How to Choose the Right Inducible Gene Expression System for Mammalian Studies?
<p>Schematic representations of tetracycline-controled operator systems. (<b>A</b>) Repression based configuration. (<b>B</b>) Tet-off configuration. (<b>C</b>) Tet-on configuration. DNABD: DNA binding domain, AD: activating domain, TetO: tetracycline operator, Dox: doxycycline, TetR: tet repressor.</p> "> Figure 2
<p>Schematic representations of cumate-controlled operator systems. (<b>A</b>) Repression configuration. (<b>B</b>) Activator configuration. (<b>C</b>) Reverse activator configuration. CymR: cumate repressor, CuO: cumate operator, rcTA: reverse chimeric transactivator.</p> "> Figure 3
<p>Schematic representations of protein–protein interaction based systems. (<b>A</b>) Inducible system dependent on rapamycin induced interaction between FKBP12 and FRAP. (<b>B</b>) Inducible system dependent on FKCsA induced interaction between FKBP12 and cyclophilin. (<b>C</b>) Inducible system dependent on ABA induced interaction between PYL1 and ABI1. (<b>D</b>) Inducible system dependent on blue light induced VVD dimer formation. (<b>E</b>) Photoactivatable-Tet-OFF/ON system dependent on blue light induced interaction between Cry2 and CIB1. Gal4DBD: Gal4 DNA binding domain, ABA: abscisic acid, TetR: tet repressor.</p> ">
Abstract
:1. Introduction
2. Tetracycline-Controlled Operator System
2.1. Induction of Target Gene
2.2. Induction of Knockdown or Knockout of Target Gene
3. Cumate-Controlled Operator System
3.1. Induction of Target Gene
3.2. Induction of Knockdown of Target Gene
4. Protein–Protein Interaction-Based Chimeric System
4.1. Induction of Target Gene by Control of the Interaction between FKBP12 and mTOR
4.2. Induction of Target Gene by Control of the Interaction between PYL1 and ABI1
4.3. Induction of Target Gene by Light Sensitive Protein–Protein Interactions
5. Tamoxifen Controlled Recombinase System
6. Riboswitch-Regulatable Expression System
7. Closing Remarks and Future Perspectives
7.1. How to Choose the Right System for the Experiment
7.2. Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heitman, J.; Movva, N.R.; Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253, 905–909. [Google Scholar] [CrossRef]
- Kunz, J.; Henriquez, R.; Schneider, U.; Deuter-Reinhard, M.; Movva, N.R.; Hall, M.N. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 1993, 73, 585–596. [Google Scholar] [CrossRef]
- Yuan, J.Y.; Horvitz, H.R. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 1990, 138, 33–41. [Google Scholar] [CrossRef]
- Tsukada, M.; Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993, 333, 169–174. [Google Scholar] [CrossRef]
- Harvey, K.F.; Pfleger, C.M.; Hariharan, I.K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 2003, 114, 457–467. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Dong, J.; Pan, D. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 2003, 114, 445–456. [Google Scholar] [CrossRef]
- Wilson, C.H.; Gamper, I.; Perfetto, A.; Auw, J.; Littlewood, T.D.; Evan, G.I. The kinetics of ER fusion protein activation in vivo. Oncogene 2014, 33, 4877–4880. [Google Scholar] [CrossRef]
- El-Brolosy, M.A.; Kontarakis, Z.; Rossi, A.; Kuenne, C.; Gunther, S.; Fukuda, N.; Kikhi, K.; Boezio, G.L.M.; Takacs, C.M.; Lai, S.L.; et al. Genetic compensation triggered by mutant mRNA degradation. Nature 2019, 568, 193–197. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, P.; Shi, H.; Guo, L.; Zhang, Q.; Chen, Y.; Chen, S.; Zhang, Z.; Peng, J.; Chen, J. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 2019, 568, 259–263. [Google Scholar] [CrossRef]
- Mayo, K.E.; Warren, R.; Palmiter, R.D. The mouse metallothionein-I gene is transcriptionally regulated by cadmium following transfection into human or mouse cells. Cell 1982, 29, 99–108. [Google Scholar] [CrossRef]
- Searle, P.F.; Stuart, G.W.; Palmiter, R.D. Building a metal-responsive promoter with synthetic regulatory elements. Mol. Cell. Biol. 1985, 5, 1480–1489. [Google Scholar] [CrossRef]
- Hynes, N.E.; Kennedy, N.; Rahmsdorf, U.; Groner, B. Hormone-responsive expression of an endogenous proviral gene of mouse mammary tumor virus after molecular cloning and gene transfer into cultured cells. Proc. Natl. Acad. Sci. USA 1981, 78, 2038–2042. [Google Scholar] [CrossRef]
- Nover, L. Heat Shock Response; CRC Press: Boca Roton, FL, USA, 1991. [Google Scholar]
- Klock, G.; Strahle, U.; Schutz, G. Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature 1987, 329, 734–736. [Google Scholar] [CrossRef]
- Wurm, F.M.; Gwinn, K.A.; Kingston, R.E. Inducible overproduction of the mouse c-myc protein in mammalian cells. Proc. Natl. Acad. Sci. USA 1986, 83, 5414–5418. [Google Scholar] [CrossRef]
- Kagi, J.H.; Valee, B.L. Metallothionein: A cadmium- and zinc-containing protein from equine renal cortex. J. Biol. Chem. 1960, 235, 3460–3465. [Google Scholar]
- Haslinger, A.; Karin, M. Upstream promoter element of the human metallothionein-IIA gene can act like an enhancer element. Proc. Natl. Acad. Sci. USA 1985, 82, 8572–8576. [Google Scholar] [CrossRef]
- Santos, A.K.; Parreira, R.C.; Resende, R.R. Expression system based on an MTIIa promoter to produce hPSA in mammalian cell cultures. Front. Microbiol. 2016, 7, 1280. [Google Scholar] [CrossRef]
- Hu, M.C.; Davidson, N. The inducible lac operator-repressor system is functional in mammalian cells. Cell 1987, 48, 555–566. [Google Scholar] [CrossRef]
- Baim, S.B.; Labow, M.A.; Levine, A.J.; Shenk, T. A chimeric mammalian transactivator based on the lac repressor that is regulated by temperature and isopropyl beta-D-thiogalactopyranoside. Proc. Natl. Acad. Sci. USA 1991, 88, 5072–5076. [Google Scholar] [CrossRef]
- Goverdhana, S.; Puntel, M.; Xiong, W.; Zirger, J.M.; Barcia, C.; Curtin, J.F.; Soffer, E.B.; Mondkar, S.; King, G.D.; Hu, J.; et al. Regulatable gene expression systems for gene therapy applications: Progress and future challenges. Mol. Ther. 2005, 12, 189–211. [Google Scholar] [CrossRef]
- Gossen, M.; Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 1992, 89, 5547–5551. [Google Scholar] [CrossRef]
- Rafn, B.; Nielsen, C.F.; Andersen, S.H.; Szyniarowski, P.; Corcelle-Termeau, E.; Valo, E.; Fehrenbacher, N.; Olsen, C.J.; Daugaard, M.; Egebjerg, C.; et al. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol. Cell. 2012, 45, 764–776. [Google Scholar] [CrossRef]
- Gossen, M.; Bujard, H. Efficacy of tetracycline-controlled gene expression is influenced by cell type: Commentary. Biotechniques 1995, 19, 213; discussion 216–217. [Google Scholar]
- Gossen, M.; Freundlieb, S.; Bender, G.; Muller, G.; Hillen, W.; Bujard, H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995, 268, 1766–1769. [Google Scholar] [CrossRef]
- Fussenegger, M.; Morris, R.P.; Fux, C.; Rimann, M.; von Stockar, B.; Thompson, C.J.; Bailey, J.E. Streptogramin-based gene regulation systems for mammalian cells. Nat. Biotechnol. 2000, 18, 1203–1208. [Google Scholar] [CrossRef]
- Deuschle, U.; Meyer, W.K.; Thiesen, H.J. Tetracycline-reversible silencing of eukaryotic promoters. Mol. Cell. Biol. 1995, 15, 1907–1914. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Vink, M.; Klaver, B.; Berkhout, B.; Das, A.T. Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene. Ther. 2006, 13, 1382–1390. [Google Scholar] [CrossRef]
- Yamada, M.; Suzuki, Y.; Nagasaki, S.C.; Okuno, H.; Imayoshi, I. Light control of the Tet gene expression system in mammalian cells. Cell. Rep. 2018, 25, 487–500. [Google Scholar] [CrossRef]
- Ackland-Berglund, C.E.; Leib, D.A. Efficacy of tetracycline-controlled gene expression is influenced by cell type. Biotechniques 1995, 18, 196–200. [Google Scholar]
- Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494. [Google Scholar] [CrossRef]
- Hannon, G.J.; Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature 2004, 431, 371. [Google Scholar] [CrossRef]
- Rana, T.M. Illuminating the silence: Understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell. Biol. 2007, 8, 23–36. [Google Scholar] [CrossRef]
- Sigl, R.; Ploner, C.; Shivalingaiah, G.; Kofler, R.; Geley, S. Development of a multipurpose GATEWAY-based lentiviral tetracycline-regulated conditional RNAi system (GLTR). PLoS ONE 2014, 9, e97764. [Google Scholar] [CrossRef]
- Lin, X.; Yang, J.; Chen, J.; Gunasekera, A.; Fesik, S.W.; Shen, Y. Development of a tightly regulated U6 promoter for shRNA expression. FEBS Lett. 2004, 577, 376–380. [Google Scholar] [CrossRef] [Green Version]
- Henriksen, J.R.; Lokke, C.; Hammero, M.; Geerts, D.; Versteeg, R.; Flaegstad, T.; Einvik, C. Comparison of RNAi efficiency mediated by tetracycline-responsive H1 and U6 promoter variants in mammalian cell lines. Nucleic Acids Res. 2007, 35, e67. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [Green Version]
- Slaymaker, I.M.; Gao, L.; Zetsche, B.; Scott, D.A.; Yan, W.X.; Zhang, F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016, 351, 84–88. [Google Scholar] [CrossRef] [Green Version]
- Bisht, K.; Grill, S.; Graniel, J.; Nandakumar, J. A lentivirus-free inducible CRISPR-Cas9 system for efficient targeting of human genes. Anal. Biochem. 2017, 530, 40–49. [Google Scholar] [CrossRef]
- McKinley, K.L.; Sekulic, N.; Guo, L.Y.; Tsinman, T.; Black, B.E.; Cheeseman, I.M. The CENP-L-N Complex forms a critical node in an integrated meshwork of interactions at the centromere-kinetochore interface. Mol. Cell. 2015, 60, 886–898. [Google Scholar] [CrossRef]
- Eaton, R.W. p-Cymene catabolic pathway in Pseudomonas putida F1: Cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J. Bacteriol. 1997, 179, 3171–3180. [Google Scholar] [CrossRef]
- Mullick, A.; Xu, Y.; Warren, R.; Koutroumanis, M.; Guilbault, C.; Broussau, S.; Malenfant, F.; Bourget, L.; Lamoureux, L.; Lo, R.; et al. The cumate gene-switch: A system for regulated expression in mammalian cells. BMC Biotechnol. 2006, 6, 43. [Google Scholar] [CrossRef]
- Demetriades, C.; Doumpas, N.; Teleman, A.A. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014, 156, 786–799. [Google Scholar] [CrossRef]
- Giniger, E.; Ptashne, M. Transcription in yeast activated by a putative amphipathic alpha helix linked to a DNA binding unit. Nature 1987, 330, 670–672. [Google Scholar] [CrossRef]
- Ptashne, M. How eukaryotic transcriptional activators work. Nature 1988, 335, 683. [Google Scholar] [CrossRef]
- Rivera, V.M.; Clackson, T.; Natesan, S.; Pollock, R.; Amara, J.F.; Keenan, T.; Magari, S.R.; Phillips, T.; Courage, N.L.; Cerasoli, F., Jr.; et al. A humanized system for pharmacologic control of gene expression. Nat. Med. 1996, 2, 1028–1032. [Google Scholar]
- Bierer, B.E.; Mattila, P.S.; Standaert, R.F.; Herzenberg, L.A.; Burakoff, S.J.; Crabtree, G.; Schreiber, S.L. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc. Natl. Acad. Sci. USA 1990, 87, 9231–9235. [Google Scholar] [CrossRef]
- Brown, E.J.; Albers, M.W.; Shin, T.B.; Ichikawa, K.; Keith, C.T.; Lane, W.S.; Schreiber, S.L. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994, 369, 756–758. [Google Scholar] [CrossRef]
- Sabers, C.J.; Martin, M.M.; Brunn, G.J.; Williams, J.M.; Dumont, F.J.; Wiederrecht, G.; Abraham, R.T. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J. Biol. Chem. 1995, 270, 815–822. [Google Scholar] [CrossRef]
- Sabatini, D.M.; Erdjument-Bromage, H.; Lui, M.; Tempst, P.; Snyder, S.H. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 1994, 78, 35–43. [Google Scholar] [CrossRef]
- Pomerantz, J.L.; Sharp, P.A.; Pabo, C.O. Structure-based design of transcription factors. Science 1995, 267, 93–96. [Google Scholar] [CrossRef]
- Schmitz, M.L.; Baeuerle, P.A. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J. 1991, 10, 3805–3817. [Google Scholar] [CrossRef]
- Belshaw, P.J.; Ho, S.N.; Crabtree, G.R.; Schreiber, S.L. Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 4604–46077. [Google Scholar] [CrossRef]
- Sabatini, D.M. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc. Natl. Acad. Sci. USA 2017, 114, 11818–11825. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Guan, K.L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell. Biol. 2019, 21, 63–71. [Google Scholar] [CrossRef]
- Abu-Remaileh, M.; Wyant, G.A.; Kim, C.; Laqtom, N.N.; Abbasi, M.; Chan, S.H.; Freinkman, E.; Sabatini, D.M. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 2017, 358, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.M.; Blau, H.M. Recent advances in inducible gene expression systems. Curr. Opin. Biotechnol. 1998, 9, 451–456. [Google Scholar] [CrossRef]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant. Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef]
- Gosti, F.; Beaudoin, N.; Serizet, C.; Webb, A.A.; Vartanian, N.; Giraudat, J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant. Cell 1999, 11, 1897–1910. [Google Scholar] [CrossRef]
- Miyazono, K.; Miyakawa, T.; Sawano, Y.; Kubota, K.; Kang, H.J.; Asano, A.; Miyauchi, Y.; Takahashi, M.; Zhi, Y.; Fujita, Y.; et al. Structural basis of abscisic acid signalling. Nature 2009, 462, 609–614. [Google Scholar] [CrossRef]
- Yin, P.; Fan, H.; Hao, Q.; Yuan, X.; Wu, D.; Pang, Y.; Yan, C.; Li, W.; Wang, J.; Yan, N. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol. Biol. 2009, 16, 1230–1236. [Google Scholar] [CrossRef]
- Melcher, K.; Ng, L.M.; Zhou, X.E.; Soon, F.F.; Xu, Y.; Suino-Powell, K.M.; Park, S.Y.; Weiner, J.J.; Fujii, H.; Chinnusamy, V.; et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 2009, 462, 602–608. [Google Scholar] [CrossRef]
- Liang, F.S.; Ho, W.Q.; Crabtree, G.R. Engineering the ABA plant stress pathway for regulation of induced proximity. Sci. Signal. 2011, 4, rs2. [Google Scholar] [CrossRef]
- Zoltowski, B.D.; Crane, B.R. Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 2008, 47, 7012–7019. [Google Scholar] [CrossRef]
- Zoltowski, B.D.; Schwerdtfeger, C.; Widom, J.; Loros, J.J.; Bilwes, A.M.; Dunlap, J.C.; Crane, B.R. Conformational switching in the fungal light sensor Vivid. Science 2007, 316, 1054–1057. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 2012, 9, 266–269. [Google Scholar] [CrossRef]
- Wu, L.; Yang, H.Q. CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol. Plant. 2010, 3, 539–548. [Google Scholar] [CrossRef]
- Yu, X.; Liu, H.; Klejnot, J.; Lin, C. The Cryptochrome Blue Light Receptors. Arabidopsis Book 2010, 8, e0135. [Google Scholar] [CrossRef] [Green Version]
- Hecht, B.; Muller, G.; Hillen, W. Noninducible Tet repressor mutations map from the operator binding motif to the C terminus. J. Bacteriol. 1993, 175, 1206–1210. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.B.; Kim, S.H.; Lee, S.C.; Kim, H.G.; Ahn, H.G.; Li, Z.; Yoon, K.C. Blue light-induced oxidative stress in human corneal epithelial cells: Protective effects of ethanol extracts of various medicinal plant mixtures. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4119–4127. [Google Scholar] [CrossRef]
- Nakashima, Y.; Ohta, S.; Wolf, A.M. Blue light-induced oxidative stress in live skin. Free Radic. Biol. Med. 2017, 108, 300–310. [Google Scholar] [CrossRef]
- Kuhn, R.; Schwenk, F.; Aguet, M.; Rajewsky, K. Inducible gene targeting in mice. Science 1995, 269, 1427–1429. [Google Scholar] [CrossRef]
- Gu, H.; Marth, J.D.; Orban, P.C.; Mossmann, H.; Rajewsky, K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 1994, 265, 103–106. [Google Scholar] [CrossRef]
- Abremski, K.; Hoess, R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J. Biol. Chem. 1984, 259, 1509–1514. [Google Scholar]
- Cox, M.M. The FLP protein of the yeast 2-microns plasmid: Expression of a eukaryotic genetic recombination system in Escherichia coli. Proc. Natl. Acad. Sci. USA 1983, 80, 4223–4227. [Google Scholar] [CrossRef]
- Hoess, R.H.; Ziese, M.; Sternberg, N. P1 site-specific recombination: Nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. USA 1982, 79, 3398–3402. [Google Scholar] [CrossRef]
- Mc Leod, M.; Craft, S.; Broach, J.R. Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol. Cell. Biol. 1986, 6, 3357–3367. [Google Scholar] [CrossRef]
- Branda, C.S.; Dymecki, S.M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 2004, 6, 7–28. [Google Scholar] [CrossRef]
- Metzger, D.; Clifford, J.; Chiba, H.; Chambon, P. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 1995, 92, 6991–6995. [Google Scholar] [CrossRef]
- Logie, C.; Stewart, A.F. Ligand-regulated site-specific recombination. Proc. Natl. Acad. Sci. USA 1995, 92, 5940–5944. [Google Scholar] [CrossRef]
- Fuhrmann-Benzakein, E.; Garcia-Gabay, I.; Pepper, M.S.; Vassalli, J.D.; Herrera, P.L. Inducible and irreversible control of gene expression using a single transgene. Nucleic Acids Res. 2000, 28, E99. [Google Scholar] [CrossRef]
- Zhang, Y.; Riesterer, C.; Ayrall, A.M.; Sablitzky, F.; Littlewood, T.D.; Reth, M. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 1996, 24, 543–548. [Google Scholar] [CrossRef]
- Vallier, L.; Mancip, J.; Markossian, S.; Lukaszewicz, A.; Dehay, C.; Metzger, D.; Chambon, P.; Samarut, J.; Savatier, P. An efficient system for conditional gene expression in embryonic stem cells and in their in vitro and in vivo differentiated derivatives. Proc. Natl. Acad. Sci. USA 2001, 98, 2467–2472. [Google Scholar] [CrossRef]
- Danielian, P.S.; Muccino, D.; Rowitch, D.H.; Michael, S.K.; McMahon, A.P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 1998, 8, 1323–1326. [Google Scholar] [CrossRef]
- Feil, R.; Wagner, J.; Metzger, D.; Chambon, P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 1997, 237, 752–757. [Google Scholar] [CrossRef]
- Kumar, D.; An, C.I.; Yokobayashi, Y. Conditional RNA interference mediated by allosteric ribozyme. J. Am. Chem. Soc. 2009, 131, 13906–13907. [Google Scholar] [CrossRef]
- Winkler, W.C.; Nahvi, A.; Roth, A.; Collins, J.A.; Breaker, R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004, 428, 281–286. [Google Scholar] [CrossRef]
- Zhong, G.; Wang, H.; Bailey, C.C.; Gao, G.; Farzan, M. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. Elife 2016, 5. [Google Scholar] [CrossRef]
- Beilstein, K.; Wittmann, A.; Grez, M.; Suess, B. Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. ACS Synth. Biol. 2015, 4, 526–534. [Google Scholar] [CrossRef]
- Nomura, Y.; Kumar, D.; Yokobayashi, Y. Synthetic mammalian riboswitches based on guanine aptazyme. Chem. Commun. 2012, 48, 7215–7217. [Google Scholar] [CrossRef]
- Yokobayashi, Y. Aptamer-based and aptazyme-based riboswitches in mammalian cells. Curr. Opin. Chem. Biol. 2019, 52, 72–78. [Google Scholar] [CrossRef]
- Qin, J.Y.; Zhang, L.; Clift, K.L.; Hulur, I.; Xiang, A.P.; Ren, B.Z.; Lahn, B.T. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 2010, 5, e10611. [Google Scholar] [CrossRef]
- Natesan, S.; Molinari, E.; Rivera, V.M.; Rickles, R.J.; Gilman, M. A general strategy to enhance the potency of chimeric transcriptional activators. Proc. Natl. Acad. Sci. USA 1999, 96, 13898–13903. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.X.; Schimke, R.T. BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells. Cancer. Res. 1995, 55, 4922–4928. [Google Scholar]
- Weber, W.; Fussenegger, M. Inducible gene expression in mammalian cells and mice. Methods Mol. Biol. 2004, 267, 451–466. [Google Scholar]
- Hartenbach, S.; Daoud-El Baba, M.; Weber, W.; Fussenegger, M. An engineered L-arginine sensor of Chlamydia pneumoniae enables arginine-adjustable transcription control in mammalian cells and mice. Nucleic Acids Res. 2007, 35, e136. [Google Scholar] [CrossRef]
- Weber, W.; Lienhart, C.; Baba, M.D.; Fussenegger, M. A biotin-triggered genetic switch in mammalian cells and mice. Metab. Eng. 2009, 11, 117–124. [Google Scholar] [CrossRef]
- Weber, W.; Schoenmakers, R.; Keller, B.; Gitzinger, M.; Grau, T.; Daoud-El Baba, M.; Sander, P.; Fussenegger, M. A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc. Natl. Acad. Sci. USA 2008, 105, 9994–9998. [Google Scholar] [CrossRef] [Green Version]
- Malphettes, L.; Weber, C.C.; El-Baba, M.D.; Schoenmakers, R.G.; Aubel, D.; Weber, W.; Fussenegger, M. A novel mammalian expression system derived from components coordinating nicotine degradation in arthrobacter nicotinovorans pAO1. Nucleic Acids Res. 2005, 33, e107. [Google Scholar] [CrossRef]
- Kemmer, C.; Gitzinger, M.; Daoud-El Baba, M.; Djonov, V.; Stelling, J.; Fussenegger, M. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol. 2010, 28, 355–360. [Google Scholar] [CrossRef]
- Weber, W.; Fux, C.; Daoud-el Baba, M.; Keller, B.; Weber, C.C.; Kramer, B.P.; Heinzen, C.; Aubel, D.; Bailey, J.E.; Fussenegger, M. Macrolide-based transgene control in mammalian cells and mice. Nat. Biotechnol. 2002, 20, 901–907. [Google Scholar] [CrossRef]
- Weber, W.; Link, N.; Fussenegger, M. A genetic redox sensor for mammalian cells. Metab. Eng. 2006, 8, 273–280. [Google Scholar] [CrossRef]
- Weber, W.; Marty, R.R.; Link, N.; Ehrbar, M.; Keller, B.; Weber, C.C.; Zisch, A.H.; Heinzen, C.; Djonov, V.; Fussenegger, M. Conditional human VEGF-mediated vascularization in chicken embryos using a novel temperature-inducible gene regulation (TIGR) system. Nucleic Acids Res. 2003, 31, e69. [Google Scholar] [CrossRef]
- Weber, W.; Schoenmakers, R.; Spielmann, M.; El-Baba, M.D.; Folcher, M.; Keller, B.; Weber, C.C.; Link, N.; van de Wetering, P.; Heinzen, C.; et al. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res. 2003, 31, e71. [Google Scholar] [CrossRef]
- Neddermann, P.; Gargioli, C.; Muraglia, E.; Sambucini, S.; Bonelli, F.; De Francesco, R.; Cortese, R. A novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR. EMBO Rep. 2003, 4, 159–165. [Google Scholar] [CrossRef]
- Gitzinger, M.; Kemmer, C.; El-Baba, M.D.; Weber, W.; Fussenegger, M. Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proc. Natl. Acad. Sci. USA 2009, 106, 10638–10643. [Google Scholar] [CrossRef] [Green Version]
- Wiederschain, D.; Wee, S.; Chen, L.; Loo, A.; Yang, G.; Huang, A.; Chen, Y.; Caponigro, G.; Yao, Y.M.; Lengauer, C.; et al. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 2009, 8, 498–504. [Google Scholar] [CrossRef]
- Szulc, J.; Wiznerowicz, M.; Sauvain, M.O.; Trono, D.; Aebischer, P. A versatile tool for conditional gene expression and knockdown. Nat. Methods 2006, 3, 109–116. [Google Scholar] [CrossRef]
- Shin, K.J.; Wall, E.A.; Zavzavadjian, J.R.; Santat, L.A.; Liu, J.; Hwang, J.I.; Rebres, R.; Roach, T.; Seaman, W.; Simon, M.I.; et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc. Natl. Acad. Sci. USA. 2006, 103, 13759–13764. [Google Scholar] [CrossRef] [Green Version]
- Stegmeier, F.; Hu, G.; Rickles, R.J.; Hannon, G.J.; Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA. 2005, 102, 13212–13217. [Google Scholar] [CrossRef] [Green Version]
- Shuen, W.H.; Kan, R.; Yu, Z.; Lung, H.L.; Lung, M.L. Novel lentiviral-inducible transgene expression systems and versatile single-plasmid reporters for in vitro and in vivo cancer biology studies. Cancer Gene Ther. 2015, 22, 207–214. [Google Scholar] [CrossRef]
- Matsuda, T.; Cepko, C.L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl. Acad. Sci. USA 2007, 104, 1027–1032. [Google Scholar] [CrossRef]
Regulator Protein | Origin | Inducer | Association or Disassociation | Reference |
---|---|---|---|---|
AlcR | A. nidulans | Acetaldehyde | Association | [95] |
ArgR | C. pneumoniae | l-Arginine | Association | [96] |
BirA | E. coli | Biotinyl-AMP | Association | [97] |
EthR | M. tuberculosis | 2-Phenylethyl butyrate | Dissociation | [98] |
HdnoR | A. nicotinovorans | 6-Hydroxy nicotine | Dissociation | [99] |
HucR | D. radiodurans | Uric acid | Dissociation | [100] |
MphR(A) | E. coli | Macrolides | Dissociation | [101] |
PIP | S. pristinaespiralis | Streptogramins | Dissociation | [26] |
Rex | S. coelicolor | NADH | Dissociation | [102] |
RheA | S. albus | Heat | Dissociation | [103] |
ScbR | S. coelicolor | SCB1 | Dissociation | [104] |
TraR | A. tumefaciens | 3-oxo-C8-HSL | Association | [105] |
TtgR | P. putida | Phloretin | Dissociation | [106] |
Inducer | Reversability | Maximum Induction | Overexpression | Knockdown or Knockout | Spatial Regulation |
---|---|---|---|---|---|
Tetracycline | Yes | 100-1000X | Yes | Yes | No |
Cumate | Yes | 100-1000X | Yes | Yes | No |
Rapamycin | Yes | 100-1000X | Yes | NT | No |
FKCsA | Yes | 100-1000X | Yes | NT | No |
ABA | Yes | 100-1000X | Yes | NT | No |
Tamoxifen | No | 30-50X | Yes | Yes | No |
Blue light | Yes | 50-100X | Yes | NT | Yes |
riboswitch | Yes | 5-9X | Yes | Yes | No |
Plasmid Name | Type of System | Purpose | Company/Addgene | Resource NO. |
---|---|---|---|---|
pTRE3G | Operon | Overexpression | Takara | 631167, 631168 |
pCMV-Tet3G | Operator | Overexpression | Takara | 631168 |
pEF1a-Tet3G | Operator | Overexpression | Takara | 631167 |
pLVXTRE3G | Operon & lentiviral | Overexpression | Takara | 631187, 631363 |
pcDNA™4/TO | Operon | Overexpression | Thermo Fisher | K1020-01 |
pcDNA™5/TO | Operon | Overexpression | Thermo Fisher | V103320 |
pcDNA6/TR | Operator | Overexpression | Thermo Fisher | V103320 |
pEGSH | Fly heat shock promoter driven casssette | Overexpression | Agilent | 217461 |
pERV3 | Fly ecydysone receptor | Overexpression | Agilent | 217460 |
pF12A RM Flexi® | Operon | Overexpression | Promega | C9431 |
pF12K RM Flexi® | Operon | Overexpression | Promega | C9441 |
pCDH-CuO-MCS-IRES-GFP-EF1α-CymR-T2A-Puro | Operon & lentiviral | Overexpression | SBI | QM812B-1 |
PB-Cuo-shMCS-IRES-GFP-EF1α-CymR-Puro | Operon | Knockdown | SBI | PBQMSH812A-1 |
Tet-pLKO-neo/puro | Operon | Knockdown | Addgene | 21915, 21916 [107] |
pCW57.1 | Operon | Overexpression | Addgene | 41393 |
pLVUT-tTR-KRAB | Operator & lentiviral | Knockdown | Addgene | 11651 [108] |
pSLIK-neo | Operon & lentiviral | Knockdown | Addgene | 25735 [109] |
pPRIME-TET-GFP-FF3 | Operon & lentiviral | Knockdown | Addgene | 11662 [110] |
pTet-IRES-EGFP | Operon | Overexpression | Addgene | 64238 [111] |
pCAG-CreERT2 | Recombinase | Overexpression | Addgene | 14797 [112] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kallunki, T.; Barisic, M.; Jäättelä, M.; Liu, B. How to Choose the Right Inducible Gene Expression System for Mammalian Studies? Cells 2019, 8, 796. https://doi.org/10.3390/cells8080796
Kallunki T, Barisic M, Jäättelä M, Liu B. How to Choose the Right Inducible Gene Expression System for Mammalian Studies? Cells. 2019; 8(8):796. https://doi.org/10.3390/cells8080796
Chicago/Turabian StyleKallunki, Tuula, Marin Barisic, Marja Jäättelä, and Bin Liu. 2019. "How to Choose the Right Inducible Gene Expression System for Mammalian Studies?" Cells 8, no. 8: 796. https://doi.org/10.3390/cells8080796
APA StyleKallunki, T., Barisic, M., Jäättelä, M., & Liu, B. (2019). How to Choose the Right Inducible Gene Expression System for Mammalian Studies? Cells, 8(8), 796. https://doi.org/10.3390/cells8080796