A Leaky Deep Intronic Splice Variant in CLRN1 Is Associated with Non-Syndromic Retinitis Pigmentosa
<p>Variant detection and familial segregation analysis. (<b>A</b>) Two-generation family pedigree; (<b>B</b>) BAM files showing the two <span class="html-italic">CLRN1</span> variants: c.144T>G and c.254-643G>T; (<b>C</b>,<b>D</b>) Familial segregation analysis in proband (<b>C</b>) and one of his unaffected siblings (<b>D</b>). Dotted red lines shows the identified variants.</p> "> Figure 2
<p>Retinal imaging of MOL377-1 at the age of 40 (<b>A</b>–<b>F</b>) and 50 (<b>G</b>–<b>L</b>). A-B and G-H represent ultra-wide-field pseudocolor and autofluorescence (FAF) fundus photos, respectively, taken using the Optos Panoramic 200 Optomap Fundus Camera. Characteristic peripheral dense BSPs mixed with retinal atrophy encroaching the temporal vascular arcades can be seen. (<b>C</b>,<b>D)</b> and (<b>I</b>,<b>J</b>) show heterogeneous autofluorescence compatible with the atrophic retina along with the hyperfluorescent ring surrounding the fovea. (<b>E</b>,<b>F</b>,<b>K</b>,<b>L</b>) are horizontal optical coherence tomography (OCT) sections showing preserved foveal islands surrounded by retinal thinning and loss of the outer retinal layers in the macular area. Cystoid macular edema (CME) was observed in the LE and RE in the first and the last follow-up visits, respectively.</p> "> Figure 3
<p>Analyzing the effect of two <span class="html-italic">CLRN1</span> variants (c.254-643G>T and c.254-649T>G) on its pre-mRNA splicing. (<b>A</b>) Graphical representation of pET01 minigene plasmid with a 792 bp <span class="html-italic">CLRN1</span> intron 1 insert. (<b>B</b>) A representative agarose gel image of cDNA analysis from HeLa cells transfected with different plasmid constructs. A 1.5% agarose gel was used to separate the PCR products; the experiment was performed in biological triplicates. Bands labeled as TS1-3 represent the different transcripts shown in panel (<b>C</b>). (<b>C</b>) Graphical representation of the different splicing patterns in the pET01-<span class="html-italic">CLRN1</span> minigene due to the two <span class="html-italic">CLRN1</span> variants c.254-643G>T and c.254-649T>G. (<b>D</b>) A graphical representation of the human <span class="html-italic">CLRN1</span> gene (top panel) and the insertion of a pseudo-exon due to the c.254-643G>T and c.254-649T>G variants (bottom panel) is labelled in orange color, with the sequences flanking the activated cryptic splice site. The wild-type flanking sequence is labelled in black; the previously reported c.254-649T>G variant is labelled in blue; the variant reported in the current study, c.254-643G>T, is labelled in red. A naturally occurring 83 bp CLRN1 pseudo-exon is labelled in green. Int—intron; TS—transcript; Ex—exon; WT—wild-type.</p> "> Figure 4
<p>Sanger sequencing of the wild-type and mutant <span class="html-italic">CLRN1</span> transcripts. (<b>A</b>) Sanger sequencing of transcript TS3 containing pseudo-exon 1; (<b>B</b>) Sanger sequencing of transcript TS2 containing pseudo-exon 2; (<b>C</b>) Sanger sequencing of transcript TS1 (wild-type transcript). Light blue shadows indicate the exon-exon junctions.</p> "> Figure 5
<p>Detailed analysis of <span class="html-italic">CLRN1</span> transcripts using TapeStation. (<b>A</b>) Automated gel electrophoresis of the PCR products using Agilent Technologies 4200 TapeStation. The left lane is a DNA marker. “Wild type” shows transcripts produced by the normal <span class="html-italic">CLRN1</span> minigene, a high-intensity wild-type TS1 transcript and a very low-intensity TS2 transcript. “c.254-643G>T” shows transcripts produced by the <span class="html-italic">CLRN1</span> minigene carrying the 254-643G>T variant, a high-intensity TS3 transcript and a low-intensity wild-type TS1 transcript. c.254-649T>G shows transcripts produced by the <span class="html-italic">CLRN1</span> minigene carrying the c.254-649T>G variant, a high-intensity TS3 transcript alone. “Empty plasmid” shows transcripts produced by the pET01 empty plasmid, a high-intensity TS1 transcript alone. (<b>B</b>) Bar graph showing the intensity of each band in WT compared to the two studied variants.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Sanger and Next-Generation Sequencing (NGS)
2.3. In Silico Splicing Analysis
2.4. Cloning
2.5. Transfection, RNA Isolation and cDNA Synthesis
2.6. Automated Electrophoresis—TapeStation
3. Results
3.1. Clinical Analysis
3.2. Variants Identification
3.3. Splicing Assay
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schneider, N.; Sundaresan, Y.; Gopalakrishnan, P.; Beryozkin, A.; Hanany, M.; Levanon, E.Y.; Banin, E.; Ben-Aroya, S.; Sharon, D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog. Retin. Eye Res. 2021, 89, 101029. [Google Scholar] [CrossRef] [PubMed]
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef]
- Ben-Yosef, T. Inherited Retinal Diseases. Int. J. Mol. Sci. 2022, 23, 13467. [Google Scholar] [CrossRef]
- Carss, K.J.; Arno, G.; Erwood, M.; Stephens, J.; Sanchis-Juan, A.; Hull, S.; Megy, K.; Grozeva, D.; Dewhurst, E.; Malka, S.; et al. Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. Am. J. Hum. Genet. 2017, 100, 75–90. [Google Scholar] [CrossRef]
- Hayman, T.; Millo, T.; Hendler, K.; Chowers, I.; Gross, M.; Banin, E.; Sharon, D. Whole exome sequencing of 491 individuals with inherited retinal diseases reveals a large spectrum of variants and identification of novel candidate genes. J. Med Genet. 2023, 61, 224–231. [Google Scholar] [CrossRef]
- Weisschuh, N.; Sturm, M.; Baumann, B.; Audo, I.; Ayuso, C.; Bocquet, B.; Branham, K.; Brooks, B.P.; Catalá-Mora, J.; Giorda, R.; et al. Deep-intronic variants in CNGB3 cause achromatopsia by pseudoexon activation. Hum. Mutat. 2020, 41, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Runhart, E.H.; Valkenburg, D.; Cornelis, S.S.; Khan, M.; Sangermano, R.; Albert, S.; Bax, N.M.; Astuti, G.D.N.; Gilissen, C.; Pott, J.-W.R.; et al. Late-onset Stargardt disease due to mild, deep-intronic ABCA4 alleles. Investig. Opthalmology Vis. Sci. 2019, 60, 4249–4256. [Google Scholar] [CrossRef]
- Fadaie, Z.; Khan, M.; Del Pozo-Valero, M.; Cornelis, S.S.; Ayuso, C.; Cremers, F.P.M.; Roosing, S. The ABCA4 study group Identification of splice defects due to noncanonical splice site or deep-intronic variants in ABCA4. Hum. Mutat. 2019, 40, 2365–2376. [Google Scholar] [CrossRef]
- Hufnagel, R.B.; Liang, W.; Duncan, J.L.; Brewer, C.C.; Audo, I.; Ayala, A.R.; Branham, K.; Cheetham, J.K.; Daiger, S.P.; Durham, T.A.; et al. Tissue-specific genotype–phenotype correlations among USH2A-related disorders in the RUSH2A study. Hum. Mutat. 2022, 43, 613–624. [Google Scholar] [CrossRef]
- Rivolta, C.; Sweklo, E.A.; Berson, E.L.; Dryja, T.P. Missense Mutation in the USH2A Gene: Association with Recessive Retinitis Pigmentosa without Hearing Loss. Am. J. Hum. Genet. 2000, 66, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Huang, M.; Wei, X.; Sun, J.; Zhang, F. Case report: Compound heterozygous nonsense PCDH15 variant and a novel deep-intronic variant in a Chinese child with profound hearing loss. Mol. Genet. Genom. Med. 2023, 11, e2193. [Google Scholar] [CrossRef]
- Khateb, S.; Zelinger, L.; Ben-Yosef, T.; Merin, S.; Crystal-Shalit, O.; Gross, M.; Banin, E.; Sharon, D. Exome sequencing identifies a founder frameshift mutation in an alternative exon of USH1C as the cause of autosomal recessive retinitis pigmentosa with late-onset hearing loss. PLoS ONE 2012, 7, e51566. [Google Scholar] [CrossRef]
- Joensuu, T.; Hämäläinen, R.; Yuan, B.; Johnson, C.; Tegelberg, S.; Gasparini, P.; Zelante, L.; Pirvola, U.; Pakarinen, L.; Lehesjoki, A.-E.; et al. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3. Am. J. Hum. Genet. 2001, 69, 673–684. [Google Scholar] [CrossRef]
- Adato, A.; Vreugde, S.; Joensuu, T.; Avidan, N.; Hamalainen, R.; Belenkiy, O.; Olender, T.; Bonne-Tamir, B.; Ben-Asher, E.; Espinos, C.; et al. USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. Eur. J. Hum. Genet. 2002, 10, 339–350. [Google Scholar] [CrossRef]
- Fields, R.R.; Zhou, G.; Huang, D.; Davis, J.R.; Möller, C.; Jacobson, S.G.; Kimberling, W.J.; Sumegi, J. Usher Syndrome Type III: Revised Genomic Structure of the USH3 Gene and Identification of Novel Mutations. Am. J. Hum. Genet. 2002, 71, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Panneman, D.M.; Hitti-Malin, R.J.; Holtes, L.K.; de Bruijn, S.E.; Reurink, J.; Boonen, E.G.M.; Khan, M.I.; Ali, M.; Andréasson, S.; De Baere, E.; et al. Cost-effective sequence analysis of 113 genes in 1,192 probands with retinitis pigmentosa and Leber congenital amaurosis. Front. Cell Dev. Biol. 2023, 11, 1112270. [Google Scholar] [CrossRef] [PubMed]
- Herrera, W.; Aleman, T.S.; Cideciyan, A.V.; Roman, A.J.; Banin, E.; Ben-Yosef, T.; Gardner, L.M.; Sumaroka, A.; Windsor, E.A.M.; Schwartz, S.B.; et al. Retinal disease in Usher syndrome III caused by mutations in the clarin-1 gene. Investig. Opthalmology Vis. Sci. 2008, 49, 2651–2660. [Google Scholar] [CrossRef]
- Ness, S.L.; Ben-Yosef, T.; Bar-Lev, A.; Madeo, A.C.; Brewer, C.C.; Avraham, K.B.; Kornreich, R.; Desnick, R.J.; Willner, J.P.; Friedman, T.B.; et al. Genetic homogeneity and phenotypic variability among Ashkenazi Jews with Usher syndrome type III. J. Med Genet. 2003, 40, 767–772. [Google Scholar] [CrossRef]
- Khan, A.O.; Becirovic, E.; Betz, C.; Neuhaus, C.; Altmüller, J.; Riedmayr, L.M.; Motameny, S.; Nürnberg, G.; Nürnberg, P.; Bolz, H.J. A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula. Sci. Rep. 2017, 7, 1411. [Google Scholar] [CrossRef]
- Pakarinen, L.; Tuppurainen, K.; Laippala, P.; Puhakka, H.; Mäntyjärvi, M. The ophthalmological course of Usher syndrome type III. Int. Ophthalmol. 1995, 19, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Marouf, A.; Johnson, B.; Alagramam, K.N. Usher syndrome IIIA: A review of the disorder and preclinical research advances in therapeutic approaches. Hum. Genet. 2022, 141, 759–783. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, H.; Oshikawa, C.; Nakayama, J.; Moteki, H.; Usami, S.-I. Identification of a Novel CLRN1 Gene Mutation in Usher Syndrome Type 3. Ann. Otol. Rhinol. Laryngol. 2015, 124 (Suppl. S1), 94S–99S. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Kersten, F.F.; Azam, M.; Collin, R.W.; Hussain, A.; Shah, S.T.-A.; Keunen, J.E.; Kremer, H.; Cremers, F.P.; Qamar, R.; et al. CLRN1 mutations cause nonsyndromic retinitis pigmentosa. Ophthalmology 2011, 118, 1444–1448. [Google Scholar] [CrossRef]
- Panagiotopoulos, A.-L.; Karguth, N.; Pavlou, M.; Böhm, S.; Gasparoni, G.; Walter, J.; Graf, A.; Blum, H.; Biel, M.; Riedmayr, L.M.; et al. Antisense Oligonucleotide- and CRISPR-Cas9-Mediated Rescue of mRNA Splicing for a Deep Intronic CLRN1 Mutation. Mol. Ther. Nucleic Acids 2020, 21, 1050–1061. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elasal, M.A.; Khateb, S.; Panneman, D.M.; Roosing, S.; Cremers, F.P.M.; Banin, E.; Sharon, D.; Sarma, A.S. A Leaky Deep Intronic Splice Variant in CLRN1 Is Associated with Non-Syndromic Retinitis Pigmentosa. Genes 2024, 15, 1363. https://doi.org/10.3390/genes15111363
Elasal MA, Khateb S, Panneman DM, Roosing S, Cremers FPM, Banin E, Sharon D, Sarma AS. A Leaky Deep Intronic Splice Variant in CLRN1 Is Associated with Non-Syndromic Retinitis Pigmentosa. Genes. 2024; 15(11):1363. https://doi.org/10.3390/genes15111363
Chicago/Turabian StyleElasal, Maria Abu, Samer Khateb, Daan M. Panneman, Susanne Roosing, Frans P. M. Cremers, Eyal Banin, Dror Sharon, and Asodu Sandeep Sarma. 2024. "A Leaky Deep Intronic Splice Variant in CLRN1 Is Associated with Non-Syndromic Retinitis Pigmentosa" Genes 15, no. 11: 1363. https://doi.org/10.3390/genes15111363
APA StyleElasal, M. A., Khateb, S., Panneman, D. M., Roosing, S., Cremers, F. P. M., Banin, E., Sharon, D., & Sarma, A. S. (2024). A Leaky Deep Intronic Splice Variant in CLRN1 Is Associated with Non-Syndromic Retinitis Pigmentosa. Genes, 15(11), 1363. https://doi.org/10.3390/genes15111363