Comparative Chloroplast Genome Study of Zingiber in China Sheds Light on Plastome Characterization and Phylogenetic Relationships
<p>Inflorescence characteristics of some representative <span class="html-italic">Zingiber</span> species. (<b>a</b>) <span class="html-italic">Zingiber purpureum</span>; (<b>b</b>) <span class="html-italic">Z. zerumbet</span>; (<b>c</b>) <span class="html-italic">Zingiber spectabile</span>; (<b>d</b>) <span class="html-italic">Zingiber orbiculatum</span>; (<b>e</b>) <span class="html-italic">Zingiber teres</span>; (<b>f</b>) <span class="html-italic">Zingiber recurvatum</span>; (<b>g</b>) <span class="html-italic">Zingiber ellipticum</span>; (<b>h</b>) <span class="html-italic">Zingiber atroporphyreum</span>.</p> "> Figure 2
<p>The plastome map of <span class="html-italic">Zingiber</span> species.</p> "> Figure 3
<p>Differences of LSC, IR and SSC boundaries among <span class="html-italic">Zingiber</span> species.</p> "> Figure 4
<p>Sequence similarity plots among Zingiber plastomes. Annotated genes are shown along the top. The vertical scale indicates percent identity, ranging from 50% to 100%. Exons were colored by purple; untranslated (UTR) sequences were colored by blue; and conserved non-coding sequences (CNSs) were colored by pink.</p> "> Figure 5
<p>Characteristics of microsatellites and repeats among <span class="html-italic">Zingiber</span> species. (<b>a</b>) Numbers and proportions of microsatellites in different types; (<b>b</b>) numbers and proportions of repeats in different types.</p> "> Figure 6
<p>Nucleotide variability (<span class="html-italic">π</span>) of regions extracted from the alignment matrix of <span class="html-italic">Zingiber</span> plastome sequences. (<b>a</b>) <span class="html-italic">π</span> of 89 genes and (<b>b</b>) <span class="html-italic">π</span> of 70 intergenic spacers (IGS). Three genes (<span class="html-italic">rpl20</span>, <span class="html-italic">clpP</span>, <span class="html-italic">ycf1</span>) and three IGS regions (<span class="html-italic">rbcL</span>-<span class="html-italic">accD</span>, <span class="html-italic">petA</span>-<span class="html-italic">psbJ</span>, <span class="html-italic">rpl32</span>-<span class="html-italic">trnL</span>) exhibiting <span class="html-italic">π</span> values exceeding 0.02 were highlighted in red.</p> "> Figure 7
<p>Phylogenetic trees of <span class="html-italic">Zingiber</span> based on complete plastome sequences. The tree shown depicts the ML topology with ML bootstrap support value/Bayesian posterior probability given at each node. Nodes with respective values less than 50/0.5 are marked as “*”.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling, DNA Extraction and Genome Sequencing
2.2. Assembly and Annotation of Plastome
2.3. Comparative Analyses of Plastome
2.4. Identification of Plastid Microsatellites and Repeats
2.5. Nucleotide Diversity Analyses of Plastome
2.6. Phylogenetic Inferences
3. Results
3.1. Characteristics of Newly Assembled Plastome
3.2. Plastome Variations Within Zingier
3.3. Microsatellites and Repeats
3.4. Plastome Highly Divergent Regions
3.5. Phylogenetic Relationships of Zingiber Species
4. Discussion
4.1. Plastome Structure and Characteristics Analysis
4.2. Plastome-Derived Markers of Zingiber
4.3. Intraspecific Phylogeny of Zingiber
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, D.; Larsen, K. Zingiberaceae. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press/Missouri Botanical Garden Press: Beijing, China; St. Louis, MO, USA, 2000. [Google Scholar]
- Theerakulpisut, P.; Triboun, P.; Mahakham, W.; Maensiri, D.; Khampila, J.; Chantaranothai, P. Phylogeny of the genus Zingiber (Zingiberaceae) based on nuclear ITS sequence data. Kew Bull. 2012, 67, 389–395. [Google Scholar] [CrossRef]
- Bai, L.; Maslin, B.R.; Triboun, P.; Xia, N.; Leong-Škorničková, J. Unravelling the identity and nomenclatural history of Zingiber montanum, and establishing Z. purpureum as the correct name for Cassumunar ginger. Taxon 2019, 68, 1334–1349. [Google Scholar] [CrossRef]
- Cheng, S.P.; Jia, K.H.; Liu, H.; Zhang, R.G.; Li, Z.C.; Zhou, S.S.; Shi, T.L.; Ma, A.C.; Yu, C.W.; Gao, C.; et al. Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger. Hort. Res. 2021, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.X.; Zhang, X.; Guo, S.; Yan, H.; Wang, J.M.; Zhou, J.Q.; Yang, J.; Duan, J.A. Headspace GC/MS and fast GC e-nose combined with chemometric analysis to identify the varieties and geographical origins of ginger (Zingiber officinale Roscoe). Food Chem. 2022, 396, 133672. [Google Scholar] [CrossRef]
- Jiang, D.; Cai, X.; Gong, M.; Xia, M.; Xing, H.; Dong, S.; Tian, S.; Li, J.; Lin, J.; Liu, Y.; et al. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genom. 2023, 24, 30. [Google Scholar]
- Jiang, H.L.; Xie, Z.Z.; Koo, H.J.; McLaughlin, S.P.; Timmermann, B.N.; Gang, D.R. Metabolic profiling and phylogenetic analysis of medicinal Zingiber species: Tools for authentication of ginger (Zingiber officinale Rosc.). Phytochemistry 2006, 67, 1673–1685. [Google Scholar] [CrossRef]
- Li, B.; Liu, T.; Ali, A.; Xiao, Y.; Shan, N.; Sun, J.; Huang, Y.J.; Zhou, Q.H.; Zhu, Q.L. Complete chloroplast genome sequences of three aroideae species (Araceae): Lights into selective pressure, marker development and phylogenetic relationships. BMC Genom. 2022, 23, 218. [Google Scholar] [CrossRef] [PubMed]
- Bode, A.M.; Ma, W.Y.; Surh, Y.J.; Dong, Z. Inhibition of epidermal growth factor-induced cell transformation and activator protein 1 activation by [6]-gingerol. Cancer Res. 2001, 61, 850–853. [Google Scholar]
- Lee, H.S.; Seo, E.Y.; Kang, N.E.; Kim, W.K. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J. Nutr. Biochem. 2008, 19, 313–319. [Google Scholar] [CrossRef]
- Bhandari, G.S.; Park, C.W. Molecular evidence for natural hybridization between Rumex crispus and R. obtusifolius (Polygonaceae) in Korea. Sci. Rep. 2022, 12, 5423. [Google Scholar] [CrossRef]
- Zakaria, Z.A.; Mohamad, A.S.; Chear, C.T.; Wong, Y.Y.; Israf, D.A.; Sulaiman, M.R. Antiinflammatory and antinociceptive activities of Zingiber zerumbet methanol extract in experimental model systems. Med. Princ. Pract. 2010, 19, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.H. Systematic Study on Zingiber in China. Master’s Thesis, South China Normal University, Guangzhou, China, 2016. [Google Scholar]
- Branney, T.M. Hardy gingers: Including Hedychium, Roscoea, and Zingiber; Timber Press: Portland, OR, USA, 2014. [Google Scholar]
- Gao, J.Y.; Xia, Y.M.; Huang, J.Y.; Li, Q.J. Zhongguo Jiangke Huahui; Science Press: Beijing, China, 2006. [Google Scholar]
- Wu, D.; Liu, N.; Ye, Y. The Zingiberaceous Resources in China; Huazhong University of Science and Technology University Press: Wuhan, China, 2016. [Google Scholar]
- Li, D.M.; Ye, Y.J.; Xu, Y.C.; Liu, J.M.; Zhu, G.F. Complete chloroplast genomes of Zingiber montanum and Zingiber zerumbet: Genome structure, comparative and phylogenetic analyses. PLoS ONE. 2020, 15, e0236590. [Google Scholar] [CrossRef] [PubMed]
- Kemler, M. Education: Botanists still need to tell plants apart. Nature 2015, 521, 32. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.F.; Lu, T.Q.; Zhang, Z.Y.; Cai, C.T.; Yang, J.B.; Tian, B. Authentication of traditional Chinese medicinal herb “Gusuibu” by DNA-based molecular methods. Ind. Crop. Prod. 2019, 141, 111756. [Google Scholar] [CrossRef]
- Bentham, G.; Hooker, J.D. Genera Plantarum; L. Reeve & Co. & Williams & Norgate: London, UK, 1894. [Google Scholar]
- Baker, J. Scitamineae. In Flora of British India; Hooker, J.D., Ed.; L. Reeve and Co.: London, UK, 1894; pp. 198–264. [Google Scholar]
- Valeton, T. New notes on the Zingiberaceae of Java and Malayan archipelago. Bulletin. Jard. Bot. De Buitenzorg. 1918, 27, 1–166. [Google Scholar]
- Theilade, I.; Mærsk-Møller, M.; Theilade, J.; Larsen, K. Pollen morphology and structure of Zingiber (Zingiberaceae). Grana 1993, 32, 338–342. [Google Scholar] [CrossRef]
- Bai, L. Taxonomic Studies on Zingiber Mill. Ph.D. Thesis, University of Chinese Academy of Sciences, Guangzhou, China, 2016. [Google Scholar]
- Xie, D.F.; Tan, J.B.; Yu, Y.; Gui, L.J.; Su, D.M.; Zhou, S.D.; He, X.J. Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Ann. Bot. 2020, 125, 1039–1055. [Google Scholar] [CrossRef]
- Chong, X.R.; Li, Y.L.; Yan, M.L.; Wang, Y.; Li, M.Z.; Zhou, Y.W.; Chen, H.; Lu, X.Q.; Zhang, F. Comparative chloroplast genome analysis of 10 Ilex species and the development of species-specific identification markers. Ind. Crop. Prod. 2022, 187, 115408. [Google Scholar] [CrossRef]
- Xia, M.Q.; Liu, Y.; Liu, J.J.; Chen, D.H.; Shi, Y.; Chen, Z.X.; Chen, D.R.; Jin, R.F.; Chen, H.L.; Zhu, S.S.; et al. Out of the Himalaya-Hengduan Mountains: Phylogenomics, biogeography and diversification of Polygonatum Mill. (Asparagaceae) in the Northern Hemisphere. Mol. Phylogenet. Evol. 2022, 169, 107431. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.W.; Huang, J.L.; Ya, J.D.; Zhe, M.Q.; Zeng, C.X.; Zhang, Z.R.; Zhang, S.B.; Li, D.Z.; Li, H.T.; et al. DNA barcoding of Cymbidium by genome skimming: Call for next-generation nuclear barcodes. Mol. Ecol. Resour. 2023, 23, 424–439. [Google Scholar] [CrossRef]
- Ruhsam, M.; Rai, H.S.; Mathews, S.; Ross, T.G.; Graham, S.W.; Raubeson, L.A.; Mei, W.B.; Thomas, P.I.; Gardner, M.F.; Ennos, R.A.; et al. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol. Ecol. Resour. 2015, 15, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Liu, C.; Yang, Z.; Yang, L.F.; He, Z.S.; Wang, H.C.; Yang, J.B.; Yi, T.S. Testing and using complete plastomes and ribosomal DNA sequences as the next generation DNA barcodes in Panax (Araliaceae). Mol. Ecol. Resour. 2019, 19, 1333–1345. [Google Scholar] [CrossRef]
- Xu, W.Q.; Lu, R.S.; Li, J.Y.; Xia, M.Q.; Chen, G.Y.; Li, P. Comparative plastome analyses and evolutionary relationships of all species and cultivars within the medicinal plant genus Atractylodes. Ind. Crop. Prod. 2023, 201, 116974. [Google Scholar] [CrossRef]
- Lu, R.; Hu, K.; Sun, X.; Chen, M. Lowcoverage whole genome sequencing of diverse Dioscorea bulbifera accessions for plastome resource development, polymorphic nuclear SSR identification, and phylogenetic analyses. Front. Plant Sci. 2024, 15, 1373297. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.B.; Tang, M.; Li, H.T.; Zhang, Z.R.; Li, D.Z. Complete chloroplast genome of the genus Cymbidium: Lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol. Biol. 2023, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.; Paun, O.; Munzinger, J.; Chase, M.W.; Samuel, R. Sequencing of whole plastid genomes and nuclear ribosomal DNA of Diospyros species (Ebenaceae) endemic to New Caledonia: Many species, little divergence. Ann. Bot. 2016, 117, 1175–1185. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; DePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Zheng, S.; Poczai, P.; Hyvönen, J.; Tang, J.; Amiryousefi, A. Chloroplot: An online program for the versatile plotting of organelle genomes. Front. Genet. 2020, 11, 576124. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. Vista: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [PubMed]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. Reputer: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Zhou, S.; Renner, S.S.; Wen, J. Molecular phylogeny and intra-and intercontinental biogeography of Calycanthaceae. Mol. Phylogenet. Evol. 2006, 39, 1–15. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Birky, C.W. Uniparental inheritance of mitochondrial and chloroplast genes: Mechanisms and evolution. Proc. Nat. Acad. Sci. USA 1995, 92, 11331–11338. [Google Scholar] [CrossRef]
- Mohammad-Panah, N.; Shabanian, N.; Khadivi, A.; Rahmani, M.S.; Emami, A. Genetic structure of gall oak (Quercus infectoria) characterized by nuclear and chloroplast SSR markers. Tree Genet. Genomes 2017, 13, 70. [Google Scholar] [CrossRef]
- Cui, Y.; Nie, L.; Sun, W.; Xu, Z.; Wang, Y.; Yu, J.; Song, J.; Yao, H. Comparative and Phylogenetic Analyses of Ginger (Zingiber officinale) in the Family Zingiberaceae Based on the Complete Chloroplast Genome. Plants 2019, 8, 283. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, H.L. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004, 11, 247–261. [Google Scholar] [CrossRef]
- Wang, R.J.; Cheng, C.L.; Chang, C.C.; Wu, C.L.; Su, T.M.; Chaw, S.M. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 2008, 8, 36. [Google Scholar] [CrossRef]
- Britten, R.J.; Kohne, D.E. Repeated sequences in DNA. Science 1968, 161, 529–540. [Google Scholar] [CrossRef]
- Cosner, M.E.; Jansen, R.K.; Palmer, J.D.; Downie, S.R. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): Multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr. Genet. 1997, 31, 419–429. [Google Scholar] [CrossRef]
- Maréchal, A.; Brisson, N. Recombination and the maintenance of plant organelle genome stability. New Phytol. 2010, 186, 299–317. [Google Scholar] [CrossRef]
- Muraguri, S.; Xu, W.; Chapman, M.; Muchugi, A.; Oluwaniyi, A.; Oyebanji, O.; Liu, A.Z. Intraspecific variation within Castor bean (Ricinus communis L.) based on chloroplast genomes. Ind. Crop Prod. 2020, 155, 112779. [Google Scholar] [CrossRef]
- Lu, R.S.; Chen, M.; Feng, Y.; Yuan, N.; Zhang, Y.M.; Cao, M.X.; Liu, J.; Wang, Y.; Huang, Y.Y.; Sun, X.Q. Comparative plastome analyses and genomic resource development in wild rice (Zizania spp., Poaceae) using genome skimming data. Ind. Crop Prod. 2022, 186, 115244. [Google Scholar] [CrossRef]
- Zhao, M.L.; Song, Y.; Ni, J.; Yao, X.; Tan, Y.H.; Xu, Z.F. Comparative chloroplast genomics and phylogenetics of nine Lindera species (Lauraceae). Sci. Rep. 2018, 8, 8844. [Google Scholar] [CrossRef]
- Li, P.P.; Lou, G.L.; Cai, X.R.; Zhang, B.; Cheng, Y.Q.; Wang, H.W. Comparison of the complete plastomes and the phylogenetic analysis of Paulownia species. Sci. Rep. 2020, 10, 2225. [Google Scholar] [CrossRef]
- Lo, S.H.; Wong, K.S.; Arlt, V.M.; Phillips, D.H.; Lai, C.K.; Poon, W.T.; Chan, C.K.; Mo, K.L.; Chan, K.W.; Chan, A. Detection of Herba Aristolochia Mollissemae in a patient with unexplained nephropathy. Am. J. Kidney Dis. 2005, 45, 407–410. [Google Scholar] [CrossRef]
- Grollman, A.P.; Shibutani, S.; Moriya, M.; Miller, F.; Wu, L.; Moll, U.; Suzuki, N.; Fernandes, A.; Rosenquist, T.; Medverec, Z.; et al. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc. Natl. Acad. Sci. USA 2007, 104, 12129–12134. [Google Scholar] [CrossRef]
- Li, M.; Au, K.Y.; Lam, H.; Cheng, L.; Jiang, R.W.; But, P.P.; Shaw, P.P. Identification of Baiying (Herba Solani Lyrati) commodity and its toxic substitute Xungufeng (Herba Aristolochiae Mollissimae) using DNA barcoding and chemical profiling techniques. Food Chem. 2012, 135, 1653–1658. [Google Scholar] [CrossRef]
- Guo, H.; Mao, H.; Pan, G.; Zhang, H.; Fan, G.; Li, W.; Zhou, K.; Zhu, Y.; Yanagihara, N.; Gao, X.M. Antagonism of Cortex Periplocae extractinduced catecholamines secretion by Panax notoginseng saponins in cultured bovine adrenal medullary cells by drug combinations. J. Ethnopharmacol. 2013, 147, 447–455. [Google Scholar] [CrossRef]
- Yeh, C.L.; Chung, S.W.; Kuo, Y.W.; Hsu, T.C.; Leou, C.S.; Hong, S.J.; Yeh, C.R. A new species of Zingiber (Zingiberaceae) from Taiwan, China, based on morphological and molecular data. J. Syst. Evol. 2012, 50, 163–169. [Google Scholar] [CrossRef]
- Chen, S.L.; Pang, X.H.; Song, J.Y.; Shi, L.C.; Yao, H.; Han, J.P.; Leon, C. A renaissance in herbal medicine identification: From morphology to DNA. Biotechnol. Adv. 2014, 32, 1237–1244. [Google Scholar] [CrossRef]
- Theilade, I. A synopsis of the genus Zingiber (Zingiberaceae) in Thailand. Nord. J. Bot. 2008, 19, 389–410. [Google Scholar] [CrossRef]
- Triboun, P.; Chantaranothai, P.; Larsen, K. Taxonomic changes regarding three species of Zingiber (Zingiberaceae) from Thailand. J. Syst. Evol. 2007, 45, 403. [Google Scholar]
- Theilade, I. Revision of the genus Zingiber in Peninsular Malaysia. Gard. Bull. Singap. 1998, 48, 207–236. [Google Scholar]
- Sabu, M. Revision of the genus Zingiber in South India. Fol. Malays. 2003, 4, 25–52. [Google Scholar]
Taxon | Locations | Collection Number | GenBank Accession | Plastome Size (bp) | GC Content (%) |
---|---|---|---|---|---|
Z. atroporphyreum 1 | China, Yunnan, Malipo | XMQ2023039 | N_001486761 | 163,880 | 36.1 |
Z. atroporphyreum 2 | China, Yunnan, Malipo | XMQ2023039-5 | N_001486762 | 163,879 | 36.1 |
Z. atroporphyreum 3 | China, Yunnan, Malipo | XMQ2023039-2 | N_001486763 | 163,880 | 36.1 |
Z. cochleariforme 1 | China, Guangxi | 451223121026052LY | N_001486764 | 162,855 | 36.1 |
Z. cochleariforme 2 | China, Guangxi | 451223150119004LY | N_001486765 | 163,511 | 36.1 |
Z. ellipticum 1 | China, Yunnan, Maguan | XMQ2023055-1 | N_001486766 | 163,295 | 36.2 |
Z. ellipticum 2 | China, Yunnan, Maguan | XMQ2023055-2 | N_001486767 | 163,413 | 36.2 |
Z. ellipticum 3 | China, Yunnan, Maguan | XMQ2023055-3 | N_001486768 | 163,413 | 36.2 |
Z. ellipticum 4 | China, Yunnan, Maguan | XMQ2023055-4 | N_001486769 | 163,290 | 36.2 |
Zingiber fragile | China, Yunnan, Puer | 048956 | OR337869 | 163,381 | 36.1 |
Zingiber guangxiense | China, Guangxi | IBK00393893 | OR337870 | 163,050 | 36.2 |
Z. gulinense 1 | China, Yunnan, Maguan | XMQ2023054-1 | N_001486770 | 162,790 | 36.1 |
Z gulinense 2 | China, Yunnan, Maguan | XMQ2023054-4 | N_001486771 | 162,791 | 36.1 |
Z. gulinense 3 | China, Yunnan, Maguan | XMQ2023054-6 | N_001486773 | 162,790 | 36.1 |
Zingiber longiglande | China, Guangxi, Guilin | IBK00191773T | OR337871 | 163,225 | 36.1 |
Zingiber mekongense 1 | China, Guangxi, Chongzuo | 451402150915047LY-1 | N_001486774 | 163,261 | 36.1 |
Z. mekongense 2 | China, Guangxi, Chongzuo | 451402150915047LY-2 | N_001486775 | 163,309 | 36.1 |
Z. mioga 1 | China, Hubei | 00075720 | OR337872 | 163,551 | 36 |
Z. purpureum 1 | China, Yunnan, Malipo | XMQ2023048 | N_001486776 | 161,495 | 35.8 |
Z. officinale 1 | China, Yunnan, Qujing | S2 | OR337873 | 162,921 | 36.1 |
Z. officinale 2 | China, Hubei | S5 | OR337874 | 162,921 | 36.1 |
Z. officinale 3 | China, Chongqing | S17 | OR337875 | 162,921 | 36.1 |
Z. recurvatum 1 | China, Yunnan, Xishuangbanna | 118587 | N_001486777 | 163,162 | 36.1 |
Z. recurvatum 2 | China, Yunnan, Xishuangbanna | 42 | OR337876 | 163,129 | 36.1 |
Zingiber roseum | China, Yunnan | 0425576 | OR337877 | 163,529 | 36.1 |
Zingiber simaoense | China, Yunnan | 110728 | OR337878 | 163,551 | 36.1 |
Z. striolatum 1 | China, Chongqing, Jinfo Mountain | XMQ2023032-2 | N_001486778 | 163.611 | 36 |
Zingiber wandingense | China, Yunnan | 49033 | OR337879 | 163,398 | 36.1 |
Zingiber yunnanense | China, Yunnan | 0425625 | OR337880 | 163,772 | 36.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, M.; Jiang, D.; Xu, W.; Liu, X.; Zhu, S.; Xing, H.; Zhang, W.; Zou, Y.; Li, H.-L. Comparative Chloroplast Genome Study of Zingiber in China Sheds Light on Plastome Characterization and Phylogenetic Relationships. Genes 2024, 15, 1484. https://doi.org/10.3390/genes15111484
Xia M, Jiang D, Xu W, Liu X, Zhu S, Xing H, Zhang W, Zou Y, Li H-L. Comparative Chloroplast Genome Study of Zingiber in China Sheds Light on Plastome Characterization and Phylogenetic Relationships. Genes. 2024; 15(11):1484. https://doi.org/10.3390/genes15111484
Chicago/Turabian StyleXia, Maoqin, Dongzhu Jiang, Wuqin Xu, Xia Liu, Shanshan Zhu, Haitao Xing, Wenlin Zhang, Yong Zou, and Hong-Lei Li. 2024. "Comparative Chloroplast Genome Study of Zingiber in China Sheds Light on Plastome Characterization and Phylogenetic Relationships" Genes 15, no. 11: 1484. https://doi.org/10.3390/genes15111484
APA StyleXia, M., Jiang, D., Xu, W., Liu, X., Zhu, S., Xing, H., Zhang, W., Zou, Y., & Li, H. -L. (2024). Comparative Chloroplast Genome Study of Zingiber in China Sheds Light on Plastome Characterization and Phylogenetic Relationships. Genes, 15(11), 1484. https://doi.org/10.3390/genes15111484