The Role of Cardio-Renal Inflammation in Deciding the Fate of the Arteriovenous Fistula in Haemodialysis Therapy
<p>Suitable vascular remodelling determines initial AVF maturation and long-term patency. Following AVF creation, the vessel must thicken and remodel outwardly, increasing the internal diameter to allow for appropriate haemodialysis. Failure immediately following surgery involves no vascular remodelling or increases in diameter. Alternatively, failure over a longer term typically involves venous stenosis secondary to neointimal hyperplasia. Made with BioRender.</p> "> Figure 2
<p>Uncontrolled runaway inflammation underpins and drives the failure of the arteriovenous fistula. Inflammation in the AVF involving the endothelial layer, subsequent immune cell infiltration, and cytokine changes therein, and smooth muscle changes are shown. These are essential processes in determining the fate of the arteriovenous fistula. Reactive oxygen species (ROS). Toll-like receptors (TLRs). Tumour necrosis factor-alpha (TNF-α). Monocyte chemoattract protein-1 (MCP-1). Interleukin-6 (IL-6). Vascular cell adhesion molecule-1 (VCAM-1). Intercellular adhesion molecule-1 (ICAM-1). Made with BioRender.</p> ">
Abstract
:1. Introduction
AVF Complications and Failure Are Common in Haemodialysis
2. The Role of Inflammation in Each Cell Type in the Cascade of AVF Failure
2.1. Endothelial Cells
2.2. Immune Cell Infiltration
2.3. AVF Maturation
2.4. AVF Failure
2.5. Therapeutics
3. VSMCs
3.1. VSMC Dysfunction in AVF Inflammation and Failure
3.2. Non-Inflammation-Based Factors Controlling AVF Failure
3.3. Therapeutic Insights and Progress
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United States Renal Data System. 2023 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; United States Renal Data System: Bethesda, MD, USA, 2023. [Google Scholar]
- Levin, A.; Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, J.S.; Joshi, M.; Yan, G.; Norris, K.C.; Agodoa, L.Y.; Yuan, C.M.; Nee, R. Global Epidemiology of End-Stage Kidney Disease and Disparities in Kidney Replacement Therapy. Am. J. Nephrol. 2021, 52, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.; Culfaz-Emecen, P.; Ramon, G.; Visser, T.; Koops, G.; Jin, W.; Ulbricht, M. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. J. Membr. Sci. 2020, 598, 117761. [Google Scholar] [CrossRef]
- Lok, C.E.; Huber, T.S.; Lee, T.; Shenoy, S.; Yevzlin, A.S.; Abreo, K.; Allon, M.; Asif, A.; Astor, B.C.; Glickman, M.H.; et al. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am. J. Kidney Dis. 2020, 75, S1–S164. [Google Scholar] [CrossRef]
- Lok, C.E.; Huber, T.S.; Orchanian-Cheff, A.; Rajan, D.K. Arteriovenous Access for Hemodialysis. JAMA 2024, 331, 1307. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.A.; Ashraff, S.; Santos, D.; Carline, T.; Siddiqui, M.A.; Ashraff, S.; Santos, D.; Carline, T. An overview of AVF maturation and endothelial dysfunction in an advanced renal failure. Ren. Replace. Ther. 2017, 3, 42. [Google Scholar] [CrossRef]
- Sabiu, G.; Gallieni, M. Pathophysiology of Arteriovenous Fistula Maturation and Nonmaturation. Clin. J. Am. Soc. Nephrol. CJASN 2023, 18, 8–10. [Google Scholar] [CrossRef]
- Tepe, G.; Laird, J.; Schneider, P.; Brodmann, M.; Krishnan, P.; Micari, A.; Metzger, C.; Scheinert, D.; Zeller, T.; Cohen, D.J.; et al. Drug-Coated Balloon Versus Standard Percutaneous Transluminal Angioplasty for the Treatment of Superficial Femoral and Popliteal Peripheral Artery Disease. Circulation 2015, 131, 495–502. [Google Scholar] [CrossRef]
- Ratnam, L.; Karunanithy, N.; Mailli, L.; Diamantopoulos, A.; Morgan, R.A. Dialysis Access Maintenance: Plain Balloon Angioplasty. Cardiovasc. Interv. Radiol. 2023, 46, 1136–1143. [Google Scholar] [CrossRef]
- Al-Balas, A.; Lee, T.; Young, C.J.; Allon, M. Choice of a second vascular access in hemodialysis patients whose initial arteriovenous fistula failed to mature. J. Vasc. Surg. 2018, 68, 1858–1864.e1. [Google Scholar] [CrossRef]
- Viecelli, A.; Mori, T.; Roy-Chaudhury, P.; Polkinghorne, K.R.; Hawley, C.M.; Johnson, D.W.; Pascoe, E.M.; Irish, A. The pathogenesis of hemodialysis vascular access failure and systemic therapies for its prevention: Optimism unfulfilled. Semin. Dial. 2018, 31, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, X.; Liang, L.; Xu, D. Regulation of vascular remodeling by immune microenvironment after the establishment of autologous arteriovenous fistula in ESRD patients. Front. Immunol. 2024, 15, 1365422. [Google Scholar] [CrossRef] [PubMed]
- Soliveri, L.; Bozzetto, M.; Brambilla, P.; Caroli, A.; Remuzzi, A. Hemodynamics in AVF over time: A protective role of vascular remodeling toward flow stabilization. Int. J. Artif. Organs 2023, 46, 547–554. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shiu, Y.-T.; Pike, D.B.; Roy-Chaudhury, P.; Cheung, A.K.; Berceli, S.A. Comparison of hemodialysis arteriovenous fistula blood flow rates measured by Doppler ultrasound and phase-contrast magnetic resonance imaging. J. Vasc. Surg. 2018, 68, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Zonnebeld, N.; Huberts, W.; van Loon, M.M.; Delhaas, T.; Tordoir, J.H. Natural Vascular Remodelling After Arteriovenous Fistula Creation in Dialysis Patients With and Without Previous Ipsilateral Vascular Access. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 277–287. [Google Scholar] [CrossRef]
- Browne, L.D.; Bashar, K.; Griffin, P.; Kavanagh, E.G.; Walsh, S.R.; Walsh, M.T. The Role of Shear Stress in Arteriovenous Fistula Maturation and Failure: A Systematic Review. PLoS ONE 2015, 10, e0145795. [Google Scholar] [CrossRef]
- Tronc, F.O.; Mallat, Z.; Lehoux, S.P.; Wassef, M.; Esposito, B.; Tedgui, A. Role of Matrix Metalloproteinases in Blood Flow–Induced Arterial Enlargement. Arterioscler. Thromb. Vasc. Biol. 2000, 20, e120–e126. [Google Scholar] [CrossRef]
- Shemesh, D.; Goldin, I.; Berelowitz, D.; Zaghal, I.; Zigelman, C.; Olsha, O. Blood Flow Volume Changes in the Maturing Arteriovenous Access for Hemodialysis. Ultrasound Med. Biol. 2007, 33, 727–733. [Google Scholar] [CrossRef]
- Malovrh, M. Postoperative Assessment of Vascular Access. J. Vasc. Access 2014, 15, S10–S14. [Google Scholar] [CrossRef]
- Rothuizen, T.C.; Wong, C.; Quax, P.H.A.; van Zonneveld, A.J.; Rabelink, T.J.; Rotmans, J.I. Arteriovenous access failure: More than just intimal hyperplasia? Nephrol. Dial. Transplant. 2013, 28, 1085–1092. [Google Scholar] [CrossRef]
- Roy-Chaudhury, P.; Kruska, L. Future directions for vascular access for hemodialysis. Semin. Dial. 2015, 28, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Kilari, S.; Yang, B.; Sharma, A.; Wu, C.-C.; Vazquez-Padron, R.I.; Broadwater, J. Anti Human CX3CR1 VHH Molecule Attenuates Venous Neointimal Hyperplasia of Arteriovenous Fistula in Mouse Model. J. Am. Soc. Nephrol. JASN 2021, 32, 1630–1648. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Kilari, S.; Cai, C.; Misra, S. Bindarit encapsulated nanoparticles prevent venous neointimal hyperplasia and restenosis in a murine angioplasty model. Transl. Res. 2022, 248, 68–86. [Google Scholar] [CrossRef] [PubMed]
- Samra, G.; Rai, V.; Agrawal, D.K. Innate and adaptive immune cells associate with arteriovenous fistula maturation and failure. Can. J. Physiol. Pharmacol. 2022, 100, 215. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Lee, H.; Yang, T.; Lee, S.-Y.; Kim, Y.G.; Kim, J.S.; Ahn, S.; Kim, K.; Kang, S.H.; Lee, M.-J.; et al. Plasma Interleukin-6 Level Predicts the Risk of Arteriovenous Fistula Dysfunction in Patients Undergoing Maintenance Hemodialysis. J. Pers. Med. 2023, 13, 151. [Google Scholar] [CrossRef]
- Stirbu, O.; Gadalean, F.; Pitea, I.V.; Ciobanu, G.; Schiller, A.; Grosu, I.; Nes, A.; Bratescu, R.; Olariu, N.; Timar, B.; et al. C-reactive protein as a prognostic risk factor for loss of arteriovenous fistula patency in hemodialyzed patients. J. Vasc. Surg. 2019, 70, 208–215. [Google Scholar] [CrossRef]
- Lu, P.; Wang, T.; Wan, Z.; Wang, M.; Zhou, Y.; He, Z.; Liao, S.; Liu, H.; Shu, C. Immune-Related Genes and Immune Cell Infiltration Characterize the Maturation Status of Arteriovenous Fistulas: An Integrative Bioinformatics Study and Experimental Validation Based on Transcriptome Sequencing. J. Inflamm. Res. 2024, 17, 137–152. [Google Scholar] [CrossRef]
- Wongmahisorn, Y. Role of neutrophil-to-lymphocyte ratio as a prognostic indicator for hemodialysis arteriovenous fistula failure. J. Vasc. Access 2019, 20, 608–614. [Google Scholar] [CrossRef]
- Kaygin, M.A.; Halici, U.; Aydin, A.; Dag, O.; Binici, D.N.; Limandal, H.K.; Arslan, Ü.; Kiymaz, A.; Kahraman, N.; Calik, E.S.; et al. The relationship between arteriovenous fistula success and inflammation. Ren. Fail. 2013, 35, 1085–1088. [Google Scholar] [CrossRef]
- Kaller, R.; Arbănași, E.M.; Mureșan, A.V.; Voidăzan, S.; Arbănași, E.M.; Horváth, E.; Suciu, B.A.; Hosu, I.; Halmaciu, I.; Brinzaniuc, K.; et al. The Predictive Value of Systemic Inflammatory Markers, the Prognostic Nutritional Index, and Measured Vessels’ Diameters in Arteriovenous Fistula Maturation Failure. Life 2022, 12, 1447. [Google Scholar] [CrossRef]
- Yang, B.; Kilari, S.; Brahmbhatt, A.; McCall, D.L.; Torres, E.N.; Leof, E.B.; Mukhopadhyay, D.; Misra, S. CorMatrix Wrapped Around the Adventitia of the Arteriovenous Fistula Outflow Vein Attenuates Venous Neointimal Hyperplasia. Sci. Rep. 2017, 7, 14298. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Cai, C.; Kilari, S.; Zhao, C.; Simeon, M.L.; Takahashi, E.; Edelman, E.R.; Kong, H.J.; Macedo, T.; Singh, R.J.; et al. 1α,25-Dihydroxyvitamin D3 Encapsulated in Nanoparticles Prevents Venous Neointimal Hyperplasia and Stenosis in Porcine Arteriovenous Fistulas. J. Am. Soc. Nephrol. JASN 2021, 32, 866–885. [Google Scholar] [CrossRef]
- Wong, C.-Y.; Bezhaeva, T.; Rothuizen, T.C.; Metselaar, J.M.; Vries, M.R.d.; Verbeek, F.P.R.; Vahrmeijer, A.L.; Wezel, A.; Zonneveld, A.-J.v.; Rabelink, T.J.; et al. Liposomal prednisolone inhibits vascular inflammation and enhances venous outward remodeling in a murine arteriovenous fistula model. Sci. Rep. 2016, 6, 30439. [Google Scholar] [CrossRef]
- Kiwan, G.; Gonzalez, L.; Langford, J.; Yatsula, B.; Dardik, A. Inhibition of T-Cells by Cyclosporine A Reduces Macrophage Accumulation to Regulate Venous Adaptive Remodeling and Increase Arteriovenous Fistula Maturation. Arterioscler. Thromb. Vasc. Biol. 2021, 41, E160–E174. [Google Scholar] [CrossRef]
- Wang, Y.; Krishnamoorthy, M.; Banerjee, R.; Zhang, J.; Rudich, S.; Holland, C.; Arend, L.; Roy-Chaudhury, P. Venous stenosis in a pig arteriovenous fistula model—Anatomy, mechanisms and cellular phenotypes. Nephrol. Dial. Transplant. 2008, 23, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Kessinger, C.W.; McCarthy, J.R.; Sosnovik, D.E.; Libby, P.; Thadhani, R.I.; Jaffer, F.A. In Vivo Nanoparticle Assessment of Pathological Endothelium Predicts the Development of Inflow Stenosis in Murine Arteriovenous Fistula. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 189–196. [Google Scholar] [CrossRef]
- Owens, C.; Wake, N.; Kim, J.; Hentschel, D.; Conte, M.; Schanzer, A. Endothelial function predicts positive arterial-venous fistula remodeling in subjects with stage IV and V chronic kidney disease. J. Vasc. Access 2010, 11, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Korsheed, S.; Crowley, L.; Fluck, R.; McIntyre, C. Creation of an arteriovenous fistula is associated with significant acute local and systemic changes in microvascular function. Nephron Clin. Pract. 2013, 123, 173–179. [Google Scholar] [CrossRef]
- Chai, S.; Sanip, Z.; Rasool, A.; Shokri, A.; Halim, A.; Saad, A.; Sulaiman, W. Systemic microvascular endothelial function with arteriovenous fistula creation in chronic kidney disease. J. Res. Med. Sci. 2022, 27, 46. [Google Scholar] [CrossRef]
- Werner, N.; Junk, S.; Laufs, U.; Link, A.; Walenta, K.; Bohm, M.; Nickenig, G. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ. Res. 2003, 93, 17–24. [Google Scholar] [CrossRef]
- Lee, T.; Haq, N.U. New Developments in Our Understanding of Neointimal Hyperplasia. Adv. Chronic Kidney Dis. 2015, 22, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.N.; Chacko, B.K.; Teng, X.; Brott, B.C.; Allon, M.; Kelpke, S.S.; Thompson, J.A.; Patel, R.P.; Anayiotos, A.S. Effects of venous needle turbulence during ex vivo hemodialysis on endothelial morphology and nitric oxide formation. J. Biomech. 2007, 40, 2158–2166. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, S.; Northrup, H.; Chang, J.; Somarathna, M.; Isayeva Waldrop, T.; Lee, T.; Shiu, Y.T. Effects of endothelial nitric oxide synthase on mouse arteriovenous fistula hemodynamics. Sci. Rep. 2023, 13, 22786. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-C.; Liu, Y.-T.; Zhang, H.; Xu, Y.; Liu, J.; Chen, H.; Song, N.; Qin, D.-L.; Yang, S. VDR alleviates endothelial cell injury in arteriovenous fistula through inhibition of P66Shc-mediated mitochondrial ROS. Sci. Rep. 2023, 13, 22786. [Google Scholar] [CrossRef]
- Talmor-Barkan, Y.; Bernheim, J.; Green, J.; Benchertrit, S.; Rasdhid, G. Calcitriol counteracts endothelial cell pro-inflammatory processes in a chronic kidney disease-like environment. J. Steroid Biochem. Mol. Biol. 2011, 124, 19–24. [Google Scholar] [CrossRef]
- Cuenca, M.V.; Ferrantelli, E.; Meinster, E.; Pouw, S.M.; Kovacevic, I.; Menezes, R.X.d.; Niessen, H.W.; Beelen, R.H.J.; Hordijk, P.L.; Vervloet, M.G. Vitamin D Attenuates Endothelial Dysfunction in Uremic Rats and Maintains Human Endothelial Stability. J. Am. Heart Assoc. 2018, 7, e008776. [Google Scholar] [CrossRef] [PubMed]
- Brahmbhatt, A.; Nieves-Torres, E.; Yang, B.; Edwards, W.D.; Chaudhury, P.R.; Lee, M.K.; Kong, H.; Mukhopadhyay, D.; Kumar, R.; Misra, S. The role of Iex-1 in the pathogenesis of venous neointimal hyperplasia associated with hemodialysis arteriovenous fistula. PLoS ONE 2014, 9, e102542. [Google Scholar] [CrossRef]
- Cai, C.; Kilari, S.; Zhao, C.; Singh, A.K.; Simeon, M.L.; Misra, A.; Li, Y.; Takahashi, E.; Kumar, R.; Misra, S. Adventitial delivery of nanoparticles encapsulated with 1α, 25-dihydroxyvitamin D3 attenuates restenosis in a murine angioplasty model. Sci. Rep. 2021, 11, 4772. [Google Scholar] [CrossRef] [PubMed]
- Valdivielso, J.M.; Rodríguez-Puyol, D.; Pascual, J.; Barrios, C.; Bermúdez-López, M.; Sánchez-Niño, M.D.; Pérez-Fernández, M.; Ortiz, A. Atherosclerosis in Chronic Kidney Disease: More, Less, or Just Different? Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1938–1966. [Google Scholar] [CrossRef]
- Chen, P.; Qin, L.; Li, G.; Wang, Z.; Dahlman, J.; Malagon-Lopez, J.; Gujja, S.; Clifone, N.; Kauffman, K.; Sun, L.; et al. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 2019, 1, 912–926. [Google Scholar] [CrossRef]
- Kluza, E.; Beldman, T.; Shami, A.; Scholl, E.; Malinova, T.; Grootemaat, A.; van der Wel, N.; Gonçalves, I.; Huveneers, S.; Mulder, W.J.M.; et al. Diverse ultrastructural landscape of atherosclerotic endothelium. Atherosclerosis 2021, 339, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.; Vos, W.G.; Bosmans, L.A.; van Os, B.W.; den Toom, M.; Hoeksema-Hackmann, S.; Moen-de Wit, D.; Gijbels, M.; Beckers, L.; Grefhorst, A.; et al. Peritoneal Dialysis Aggravates and Accelerates Atherosclerosis in Uremic ApoE-/- Mice. J. Am. Heart Assoc. 2024, 13, e034066. [Google Scholar] [CrossRef] [PubMed]
- Dzobo, K.E.; Cupido, A.; Mol, B.; Stiekema, L.; Versloot, M.; Winkelmeijer, M.; Peter, J.; Pennekamp, A.; Havik, S.; Vaz, F.; et al. Diacylglycerols and Lysophosphatidic Acid, Enriched on Lipoprotein(a), Contribute to Monocyte Inflammation. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 720–740. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Smith, R.; Rubin, E.J.; Glassberg, M.K.; Farkouh, M.E.; Rosenson, R.S. Inflammation unites diverse acute and chronic diseases. Eur. J. Clin. Investig. 2024, 24, e14280. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Kraus, M.A.; Kalra, P.A.; Hunter, J.; Menoyo, J.; Stankus, N. The prevalence of vascular calcification in patients with end-stage renal disease on hemodialysis: A cross-sectional observational study. Ther. Adv. Chronic Dis. 2015, 6, 84–96. [Google Scholar] [CrossRef]
- Toussaint, N.D.; Lau, K.K.; Polkinghorne, K.R.; Kerr, P.G. Measurement of vascular calcification using CT fistulograms. Nephrol. Dial. Transplant. 2007, 22, 484–490. [Google Scholar] [CrossRef]
- Feenstra, L.; Kutikhin, A.G.; Shishkova, D.K.; Buikema, H.; Zeper, L.W.; Bourgonje, A.R.; Krenning, G.; Hillebrands, J.-L. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 443–455. [Google Scholar] [CrossRef]
- Shishkova, D.; Lobov, A.; Repkin, E.; Markova, V.; Markova, Y.; Sinitskaya, A.; Sinitsky, M.; Kondratiev, E.; Torgunakova, E.; Kutikhin, A.; et al. Calciprotein Particles Induce Cellular Compartment-Specific Proteome Alterations in Human Arterial Endothelial Cells. J. Cardiovasc. Dev. Dis. 2023, 11, 5. [Google Scholar] [CrossRef]
- Lee, J.Y.; Ok, K.Y. Pre-existing arterial pathologic changes affecting arteriovenous fistula patency and cardiovascular mortality in hemodialysis patients. Korean J. Intern. Med. 2017, 32, 790–797. [Google Scholar] [CrossRef]
- MacRae, J.; Ahmed, S.; Hemmelgam, B.; Sun, Y.; Martin, B.; Roifman, I.; Anderson, T. Role of vascular function in predicting arteriovenous fistula outcomes: An observational pilot study. Can. J. Kidney Health Dis. 2015, 2, 55. [Google Scholar] [CrossRef] [PubMed]
- Erdem, Y.; Haznedaroglu, I.; Celik, I.; Yalcin, A.; Yasavul, U.; Turgan, C.; Caglar, S. Coagulation, fibrinolysis and fibrinolysis inhibitors in haemodialysis patients: Contribution of arteriovenous fistula. Nephrol. Dial. Transpl. 1996, 11, 1299–1305. [Google Scholar] [CrossRef]
- Harlacher, E.; Wollenhaupt, J.; Baaten, C.; Noels, H. Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 531. [Google Scholar] [CrossRef]
- Cardinal, H.; Raymond, M.; Hebert, M.; Madore, F. Uraemic plasma decreases the expression of ABCA1, ABCG1 and cell-cycle genes in human coronary arterial endothelial cells. Nephrol. Dial. Transpl. 2007, 22, 409–416. [Google Scholar] [CrossRef]
- Juni, R.P.; Al-Shama, R.; Kuster, D.W.D.; van der Velden, J.; Hamer, H.M.; Vervloet, M.G.; Eringa, E.C.; Koolwijk, P.; van Hinsbergh, V.W.M. Empagliflozin restores chronic kidney disease-induced impairment of endothelial regulation of cardiomyocyte relaxation and contraction. Kidney Int. 2021, 99, 1088–1101. [Google Scholar] [CrossRef] [PubMed]
- Juni, R.P.; Kuster, D.W.D.; Goebel, M.; Helmes, M.; Musters, R.J.P.; van der Velden, J.; Koolwijk, P.; Paulus, W.J.; van Hinsbergh, V.W.M. Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin. JACC Basic Transl. Sci. 2019, 4, 575–591. [Google Scholar] [CrossRef]
- Tian, D.; Jin, X.; Zeng, X.; Wang, Y. Notch Signaling in Endothelial Cells: Is It the Therapeutic Target for Vascular Neointimal Hyperplasia? Int. J. Mol. Sci. 2017, 18, 1615. [Google Scholar] [CrossRef]
- Owens, C.; Gasper, W.J.; Rahman, A.S.; Conte, M.S. Vein graft failure. J. Vasc. Surg. 2015, 61, 203–216. [Google Scholar] [CrossRef]
- Sharony, R.; Pintucci, G.; Saunders, P.; Grossi, E.; Baumann, F.; Galloway, A.; Mignatti, P. Matrix metalloproteinase expression in vein grafts: Role of inflammatory mediators and extracellular signal-regulated kinases-1 and -2. Am. J. Physiol.-Heart Circ. Physiol. 2006, 290, 1651–1659. [Google Scholar] [CrossRef]
- Kuwahara, G.; Hashimoto, T.; Tsuneki, M.; Yamamoto, K.; Assi, R.; Foster, T.R.; Hanisch, J.J.; Bai, H.; Hu, H.; Protack, C.D.; et al. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1147–1156. [Google Scholar] [CrossRef]
- Matsubara, Y.; Kiwan, G.; Fereydooni, A.; Langford, J.; Dardik, A. Distinct subsets of T cells and macrophages impact venous remodeling during arteriovenous fistula maturation. JVS Vasc. Sci. 2020, 1, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zhao, X.; Tan, F.; Cao, X.; Guo, S.; Li, X.; Huang, Z.; Diabakte, K.; Wang, L.; Liu, M.; et al. Early modulation of macrophage ROS-PPARγ-NF-κB signalling by sonodynamic therapy attenuates neointimal hyperplasia in rabbits. Sci. Rep. 2020, 10, 11638. [Google Scholar] [CrossRef] [PubMed]
- Ratti, S.; Mauro, R.; Rocchi, C.; Mongiorgi, S.; Ramazzotti, G.; Gargiulo, M.; Manzoli, L.; Cocco, L.; Fiume, R. Roles of PI3K/AKT/mTOR Axis in Arteriovenous Fistula. Biomolecules 2022, 12, 350. [Google Scholar] [CrossRef]
- Misra, S.; Doherty, M.G.; Woodrum, D.; Homburger, J.; Mandrekar, J.N.; Elkouri, S.; Sabater, E.A.; Bjarnason, H.; Fu, A.A.; Glockner, J.F.; et al. Adventitial remodeling with increased matrix metalloproteinase-2 activity in a porcine arteriovenous polytetrafluoroethylene grafts. Kidney Int. 2005, 68, 2890–2900. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Janardhanan, R.; Vohra, P.; Greene, E.L.; Bhattacharya, S.; Withers, S.; Roy, B.; Torres, E.C.N.; Mandrekar, J.; Leof, E.B.; et al. Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation. Kidney Int. 2014, 85, 289–306. [Google Scholar] [CrossRef]
- Piera-Velazquez, S.; Li, Z.; Jimenez, S. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am. J. Pathol. 2011, 179, 1074–1080. [Google Scholar] [CrossRef]
- Samra, G.; Rai, V.; Agrawal, D.K. Heterogeneous Population of Immune cells Associated with Early Thrombosis in Arteriovenous Fistula. J. Surg. Res. 2022, 5, 423–434. [Google Scholar] [CrossRef]
- Brahmbhatt, A.; Remuzzi, A.; Franzoni, M.; Misra, S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 2016, 89, 303–316. [Google Scholar] [CrossRef]
- Janardhanan, R.; Yang, B.; Vohra, P.; Roy, B.; Withers, S.; Bhattacharya, S.; Mandrekar, J.; Kong, H.; Leof, E.B.; Mukhopadhyay, D.; et al. Simvastatin reduces venous stenosis formation in a murine hemodialysis vascular access model. Kidney Int. 2013, 84, 338–352. [Google Scholar] [CrossRef]
- Zhao, C.; Zuckerman, S.T.; Cai, C.; Kilari, S.; Singh, A.; Simeon, M.; Recum, H.A.v.; Korley, J.N.; Misra, S. Periadventitial Delivery of Simvastatin-Loaded Microparticles Attenuate Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. J. Am. Heart Assoc. 2020, 9, e018418. [Google Scholar] [CrossRef]
- Cui, J.; Jhajj, H.; Kessinger, C.; Jaffer, F. Atorvastatin decreases venous outflow inflammation and prolonged AVF patency in a murine arteriovenous fistula model. J. Vasc. Interv. Radiol. 2017, 28, 147. [Google Scholar] [CrossRef]
- Juncos, J.P.; Grande, J.P.; Kang, L.; Ackerman, A.W.; Croatt, A.J.; Katusic, Z.S.; Nath, K.A. MCP-1 Contributes to Arteriovenous Fistula Failure. J. Am. Soc. Nephrol. 2011, 22, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Rai, V.; Agrawal, D.K. Transcriptomic Analysis Identifies Differentially Expressed Genes Associated with Vascular Cuffing and Chronic Inflammation Mediating Early Thrombosis in Arteriovenous Fistula. Biomedicines 2022, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Guo, Y.; Li, Y.; Zhou, S.; Lu, C.; Cai, C.; Yang, H.; Li, Y.; Wang, W. Identification and Validation of PTGS2 Gene as an Oxidative Stress-Related Biomarker for Arteriovenous Fistula Failure. Antioxidants 2024, 13, 5. [Google Scholar] [CrossRef]
- Shih, Y.; Chen, P.; Ko, T.; Huang, P.H.; Ma, H.; Tarng, D.C. MMP-9 Deletion Attenuates Arteriovenous Fistula Neointima through Reduced Perioperative Vascular Inflammation. Int. J. Mol. Sci. 2021, 22, 5448. [Google Scholar] [CrossRef]
- Boosani, C.S.; Burela, L. The Exacerbating Effects of the Tumor Necrosis Factor in Cardiovascular Stenosis: Intimal Hyperplasia. Cancers 2024, 16, 1435. [Google Scholar] [CrossRef]
- Liang, M.; Wang, Y.; Liang, A.; Mitch, W.E.; Roy-Chaudhury, P.; Han, G.; Cheng, J. Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int. 2015, 88, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Worssam, M.D.; Jørgensen, H.F. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases. Biochem. Soc. Trans. 2021, 49, 2101–2111. [Google Scholar] [CrossRef]
- Zhao, J.; Jourd’heuil, F.L.; Xue, M.; Conti, D.; Lopez-Soler, R.I.; Ginnan, R.; Asif, A.; Singer, H.A.; Jourd’heuil, D.; Long, X. Dual Function for Mature Vascular Smooth Muscle Cells During Arteriovenous Fistula Remodeling. J. Am. Heart Assoc. 2017, 6, e004891. [Google Scholar] [CrossRef]
- Tang, H.-Y.; Chen, A.-Q.; Zhang, H.; Gao, X.-F.; Kong, X.-Q.; Zhang, J.-J. Vascular Smooth Muscle Cells Phenotypic Switching in Cardiovascular Diseases. Cells 2022, 11, 4060. [Google Scholar] [CrossRef]
- Xin, Y.; Zhang, Z.; Lv, S.; Xu, S.; Liu, A.; Li, H.; Li, P.; Han, H.; Liu, Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front. Cardiovasc. Med. 2024, 11, 1400780. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; McVey, D.G.; Shen, D.; Huang, X.; Ye, S. Phenotypic Switching of Vascular Smooth Muscle Cells in Atherosclerosis. J. Am. Heart Assoc. 2023, 12, e031121. [Google Scholar] [CrossRef]
- Sorokin, V.; Vickneson, K.; Kofidis, T.; Woo, C.C.; Lin, X.Y.; Foo, R.; Shanahan, C.M. Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Front. Immunol. 2020, 11, 599415. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Y.; Cheng, A.; Xu, G.; He, F. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol.-Heart Circ. Physiol. 2020, 319, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Monroy, M.A.; Fang, J.; Li, S.; Ferrer, L.; Birkenbach, M.P.; Lee, I.J.; Wang, H.; Yang, X.-F.; Choi, E.T. Chronic kidney disease alters vascular smooth muscle cell phenotype. Front. Biosci. 2015, 20, 784–795. [Google Scholar] [CrossRef]
- Hsieh, T.-B.; Jin, J.-P. Evolution and function of calponin and transgelin. Front. Cell Dev. Biol. 2023, 11, 1206147. [Google Scholar] [CrossRef]
- Elmarasi, M.; Elmakaty, I.; Elsayed, B.; Elsayed, A.; Zein, J.A.; Boudaka, A.; Eid, A.H. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J. Cell. Physiol. 2024, 239, e31200. [Google Scholar] [CrossRef] [PubMed]
- Bezhaeva, T.; Wong, C.-Y.; Vries, M.R.d.; Veer, E.P.v.d.; Alem, C.M.A.v.; Que, I.; Lalai, R.A.; Zonneveld, A.-J.v.; Rotmans, J.I.; Quax, P.H.A. Deficiency of TLR4 homologue RP105 aggravates outward remodeling in a murine model of arteriovenous fistula failure. Sci. Rep. 2017, 7, 10269. [Google Scholar] [CrossRef]
- Rai, V.; Singh, H.; Agrawal, D.K. Targeting the Crosstalk of Immune Response and Vascular Smooth Muscle Cells Phenotype Switch for Arteriovenous Fistula Maturation. Int. J. Mol. Sci. 2022, 23, 12012. [Google Scholar] [CrossRef]
- Cai, C.; Kilari, S.; Singh, A.K.; Zhao, C.; Simeon, M.L.; Misra, A.; Li, Y.; Misra, S. Differences in Transforming Growth Factor-β1/BMP7 Signaling and Venous Fibrosis Contribute to Female Sex Differences in Arteriovenous Fistulas. J. Am. Heart Assoc. 2020, 9, e017420. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.; Yu, J.; Jiang, Y.; Xiao, H.; Yang, Y.; Liang, Y.; Liu, K.; Luo, X.; Zhang, F.; et al. Risk factors for arteriovenous fistula dysfunction in hemodialysis patients: A retrospective study. Sci. Rep. 2023, 13, 21325. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.A.; Catic, A.G. Decision-Making in Geriatric Patients with End-Stage Renal Disease: Thinking Beyond Nephrology. J. Clin. Med. 2019, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.; Li, K.C.; Brown, M.A. Survival of Older Patients With Advanced CKD Managed Without Dialysis: A Narrative Review. Kidney Med. 2022, 4, 100447. [Google Scholar] [CrossRef]
- Peterson, W.J.; Barker, J.; Allon, M. Disparities in fistula maturation persist despite preoperative vascular mapping. Clin. J. Am. Soc. Nephrol. 2008, 3, 437–441. [Google Scholar] [CrossRef]
- Saran, R.; Elder, S.J.; Goodkin, D.A.; Akiba, T.; Ethier, J.; Rayner, H.C.; Saito, A.; Young, E.W.; Gillespie, B.W.; Merion, R.M.; et al. Enhanced training in vascular access creation predicts arteriovenous fistula placement and patency in hemodialysis patients: Results from the Dialysis Outcomes and Practice Patterns Study. Ann. Surg. 2008, 247, 885–891. [Google Scholar] [CrossRef]
- Ethier, J.; Mendelssohn, D.C.; Elder, S.J.; Hasegawa, T.; Akizawa, T.; Akiba, T.; Canaud, B.J.; Pisoni, R.L. Vascular access use and outcomes: An international perspective from the Dialysis Outcomes and Practice Patterns Study. Nephrol. Dial. Transplant. 2008, 23, 3219–3226. [Google Scholar] [CrossRef]
- Wilmink, T.; Wijewardane, A.; Lee, K.; Murley, A.; Hollingworth, L.; Powers, S.; Baharani, J. Effect of ethnicity and socioeconomic status on vascular access provision and performance in an urban NHS hospital. Clin. Kidney J. 2017, 10, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Hall, Y.N. Racial and ethnic disparities in end stage renal disease: Access failure. Clin. J. Am. Soc. Nephrol. 2012, 7, 196–198. [Google Scholar] [CrossRef]
- Patibandla, B.K.; Narra, A.; Desilva, R.; Chawla, V.; Vin, Y.; Brown, R.S.; Goldfarb-Rumyantzev, A.S. Disparities in arteriovenous fistula placement in older hemodialysis patients. Hemodial. Int. 2014, 18, 118–126. [Google Scholar] [CrossRef]
- Navuluri, R.; Regalado, S. The KDOQI 2006 Vascular Access Update and Fistula First Program Synopsis. Semin. Interv. Radiol. 2009, 26, 122–124. [Google Scholar] [CrossRef]
- Lai, C.C.; Fang, H.C.; Mar, G.Y.; Liou, J.C.; Tseng, C.; Liu, C.P. Post-angioplasty Far Infrared Radiation Therapy Improves 1-Year Angioplasty-Free Hemodialysis Access Patency of Recurrent Obstructive Lesions. Eur. J. Vasc. Endovasc. Surg. 2013, 46, 726–732. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chang, C.-F.; Lai, M.-Y.; Chen, T.-W.; Lee, P.-C.; Yang, W.-C. Far-infrared therapy: A novel treatment to improve access blood flow and unassisted patency of arteriovenous fistula in hemodialysis patients. J. Am. Soc. Nephrol. 2007, 18, 985–992. [Google Scholar] [CrossRef]
- Lin, C.-C.; Yang, W.-C.; Chen, M.-C.; Liu, W.-S.; Yang, C.-Y.; Lee, P.-C. Effect of Far Infrared Therapy on Arteriovenous Fistula Maturation: An Open-Label Randomized Controlled Trial. Am. J. Kidney Dis. 2013, 62, 304–311. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chung, M.-Y.; Yang, W.-C.; Lin, S.-J.; Lee, P.-C. Length polymorphisms of heme oxygenase-1 determine the effect of far-infrared therapy on the function of arteriovenous fistula in hemodialysis patients: A novel physicogenomic study. Nephrol. Dial. Transplant. 2013, 28, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Lindhard, K.; Jensen, B.L.; Pedersen, B.L.; Meyer-Olesen, C.; Rix, M.; Hansen, H.P.; Schalkwijk, C.; Waarenburg, M.; Heaf, J.; Hansen, D. Far infrared treatment on the arteriovenous fistula induces changes in sVCAM and sICAM in patients on hemodialysis. Nephrol. Dial. Transplant. 2023, 38, 1752–1760. [Google Scholar] [CrossRef]
- Bashar, K.; Healy, D.; Browne, L.D.; Kheirelseid, E.A.H.; Walsh, M.T.; Moloney, M.C.; Burke, P.E.; Kavanagh, E.G.; Walsh, S.R. Role of Far Infra-Red Therapy in Dialysis Arterio-Venous Fistula Maturation and Survival: Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e104931. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Kessinger, C.W.; Jhajj, H.S.; Grau, M.S.; Misra, S.; Libby, P.; McCarthy, J.R.; Jaffer, F.A. Atorvastatin Reduces In Vivo Fibrin Deposition and Macrophage Accumulation, and Improves Primary Patency Duration and Maturation of Murine Arteriovenous Fistula. J. Am. Soc. Nephrol. JASN 2020, 31, 931–945. [Google Scholar] [CrossRef]
- Chang, H.-H.; Chang, Y.-K.; Lu, C.-W.; Huang, C.-T.; Chien, C.-T.; Hung, K.-Y.; Huang, K.-C.; Hsu, C.-C.; Chang, H.-H.; Chang, Y.-K.; et al. Statins Improve Long Term Patency of Arteriovenous Fistula for Hemodialysis. Sci. Rep. 2016, 6, 22197. [Google Scholar] [CrossRef] [PubMed]
- Sanada, S.; Miyasaka, Y.; Kanno, A.; Sato, K.; Sato, M.; Sugai, H.; Kitamura, H.; Sato, T.; Taguma, Y. Efficacy of statin on vascular access patency in diabetic hemodialysis patients. J. Vasc. Access 2017, 18, 295–300. [Google Scholar] [CrossRef]
- Roan, J.-N.; Lin, W.-H.; Tsai, M.-T.; Kuo, T.-H.; Lin, T.-W.; Chen, D.-Y.; Fang, S.-Y.; Hsieh, Y.-P.; Li, C.-Y.; Lam, C.-F. Rosuvastatin Failed to Improve Arteriovenous Fistula Patency for Hemodialysis in Diabetic Patients—A Randomized Clinical Trial. Acta Cardiol. Sin. 2021, 37, 18–29. [Google Scholar] [CrossRef]
- Yang, B.; Brahmbhatt, A.; Torres, E.N.; Thielen, B.; McCall, D.L.; Engel, S.; Bansal, A.; Pandey, M.K.; Dietz, A.B.; Leof, E.B.; et al. Tracking and Therapeutic Value of Human Adipose Tissue-derived Mesenchymal Stem Cell Transplantation in Reducing Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. Radiology 2016, 279, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Kilari, S.; Zhao, C.; Simeon, M.L.; Misra, A.; Li, Y.; van Wijnen, A.J.; Mukhopadhyay, D.; Misra, S. Therapeutic Effect of Adipose Derived Mesenchymal Stem Cell Transplantation in Reducing Restenosis in a Murine Angioplasty Model. J. Am. Soc. Nephrol. 2020, 31, 1781–1795. [Google Scholar] [CrossRef] [PubMed]
- Piryani, A.K.; Kilari, S.; Takahashi, E.; DeMartino, R.R.; Mandrekar, J.; Dietz, A.B.; Misra, S. Rationale and Trial Design of MesEnchymal Stem Cell Trial in Preventing Venous Stenosis of Hemodialysis Vascular Access Arteriovenous Fistula (MEST AVF Trial). Kidney360 2021, 2, 1945–1952. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kane, J.; Lemieux, A.; Baranwal, G.; Misra, S. The Role of Cardio-Renal Inflammation in Deciding the Fate of the Arteriovenous Fistula in Haemodialysis Therapy. Cells 2024, 13, 1637. https://doi.org/10.3390/cells13191637
Kane J, Lemieux A, Baranwal G, Misra S. The Role of Cardio-Renal Inflammation in Deciding the Fate of the Arteriovenous Fistula in Haemodialysis Therapy. Cells. 2024; 13(19):1637. https://doi.org/10.3390/cells13191637
Chicago/Turabian StyleKane, Jamie, Alaura Lemieux, Gaurav Baranwal, and Sanjay Misra. 2024. "The Role of Cardio-Renal Inflammation in Deciding the Fate of the Arteriovenous Fistula in Haemodialysis Therapy" Cells 13, no. 19: 1637. https://doi.org/10.3390/cells13191637
APA StyleKane, J., Lemieux, A., Baranwal, G., & Misra, S. (2024). The Role of Cardio-Renal Inflammation in Deciding the Fate of the Arteriovenous Fistula in Haemodialysis Therapy. Cells, 13(19), 1637. https://doi.org/10.3390/cells13191637