J.G.; Apostolov, E.M. Vertical structure of a gravity wave like oscillation in the ionosphere generated by the solar eclipse of August 11, 1999. J. Geophys. Res. 2001, 106, 21419–21428. [Google Scholar] [CrossRef]
- Lin, C.Y.; Deng, Y.; Ridley, A. Atmospheric Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse. Geophys. Res. Lett. 2018, 45, 5246–5252. [Google Scholar] [CrossRef]
- Nayak, C.; Yiǧit, E. GPS-TEC Observation of Gravity Waves Generated in the Ionosphere During 21 August 2017 Total Solar Eclipse. J. Geophys. Res. Space Phys. 2018, 123, 725–738. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; Ren, Z.; Chen, Y.; Zhang, H. Effects of the 21 June 2020 Solar Eclipse on Conjugate Hemispheres: A Modeling Study. J. Geophys. Res. Space Phys. 2020, 125, e28344. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Shen, H.; Liu, S.; Li, J. Local and conjugate ionospheric total electron content variation during the 21 June 2020 solar eclipse. Adv. Space Res. 2021, 68, 3435–3454. [Google Scholar] [CrossRef]
- Zhang, S.R.; Erickson, P.J.; Vierinen, J.; Aa, E.; Rideout, W.; Coster, A.J.; Goncharenko, L.P. Conjugate Ionospheric Perturbation During the 2017 Solar Eclipse. J. Geophys. Res. Space Phys. 2021, 126, e28531. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I. Ionospheric Total Electron Content Response to the Great American Solar Eclipse of 21 August 2017. Geophys. Res. Lett. 2018, 45, 1199–1208. [Google Scholar] [CrossRef]
- He, L.; Heki, K.; Wu, L. Three-Dimensional and Trans-Hemispheric Changes in Ionospheric Electron Density Caused by the Great Solar Eclipse in North America on 21 August 2017. Geophys. Res. Lett. 2018, 45, 10933–10940. [Google Scholar] [CrossRef]
- Liu, J.Y.; Wu, T.Y.; Sun, Y.Y.; Pedatella, N.M.; Lin, C.Y.; Chang, L.C.; Chiu, Y.C.; Lin, C.H.; Chen, C.H.; Chang, F.Y.; et al. Lunar Tide Effects on Ionospheric Solar Eclipse Signatures: The August 21, 2017 Event as an Example. J. Geophys. Res. Space Phys. 2020, 125, e28472. [Google Scholar] [CrossRef]
- Mrak, S.; Semeter, J.; Nishimura, Y.; Hirsch, M.; Sivadas, N. Coincidental TID Production by Tropospheric Weather During the August 2017 Total Solar Eclipse. Geophys. Res. Lett. 2018, 45, 10903–10911. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Liu, J.Y.; Lin, C.C.H.; Lin, C.Y.; Shen, M.H.; Chen, C.H.; Chen, C.H.; Chou, M.Y. Ionospheric Bow Wave Induced by the Moon Shadow Ship Over the Continent of United States on 21 August 2017. Geophys. Res. Lett. 2018, 45, 538–544. [Google Scholar] [CrossRef]
- Pradipta, R.; Yizengaw, E.; Doherty, P. Ionospheric Density Irregularities, Turbulence, and Wave Disturbances During the Total Solar Eclipse Over North America on 21 August 2017. Geophys. Res. Lett. 2018, 45, 7909–7917. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Dandenault, P.B.; Galkin, I.A.; Hamel, R.; Richards, P.G. Investigation of the Electron Density Variation During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. 2018, 45, 1253–1261. [Google Scholar] [CrossRef]
- Aryal, S.; Geddes, G.; Finn, S.C.; Mrak, S.; Galkin, I.; Cnossen, I.; Cook, T.; Chakrabarti, S. Multispectral and Multi-instrument Observation of TIDs Following the Total Solar Eclipse of 21 August 2017. J. Geophys. Res. Space Phys. 2019, 124, 3761–3774. [Google Scholar] [CrossRef]
- Perry, G.W.; Watson, C.; Howarth, A.D.; Themens, D.R.; Foss, V.; Langley, R.B.; Yau, A.W. Topside Ionospheric Disturbances Detected Using Radio Occultation Measurements During the August 2017 Solar Eclipse. Geophys. Res. Lett. 2019, 46, 7069–7078. [Google Scholar] [CrossRef]
- Uma, G.; Brahmanandam, P.S.; Srinivasu, V.K.D.; Prasad, D.S.V.V.D.; Sai Gowtam, V.; Tulasi Ram, S.; Chu, Y.H. Ionospheric responses to the 21 August 2017 great American solar eclipse—A multi-instrument study. Adv. Space Res. 2020, 65, 74–85. [Google Scholar] [CrossRef]
- Cnossen, I.; Ridley, A.J.; Goncharenko, L.P.; Harding, B.J. The Response of the Ionosphere-Thermosphere System to the 21 August 2017 Solar Eclipse. J. Geophys. Res. Space Phys. 2019, 124, 7341–7355. [Google Scholar] [CrossRef]
- Dang, T.; Lei, J.; Wang, W.; Zhang, B.; Burns, A.; Le, H.; Wu, Q.; Ruan, H.; Dou, X.; Wan, W. Global Responses of the Coupled Thermosphere and Ionosphere System to the August 2017 Great American Solar Eclipse. J. Geophys. Res. Space Phys. 2018, 123, 7040–7050. [Google Scholar] [CrossRef]
- Lei, J.; Dang, T.; Wang, W.; Burns, A.; Zhang, B.; Le, H. Long-Lasting Response of the Global Thermosphere and Ionosphere to the 21 August 2017 Solar Eclipse. J. Geophys. Res. Space Phys. 2018, 123, 4309–4316. [Google Scholar] [CrossRef]
- Wu, C.; Ridley, A.J.; Goncharenko, L.; Chen, G. GITM-Data Comparisons of the Depletion and Enhancement During the 2017 Solar Eclipse. Geophys. Res. Lett. 2018, 45, 3319–3327. [Google Scholar] [CrossRef]
- Yan, M.; Dang, T.; Lei, J.; Wang, W.; Zhang, S.R.; Le, H. From Bow Waves to Traveling Atmospheric Disturbances: Thermospheric Perturbations Along Solar Eclipse Trajectory. J. Geophys. Res. Space Phys. 2021, 126, e28523. [Google Scholar] [CrossRef]
- Aa, E.; Forsythe, V.V.; Zhang, S.R.; Wang, W.; Coster, A.J. Next-decade needs for 3-D ionosphere imaging. Front. Astron. Space Sci. 2023, 10, 1186513. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, C.C.H.; Lee, C.J.; Liu, J.Y.; Saito, A. Ionospheric responses on the 21 August 2017 solar eclipse by using three-dimensional GNSS tomography. Earth Planets Space 2022, 74, 173. [Google Scholar] [CrossRef]
- Lin, C.Y.; Liu, J.Y.; Lin, C.C.H.; Chou, M.Y. The Ionospheric Three-Dimensional Electron Density Variations Induced by the 21 August 2017 Total Solar Eclipse by Using Global Ionospheric Specification. Remote Sens. 2023, 15, 3887. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Erickson, P.J.; Wang, W.; Coster, A.J.; Rideout, W. 3-D Regional Ionosphere Imaging and SED Reconstruction With a New TEC-Based Ionospheric Data Assimilation System (TIDAS). Space Weather 2022, 20, e2022SW003055. [Google Scholar] [CrossRef]
- Aa, E.; Erickson, P.J.; Zhang, S.R.; Zou, S.; Coster, A.J.; Goncharenko, L.P.; Foster, J.C. A Statistical Study of the Subauroral Polarization Stream Over North American Sector Using the Millstone Hill Incoherent Scatter Radar 1979–2019 Measurements. J. Geophys. Res. Space Phys. 2020, 125, e28584. [Google Scholar] [CrossRef]
- Erickson, P.J.; Beroz, F.; Miskin, M.Z. Statistical characterization of the American sector subauroral polarization stream using incoherent scatter radar. J. Geophys. Res. Space Phys. 2011, 116, A00J21. [Google Scholar] [CrossRef]
- Foster, J.C.; Vo, H.B. Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. Space Phys. 2002, 107, 1475. [Google Scholar] [CrossRef]
- Zhang, S.R.; Holt, J.M. Ionospheric plasma temperatures during 1976–2001 over Millstone Hill. Adv. Space Res. 2004, 33, 963–969. [Google Scholar] [CrossRef]
- Rideout, W.; Coster, A. Automated GPS processing for global total electron content data. GPS Solut. 2006, 10, 219–228. [Google Scholar] [CrossRef]
- Brunini, C.; Meza, A.; Bosch, W. Temporal and spatial variability of the bias between TOPEX- and GPS-derived total electron content. J. Geod. 2005, 79, 175–188. [Google Scholar] [CrossRef]
- Nava, B.; Coïsson, P.; Radicella, S.M. A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol.-Terr. Phys. 2008, 70, 1856–1862. [Google Scholar] [CrossRef]
- Bust, G.S.; Garner, T.W.; Gaussiran, T.L. Ionospheric Data Assimilation Three-Dimensional (IDA3D): A global, multisensor, electron density specification algorithm. J. Geophys. Res. Space Phys. 2004, 109, A11312. [Google Scholar] [CrossRef]
- Forsythe, V.V.; Azeem, I.; Blay, R.; Crowley, G.; Gasperini, F.; Hughes, J.; Makarevich, R.A.; Wu, W. Evaluation of the New Background Covariance Model for the Ionospheric Data Assimilation. Radio Sci. 2021, 56, e2021RS007286. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Wang, W.; Erickson, P.J.; Coster, A.J. Multiple longitude sector storm-enhanced density (SED) and long-lasting subauroral polarization stream (SAPS) during the 26–28 February 2023 geomagnetic storm. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031815. [Google Scholar] [CrossRef]
- Belehaki, A.; Moratis, G.; Tsagouri, I. On the derivation of an hourly local index to define the normal ionosphere. Ann. Geophys. 2000, 43, 189–203. [Google Scholar] [CrossRef]
- Bojilova, R.; Mukhtarov, P. Global and Regional Response of the Total Electron Content to Geomagnetic Storms Occurred in January 2005. In Proceedings of the Eleventh Workshop on Solar Influences on the Magnetosphere, Ionosphere and Atmosphere, Primorsko, Bulgaria, 3–7 June 2019; Georgieva, K., Kirov, B., Danov, D., Eds.; Space Research and Technologies Institute: Sofia, Bulgaria, 2019; pp. 71–76. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Huang, X. Deducing topside profiles and total electron content from bottomside ionograms. Adv. Space Res. 2001, 27, 23–30. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; Yue, X.; Wan, W.; Ning, B. Latitudinal dependence of the ionospheric response to solar eclipses. J. Geophys. Res. Space Phys. 2009, 114, A07308. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; Yue, X.; Wan, W. The midlatitude F2 layer during solar eclipses: Observations and modeling. J. Geophys. Res. 2008, 113, A08309. [Google Scholar] [CrossRef]
- Rishbeth, H.; Jenkins, B.; Moffett, R.J. The F-layer at sunrise. Ann. Geophys. 1995, 13, 367–374. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aa, E.; Zhang, S.-R.; Erickson, P.J.; Wang, W.; Coster, A.J. 3-D Ionospheric Electron Density Variations during the 2017 Great American Solar Eclipse: A Revisit. Atmosphere 2023, 14, 1379. https://doi.org/10.3390/atmos14091379
Aa E, Zhang S-R, Erickson PJ, Wang W, Coster AJ. 3-D Ionospheric Electron Density Variations during the 2017 Great American Solar Eclipse: A Revisit. Atmosphere. 2023; 14(9):1379. https://doi.org/10.3390/atmos14091379
Chicago/Turabian StyleAa, Ercha, Shun-Rong Zhang, Philip J. Erickson, Wenbin Wang, and Anthea J. Coster. 2023. "3-D Ionospheric Electron Density Variations during the 2017 Great American Solar Eclipse: A Revisit" Atmosphere 14, no. 9: 1379. https://doi.org/10.3390/atmos14091379