Nasal Microbiome and Its Interaction with the Host in Childhood Asthma
Abstract
:1. Introduction
2. Early Colonisation of Nasal Microbiota Predicts the Risk of Subsequent Asthma
2.1. Early-Life Nasal Microbiota in Health
2.2. Early-Life Nasal Microbiota Dysbiosis Associated with Subsequent Asthma
2.3. Early-Life Viral Respiratory Infection on Subsequent Development of Asthma
3. Impacts of Nasal Microbiota Dysbiosis on the Development and Severity of Childhood Asthma
3.1. Changes in Nasal Microbiota during Early and Middle Childhoods
3.2. Impacts of Cross-Sectional Changes in Nasal Microbiota on Asthma
3.3. Impacts of Longitudinal Alterations of Nasal Microbiota on Asthma
4. Host–Microbiome Interactions Associated with Asthma Exacerbation
4.1. Host Immune Responses in Association with Nasal Microbiota Dysbiosis in Asthma
4.2. Metabolic Alterations Induced by Nasal Microbiota Dysbiosis in Asthma
5. Environmental Factors Causing Biases to Data Distribution
6. Technical Concerns for Biases of Research Findings
7. Perspectives
7.1. Microbiota-Targeted Treatment Strategies for Asthma
7.2. Gut Microbiota Dysbiosis and Asthma
7.3. Nasal Microbiota Dysbiosis and COVID-19
8. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Dethlefsen, L.; McFall-Ngai, M.; Relman, D.A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007, 449, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Kumpitsch, C.; Koskinen, K.; Schopf, V.; Moissl-Eichinger, C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019, 17, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carboni, A.A.; Cullen, K.J.; Lavelle, W.G. The effects of zinc on the olfactory neuroepithelium and olfactory bulbs of the Sprague-Dawley rat after oral administration of zinc-gluconate trihydrate. Am. J. Rhinol. 2006, 20, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Man, W.H.; de Steenhuijsen Piters, W.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef]
- Depner, M.; Ege, M.J.; Cox, M.J.; Dwyer, S.; Walker, A.W.; Birzele, L.T.; Genuneit, J.; Horak, E.; Braun-Fahrlander, C.; Danielewicz, H.; et al. Bacterial microbiota of the upper respiratory tract and childhood asthma. J. Allergy Clin. Immunol. 2017, 139, 826–834.e13. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.J.; Nariya, S.; Harris, J.M.; Lynch, S.V.; Choy, D.F.; Arron, J.R.; Boushey, H. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J. Allergy Clin. Immunol. 2015, 136, 874–884. [Google Scholar] [CrossRef] [Green Version]
- Perez-Losada, M.; Crandall, K.A.; Freishtat, R.J. Two sampling methods yield distinct microbial signatures in the nasopharynges of asthmatic children. Microbiome 2016, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Sakwinska, O.; Bastic Schmid, V.; Berger, B.; Bruttin, A.; Keitel, K.; Lepage, M.; Moine, D.; Ngom Bru, C.; Brussow, H.; Gervaix, A. Nasopharyngeal microbiota in healthy children and pneumonia patients. J. Clin. Microbiol. 2014, 52, 1590–1594. [Google Scholar] [CrossRef] [Green Version]
- Vissing, N.H.; Chawes, B.L.K.; Bisgaard, H. Increased Risk of Pneumonia and Bronchiolitis after Bacterial Colonization of the Airways as Neonates. Am. J. Respir. Crit. Care Med. 2013, 188, 1246–1252. [Google Scholar] [CrossRef]
- Cabrera-Rubio, R.; Garcia-Nunez, M.; Seto, L.; Anto, J.M.; Moya, A.; Monso, E.; Mira, A. Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J. Clin. Microbiol. 2012, 50, 3562–3568. [Google Scholar] [CrossRef]
- Pragman, A.A.; Kim, H.B.; Reilly, C.S.; Wendt, C.; Isaacson, R.E. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 2012, 7, e47305. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.R.; Griffin, M.R.; Patterson, B.L.; Mace, R.L.; Wyatt, D.; Zhu, Y.W.; Talbot, H.K. Risk Factors for Outpatient Use of Antibiotics in Children with Acute Respiratory Illnesses. South. Med. J. 2017, 110, 172–180. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, R.; O’Doherty, J.; O’Regan, A.; Dunne, C. Antibiotic use for acute respiratory tract infections (ARTI) in primary care; what factors affect prescribing and why is it important? A narrative review. Ir. J. Med. Sci. 2018, 187, 969–986. [Google Scholar] [CrossRef] [Green Version]
- Ball, T.M.; Holberg, C.J.; Aldous, M.B.; Martinez, F.D.; Wright, A.L. Influence of attendance at day care on the common cold from birth through 13 years of age. Arch. Pediatr. Adolesc. Med. 2002, 156, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Serebrisky, D.; Wiznia, A. Pediatric Asthma: A Global Epidemic. Ann. Glob. Health 2019, 85, 6. [Google Scholar] [CrossRef] [Green Version]
- Pillai, R.A.; Calhoun, W.J. Introduction to asthma and phenotyping. Adv. Exp. Med. Biol. 2014, 795, 5–15. [Google Scholar] [CrossRef]
- Morales, E.; Duffy, D. Genetics and Gene-Environment Interactions in Childhood and Adult Onset Asthma. Front. Pediatr. 2019, 7, 499. [Google Scholar] [CrossRef] [Green Version]
- Edwards, M.R.; Bartlett, N.W.; Hussell, T.; Openshaw, P.; Johnston, S.L. The microbiology of asthma. Nat. Rev. Microbiol. 2012, 10, 459–471. [Google Scholar] [CrossRef]
- Zipperer, A.; Konnerth, M.C.; Laux, C.; Berscheid, A.; Janek, D.; Weidenmaier, C.; Burian, M.; Schilling, N.A.; Slavetinsky, C.; Marschal, M.; et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 2016, 535, 511–516. [Google Scholar] [CrossRef]
- Laufer, A.S.; Metlay, J.P.; Gent, J.F.; Fennie, K.P.; Kong, Y.; Pettigrew, M.M. Microbial Communities of the Upper Respiratory Tract and Otitis Media in Children. mBio 2011, 2, e00245-10. [Google Scholar] [CrossRef]
- Price, L.B.; Hungate, B.A.; Koch, B.J.; Davis, G.S.; Liu, C.M. Colonizing opportunistic pathogens (COPs): The beasts in all of us. PLoS Path. 2017, 13, e1006369. [Google Scholar] [CrossRef] [Green Version]
- Rogers, G.B. The nasopharyngeal microbiome and LRTIs in infants. Lancet Respir. Med. 2019, 7, 369–371. [Google Scholar] [CrossRef]
- Santacroce, L.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Luperto, P.; De Nitto, E.; Topi, S. The Human Respiratory System and its Microbiome at a Glimpse. Biology 2020, 9, 318. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hufnagl, K.; Pali-Scholl, I.; Roth-Walter, F.; Jensen-Jarolim, E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 2020, 42, 75–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mika, M.; Mack, I.; Korten, I.; Qi, W.; Aebi, S.; Frey, U.; Latzin, P.; Hilty, M. Dynamics of the nasal microbiota in infancy: A prospective cohort study. J. Allergy Clin. Immunol. 2015, 135, 905–912.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shilts, M.H.; Rosas-Salazar, C.; Tovchigrechko, A.; Larkin, E.K.; Torralba, M.; Akopov, A.; Halpin, R.; Peebles, R.S.; Moore, M.L.; Anderson, L.J.; et al. Minimally Invasive Sampling Method Identifies Differences in Taxonomic Richness of Nasal Microbiomes in Young Infants Associated with Mode of Delivery. Microb. Ecol. 2016, 71, 233–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ta, L.D.H.; Yap, G.C.; Tay, C.J.X.; Lim, A.S.M.; Huang, C.H.; Chu, C.W.; De Sessions, P.F.; Shek, L.P.; Goh, A.; Van Bever, H.P.S.; et al. Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing. J. Allergy Clin. Immunol. 2018, 142, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, S.; Shen, N.; Wu, H.C.; Clemente, J.C. The microbiome in early life: Implications for health outcomes. Nat. Med. 2016, 22, 713–722. [Google Scholar] [CrossRef] [Green Version]
- von Linstow, M.L.; Schonning, K.; Hoegh, A.M.; Sevelsted, A.; Vissing, N.H.; Bisgaard, H. Neonatal airway colonization is associated with troublesome lung symptoms in infants. Am. J. Respir. Crit. Care Med. 2013, 188, 1041–1042. [Google Scholar] [CrossRef]
- Dick, S.; Turner, S. The Airway Microbiome and Childhood Asthma—What Is the Link? Acta Med. Acad. 2020, 49, 156–163. [Google Scholar] [CrossRef]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Bharathi, M.; Chaiyasut, C. Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging-A Review. Microorganisms 2022, 10, 1405. [Google Scholar] [CrossRef]
- Teo, S.M.; Mok, D.; Pham, K.; Kusel, M.; Serralha, M.; Troy, N.; Holt, B.J.; Hales, B.J.; Walker, M.L.; Hollams, E.; et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015, 17, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Bisgaard, H.; Hermansen, M.N.; Buchvald, F.; Loland, L.; Halkjaer, L.B.; Bonnelykke, K.; Brasholt, M.; Heltberg, A.; Vissing, N.H.; Thorsen, S.V.; et al. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 2007, 357, 1487–1495. [Google Scholar] [CrossRef]
- Toivonen, L.; Karppinen, S.; Schuez-Havupalo, L.; Waris, M.; He, Q.; Hoffman, K.L.; Petrosino, J.F.; Dumas, O.; Camargo, C.A., Jr.; Hasegawa, K.; et al. Longitudinal Changes in Early Nasal Microbiota and the Risk of Childhood Asthma. Pediatrics 2020, 146, e20200421. [Google Scholar] [CrossRef]
- Tang, H.H.F.; Lang, A.; Teo, S.M.; Judd, L.M.; Gangnon, R.; Evans, M.D.; Lee, K.E.; Vrtis, R.; Holt, P.G.; Lemanske, R.F., Jr.; et al. Developmental patterns in the nasopharyngeal microbiome during infancy are associated with asthma risk. J. Allergy Clin. Immunol. 2021, 147, 1683–1691. [Google Scholar] [CrossRef]
- Feldman, A.S.; He, Y.; Moore, M.L.; Hershenson, M.B.; Hartert, T.V. Toward Primary Prevention of Asthma Reviewing the Evidence for Early-Life Respiratory Viral Infections as Modifiable Risk Factors to Prevent Childhood Asthma. Am. J. Respir. Crit. Care Med. 2015, 191, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Salazar, C.; Shilts, M.H.; Tovchigrechko, A.; Schobel, S.; Chappell, J.D.; Larkin, E.K.; Gebretsadik, T.; Halpin, R.A.; Nelson, K.E.; Moore, M.L.; et al. Nasopharyngeal Lactobacillus is associated with a reduced risk of childhood wheezing illnesses following acute respiratory syncytial virus infection in infancy. J. Allergy Clin. Immunol. 2018, 142, 1447–1456.e9. [Google Scholar] [CrossRef] [Green Version]
- Kloepfer, K.M.; Lee, W.M.; Pappas, T.E.; Kang, T.J.; Vrtis, R.F.; Evans, M.D.; Gangnon, R.E.; Bochkov, Y.A.; Jackson, D.J.; Lemanske, R.F.; et al. Detection of pathogenic bacteria during rhinovirus infection is associated with increased respiratory symptoms and asthma exacerbations. J. Allergy Clin. Immunol. 2014, 133, 1301–1307.e3. [Google Scholar] [CrossRef] [Green Version]
- Rosas-Salazar, C.; Shilts, M.H.; Tovchigrechko, A.; Chappell, J.D.; Larkin, E.K.; Nelson, K.E.; Moore, M.L.; Anderson, L.J.; Das, S.R.; Hartert, T.V. Nasopharyngeal Microbiome in Respiratory Syncytial Virus Resembles Profile Associated with Increased Childhood Asthma Risk. Am. J. Respir. Crit. Care Med. 2016, 193, 1180–1183. [Google Scholar] [CrossRef]
- Korten, I.; Mika, M.; Klenja, S.; Kieninger, E.; Mack, I.; Barbani, M.T.; Gorgievski, M.; Frey, U.; Hilty, M.; Latzin, P. Interactions of Respiratory Viruses and the Nasal Microbiota during the First Year of Life in Healthy Infants. mSphere 2016, 1, e00312-16. [Google Scholar] [CrossRef] [Green Version]
- Dimitri-Pinheiro, S.; Soares, R.; Barata, P. The Microbiome of the Nose-Friend or Foe? Allergy Rhinol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Schoos, A.M.; Kragh, M.; Ahrens, P.; Kuhn, K.G.; Rasmussen, M.A.; Chawes, B.L.; Jensen, J.S.; Brix, S.; Bisgaard, H.; Stokholm, J. Season of Birth Impacts the Neonatal Nasopharyngeal Microbiota. Children 2020, 7, 45. [Google Scholar] [CrossRef]
- Verhaegh, S.J.C.; Snippe, M.L.; Levy, F.; Verbrugh, H.A.; Jaddoe, V.W.V.; Hofman, A.; Moll, H.A.; van Belkum, A.; Hays, J.P. Colonization of healthy children by Moraxella catarrhalis is characterized by genotype heterogeneity, virulence gene diversity and co-colonization with Haemophilus influenzae. Microbiology 2011, 157 Pt 1, 169–178. [Google Scholar] [CrossRef] [Green Version]
- McCauley, K.E.; Flynn, K.; Calatroni, A.; DiMassa, V.; LaMere, B.; Fadrosh, D.W.; Lynch, K.V.; Gill, M.A.; Pongracic, J.A.; Khurana Hershey, G.K.; et al. Seasonal airway microbiome and transcriptome interactions promote childhood asthma exacerbations. J. Allergy Clin. Immunol. 2022, 150, 204–213. [Google Scholar] [CrossRef]
- Bosch, A.; de Steenhuijsen Piters, W.A.A.; van Houten, M.A.; Chu, M.; Biesbroek, G.; Kool, J.; Pernet, P.; de Groot, P.C.M.; Eijkemans, M.J.C.; Keijser, B.J.F.; et al. Maturation of the Infant Respiratory Microbiota, Environmental Drivers, and Health Consequences. A Prospective Cohort Study. Am. J. Respir. Crit. Care Med. 2017, 196, 1582–1590. [Google Scholar] [CrossRef]
- Perez-Losada, M.; Alamri, L.; Crandall, K.A.; Freishtat, R.J. Nasopharyngeal Microbiome Diversity Changes over Time in Children with Asthma. PLoS ONE 2017, 12, e0170543. [Google Scholar] [CrossRef] [Green Version]
- Teo, S.M.; Tang, H.H.F.; Mok, D.; Judd, L.M.; Watts, S.C.; Pham, K.; Holt, B.J.; Kusel, M.; Serralha, M.; Troy, N.; et al. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe 2018, 24, 341–352.e5. [Google Scholar] [CrossRef] [Green Version]
- Stearns, J.C.; Davidson, C.J.; McKeon, S.; Whelan, F.J.; Fontes, M.E.; Schryvers, A.B.; Bowdish, D.M.; Kellner, J.D.; Surette, M.G. Culture and molecular-based profiles show shifts in bacterial communities of the upper respiratory tract that occur with age. ISME J. 2015, 9, 1246–1259. [Google Scholar] [CrossRef] [Green Version]
- Bosco, N.; Noti, M. The aging gut microbiome and its impact on host immunity. Genes Immun. 2021, 22, 289–303. [Google Scholar] [CrossRef]
- de Sire, A.; de Sire, R.; Curci, C.; Castiglione, F.; Wahli, W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022, 11, 743. [Google Scholar] [CrossRef] [PubMed]
- Perez-Losada, M.; Authelet, K.J.; Hoptay, C.E.; Kwak, C.; Crandall, K.A.; Freishtat, R.J. Pediatric asthma comprises different phenotypic clusters with unique nasal microbiotas. Microbiome 2018, 6, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.; Conlan, S.; Polley, E.C.; Segre, J.A.; Kong, H.H. Shifts in human skin and nares microbiota of healthy children and adults. Genome Med. 2012, 4, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S.; Lee, E.; Lee, M.J.; Kang, M.J.; Yoon, J.; Cho, H.J.; Park, J.; Won, S.; Lee, S.Y.; Hong, S.J. Different functional genes of upper airway microbiome associated with natural course of childhood asthma. Allergy 2018, 73, 644–652. [Google Scholar] [CrossRef]
- McCauley, K.; Durack, J.; Valladares, R.; Fadrosh, D.W.; Lin, D.L.; Calatroni, A.; LeBeau, P.K.; Tran, H.T.; Fujimura, K.E.; LaMere, B.; et al. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J. Allergy Clin. Immunol. 2019, 144, 1187–1197. [Google Scholar] [CrossRef]
- Liu, T.; Lin, C.H.; Chen, Y.L.; Jeng, S.L.; Tsai, H.J.; Ho, C.L.; Kuo, W.S.; Hsieh, M.H.; Chen, P.C.; Wu, L.S.; et al. Nasal Microbiome Change During and After Exacerbation in Asthmatic Children. Front. Microbiol. 2021, 12, 833726. [Google Scholar] [CrossRef]
- Hou, J.; Song, Y.; Leung, A.S.Y.; Tang, M.F.; Shi, M.; Wang, E.Y.; Tsun, J.G.S.; Chan, R.W.Y.; Wong, G.W.K.; Tsui, S.K.; et al. Temporal Dynamics of the Nasopharyngeal Microbiome and its Relationship with Childhood Asthma Exacerbation. Microbiol. Spectr. 2022, 10, e00129-22. [Google Scholar] [CrossRef]
- Folsgaard, N.V.; Schjorring, S.; Chawes, B.L.; Rasmussen, M.A.; Krogfelt, K.A.; Brix, S.; Bisgaard, H. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release. Am. J. Respir. Crit. Care Med. 2013, 187, 589–595. [Google Scholar] [CrossRef]
- Castro-Nallar, E.; Shen, Y.; Freishtat, R.J.; Perez-Losada, M.; Manimaran, S.; Liu, G.; Johnson, W.E.; Crandall, K.A. Integrating microbial and host transcriptomics to characterize asthma-associated microbial communities. BMC Med. Genom. 2015, 8, 50. [Google Scholar] [CrossRef]
- Kim, C.S.; Sohn, S.H.; Jeon, S.K.; Kim, K.N.; Ryu, J.J.; Kim, M.K. Effect of various implant coatings on biological responses in MG63 using cDNA microarray. J. Oral Rehabil. 2006, 33, 368–379. [Google Scholar] [CrossRef]
- Perez-Losada, M.; Castro-Nallar, E.; Bendall, M.L.; Freishtat, R.J.; Crandall, K.A. Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma. PLoS ONE 2015, 10, e0131819. [Google Scholar] [CrossRef] [Green Version]
- Terasjarvi, J.T.; Toivonen, L.; Vuononvirta, J.; Mertsola, J.; Peltola, V.; He, Q. TLR4 Polymorphism, Nasopharyngeal Bacterial Colonization, and the Development of Childhood Asthma: A Prospective Birth-Cohort Study in Finnish Children. Genes 2020, 11, 768. [Google Scholar] [CrossRef]
- Ritchie, N.D.; Ijaz, U.Z.; Evans, T.J. IL-17 signalling restructures the nasal microbiome and drives dynamic changes following Streptococcus pneumoniae colonization. BMC Genom. 2017, 18, 807. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Guo, Z.G.; He, B.; Yao, W.Z. Metabolic alterations in the sera of Chinese patients with mild persistent asthma: A GC-MS-based metabolomics analysis. Acta Pharmacol. Sin. 2015, 36, 1356–1366. [Google Scholar] [CrossRef] [Green Version]
- Jeong, A.; Fiorito, G.; Keski-Rahkonen, P.; Imboden, M.; Kiss, A.; Robinot, N.; Gmuender, H.; Vlaanderen, J.; Vermeulen, R.; Kyrtopoulos, S.; et al. Perturbation of metabolic pathways mediates the association of air pollutants with asthma and cardiovascular diseases. Environ. Int. 2018, 119, 334–345. [Google Scholar] [CrossRef]
- Fazlollahi, M.; Lee, T.D.; Andrade, J.; Oguntuyo, K.; Chun, Y.; Grishina, G.; Grishin, A.; Bunyavanich, S. The nasal microbiome in asthma. J. Allergy Clin. Immunol. 2018, 142, 834–843.e2. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.J.; Kim, S.H.; Lee, M.J.; Kim, B.K.; Song, W.J.; Park, H.W.; Cho, S.H.; Hong, S.J.; Chang, Y.S.; Kim, B.S. Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals. Allergy 2019, 74, 709–719. [Google Scholar] [CrossRef]
- Toivonen, L.; Schuez-Havupalo, L.; Karppinen, S.; Waris, M.; Hoffman, K.L.; Camargo, C.A.; Hasegawa, K.; Peltola, V. Antibiotic Treatments During Infancy, Changes in Nasal Microbiota, and Asthma Development: Population-based Cohort Study. Clin. Infect. Dis. 2021, 72, 1546–1554. [Google Scholar] [CrossRef] [Green Version]
- Ochoa Sangrador, C.; Vazquez Blanco, A. Day-care center attendance and risk of Asthma-A systematic review. Allergol. Immunopathol. 2018, 46, 578–584. [Google Scholar] [CrossRef]
- Roslund, M.I.; Puhakka, R.; Nurminen, N.; Oikarinen, S.; Siter, N.; Gronroos, M.; Cinek, O.; Kramna, L.; Jumpponen, A.; Laitinen, O.H.; et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int. 2021, 157, 106811. [Google Scholar] [CrossRef]
- Jarett, J.K.; Kingsbury, D.D.; Dahlhausen, K.E.; Ganz, H.H. Best Practices for Microbiome Study Design in Companion Animal Research. Front. Vet. Sci. 2021, 8, 644836. [Google Scholar] [CrossRef]
- Schloissnig, S.; Arumugam, M.; Sunagawa, S.; Mitreva, M.; Tap, J.; Zhu, A.; Waller, A.; Mende, D.R.; Kultima, J.R.; Martin, J.; et al. Genomic variation landscape of the human gut microbiome. Nature 2013, 493, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, A.; Okazaki, H.; Makita, N.; Fukui, A.; Piao, Y.; Arita, Y.; Itoh, Y.; Tashiro, N. Regional differences in the incidence of asthma exacerbations in Japan: A heat map analysis of healthcare insurance claims data. Allergol. Int. 2022, 71, 47–54. [Google Scholar] [CrossRef]
- Mallol, J.; Sole, D.; Baeza-Bacab, M.; Aguirre-Camposano, V.; Soto-Quiros, M.; Baena-Cagnani, C.; Latin American, I.G. Regional variation in asthma symptom prevalence in Latin American children. J. Asthma 2010, 47, 644–650. [Google Scholar] [CrossRef]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Pamp, S.J.; Fukuyama, J.; Hwang, P.H.; Cho, D.Y.; Holmes, S.; Relman, D.A. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe 2013, 14, 631–640. [Google Scholar] [CrossRef] [Green Version]
- De Boeck, I.; Wittouck, S.; Wuyts, S.; Oerlemans, E.F.M.; van den Broek, M.F.L.; Vandenheuvel, D.; Vanderveken, O.; Lebeer, S. Comparing the Healthy Nose and Nasopharynx Microbiota Reveals Continuity As Well As Niche-Specificity. Front. Microbiol. 2017, 8, 2372. [Google Scholar] [CrossRef] [Green Version]
- Luna, P.N.; Hasegawa, K.; Ajami, N.J.; Espinola, J.A.; Henke, D.M.; Petrosino, J.F.; Piedra, P.A.; Sullivan, A.F.; Camargo, C.A.; Shaw, C.A.; et al. The association between anterior nares and nasopharyngeal microbiota in infants hospitalized for bronchiolitis. Microbiome 2018, 6, 2. [Google Scholar] [CrossRef]
- Teng, F.; Darveekaran Nair, S.S.; Zhu, P.; Li, S.; Huang, S.; Li, X.; Xu, J.; Yang, F. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci. Rep. 2018, 8, 16321. [Google Scholar] [CrossRef]
- Perez-Losada, M.; Crandall, K.A.; Freishtat, R.J. Comparison of two commercial DNA extraction kits for the analysis of nasopharyngeal bacterial communities. AIMS Microbiol. 2016, 2, 108–119. [Google Scholar] [CrossRef]
- Willner, D.; Daly, J.; Whiley, D.; Grimwood, K.; Wainwright, C.E.; Hugenholtz, P. Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PLoS ONE 2012, 7, e34605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjerre, R.D.; Hugerth, L.W.; Boulund, F.; Seifert, M.; Johansen, J.D.; Engstrand, L. Effects of sampling strategy and DNA extraction on human skin microbiome investigations. Sci. Rep. 2019, 9, 17287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Hui, P.C.; Hui, M.; Yeoh, Y.K.; Wong, P.Y.; Chan, M.C.W.; Wong, M.C.S.; Ng, S.C.; Chan, F.K.L.; Chan, P.K.S. Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling. mSystems 2019, 4, e00271-18. [Google Scholar] [CrossRef] [Green Version]
- Kong, H.D.H. Skin microbiome: Genomics-based insights into the diversity and role of skin microbes. Trends Mol. Med. 2011, 17, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Zepeda, A.; Godoy-Lozano, E.E.; Raggi, L.; Segovia, L.; Merino, E.; Gutierrez-Rios, R.M.; Juarez, K.; Licea-Navarro, A.F.; Pardo-Lopez, L.; Sanchez-Flores, A. Analysis of sequencing strategies and tools for taxonomic annotation: Defining standards for progressive metagenomics. Sci. Rep. 2018, 8, 12034. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; van Aerle, R.; Barrientos, L.; Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. Struct. Biotechnol. J. 2020, 18, 296–305. [Google Scholar] [CrossRef]
- Lopez-Garcia, A.; Pineda-Quiroga, C.; Atxaerandio, R.; Perez, A.; Hernandez, I.; Garcia-Rodriguez, A.; Gonzalez-Recio, O. Comparison of Mothur and QIIME for the Analysis of Rumen Microbiota Composition Based on 16S rRNA Amplicon Sequences. Front. Microbiol. 2018, 9, 3010. [Google Scholar] [CrossRef]
- Prodan, A.; Tremaroli, V.; Brolin, H.; Zwinderman, A.H.; Nieuwdorp, M.; Levin, E. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS ONE 2020, 15, e0227434. [Google Scholar] [CrossRef] [Green Version]
- Kozik, A.J.; Huang, Y.J. The microbiome in asthma: Role in pathogenesis, phenotype, and response to treatment. Ann. Allergy Asthma Immunol. 2019, 122, 270–275. [Google Scholar] [CrossRef]
- Carr, T.F.; Alkatib, R.; Kraft, M. Microbiome in Mechanisms of Asthma. Clin. Chest Med. 2018, 40, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Ma, T.; Xu, N.; Jin, H.; Zhao, F.; Kwok, L.Y.; Zhang, H.; Zhang, S.; Sun, Z. Adjunctive Probiotics Alleviates Asthmatic Symptoms via Modulating the Gut Microbiome and Serum Metabolome. Microbiol. Spectr. 2021, 9, e00859-21. [Google Scholar] [CrossRef]
- Vliagoftis, H.; Kouranos, V.D.; Betsi, G.I.; Falagas, M.E. Probiotics for the treatment of allergic rhinitis and asthma: Systematic review of randomized controlled trials. Ann. Allergy Asthma Immunol. 2008, 101, 570–579. [Google Scholar] [CrossRef]
- Luoto, R.; Ruuskanen, O.; Waris, M.; Kalliomaki, M.; Salminen, S.; Isolauri, E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: A randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2014, 133, 405–413. [Google Scholar] [CrossRef]
- Panigrahi, P.; Parida, S.; Nanda, N.C.; Satpathy, R.; Pradhan, L.; Chandel, D.S.; Baccaglini, L.; Mohapatra, A.; Mohapatra, S.S.; Misra, P.R.; et al. Corrigendum: A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 2018, 553, 238. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.T.; Chen, P.J.; Lee, Y.T.; Ko, J.L.; Lue, K.H. Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. J. Microbiol. Immunol. Infect. 2016, 49, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.F. Airway microbial dysbiosis in asthmatic patients: A target for prevention and treatment? J. Allergy Clin. Immunol. 2017, 139, 1071–1081. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsson, T.R.; Jakobsson, H.E.; Andersson, A.F.; Bjorksten, B.; Engstrand, L.; Jenmalm, M.C. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin. Exp. Allergy 2014, 44, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef]
- Schuijt, T.J.; Lankelma, J.M.; Scicluna, B.P.; de Sousa e Melo, F.; Roelofs, J.J.; de Boer, J.D.; Hoogendijk, A.J.; de Beer, R.; de Vos, A.; Belzer, C.; et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut 2016, 65, 575–583. [Google Scholar] [CrossRef]
- Durack, J.; Lynch, S.V. The gut microbiome: Relationships with disease and opportunities for therapy. J. Exp. Med. 2019, 216, 20–40. [Google Scholar] [CrossRef] [Green Version]
- Wypych, T.P.; Pattaroni, C.; Perdijk, O.; Yap, C.; Trompette, A.; Anderson, D.; Creek, D.J.; Harris, N.L.; Marsland, B.J. Microbial metabolism of L-tyrosine protects against allergic airway inflammation. Nat. Immunol. 2021, 22, 279–286. [Google Scholar] [CrossRef]
- Patel, A.B.; Verma, A. Nasal ACE2 Levels and COVID-19 in Children. JAMA 2020, 323, 2386. [Google Scholar] [CrossRef]
- Rueca, M.; Fontana, A.; Bartolini, B.; Piselli, P.; Mazzarelli, A.; Copetti, M.; Binda, E.; Perri, F.; Gruber, C.E.M.; Nicastri, E.; et al. Investigation of Nasal/Oropharyngeal Microbial Community of COVID-19 Patients by 16S rDNA Sequencing. Int. J. Environ. Res. Public Health 2021, 18, 2174. [Google Scholar] [CrossRef]
- Takabayashi, T.; Yoshida, K.; Imoto, Y.; Schleimer, R.P.; Fujieda, S. Regulation of the Expression of SARS-CoV-2 Receptor Angiotensin-Converting Enzyme 2 in Nasal Mucosa. Am. J. Rhinol. Allergy 2021, 36, 115–122. [Google Scholar] [CrossRef]
Author Year | Population and Initial Status | Sampling | 16S rDNA (rRNA Gene) Region | Sequencing Platform | Age Initiation | Design | Key Nasal Microbiota |
---|---|---|---|---|---|---|---|
Mika et al. (2015) [26] | 47 healthy infants | Nasal swabs collected biweekly | V3–V5 | Roche 454 | 5 weeks | Longitudinal cohort | Major families in healthy infants: Moraxellaceae, Streptococcaceae, Corynebacteriaceae, Pasteurellaceae, and Staphylococcaceae |
Shilts et al. (2016) [27] | 33 healthy infants | Nasal filter paper samples | V1–V3 | Roche 454 | ≤6 months | Cross-sectional | Major genera in healthy infants: Corynebacterium, Streptococcus, Staphylococcus, Dolosigranulum, and Moraxella |
Bisgaard et al. (2007) [34] | 321 asymptomatic neonates | Hypopharyngeal aspirates | culture-based | N/A | 1 month | Longitudinal cohort | Early presence of genera associated with wheezing risk: M. catarrhalis, S. pneumoniae, and H. influenzae |
Teo et al. (2015) [33] | 234 infants | Nasopharyngeal aspirates at 3 time points (2, 6, and 12 months of age during healthy state) and within 48 h from ARI onset | V4 | Illumina MiSeq | 2 months | Longitudinal cohort | Nasopharyngeal microbiota was dominated by six common genera: Moraxella, Haemophilus, Streptococcus (more common in ARIs), Staphylococcus, Corynebacterium, and Alloiococcus (more common in healthy samples) |
Toivone et al. (2020) [35] | 704 children | Nasal and nasopharyngeal swabs collected at 3 time points (2, 13, and 24 months of age during healthy state) | V4 | Illumina MiSeq | 2 months | Longitudinal cohort | Persistent Moraxella sparsity was associated with a significantly higher risk of asthma at age 7 |
Tang et al. (2020) [36] | 285 children | Nasopharyngeal mucus samples at 7 time points (2, 4, 6, 9, 12, 18, and 24 months of age), and during episodes of respiratory illnesses | V4 | N/A | 2 months | Longitudinal cohort | A Staphylococcus-dominant microbiome was associated with increased risk of recurrent wheezing and later asthma development |
Ta et al. (2018) [28] | 122 infants (60 healthy vs. 62 with respiratory infection) | Nasal swabs at 7 time points (3 weeks and 3, 6, 9, 12, 15, and 18 months of age) | V3–V6 | Illumina HiSeq | 3 weeks | Longitudinal cohort | Major families in all participants: Corynebacteriaceae, Oxalobacteraceae, Moraxellaceae, Aerococcaceae, and Staphylococcaceae |
Rosas-Salazar et al. (2016) [40] | 132 infants (33 healthy vs. 99 RSV-infected infants) | Dry filter papers in healthy infants and nasal washes in infants with RSV | V1–V3 | Roche 454 | average ≤ 6 months | Cross-sectional | Increased Haemophilus, Moraxella, and Streptococcus and decreased Lactobacillus, Staphylococcus, and Corynebacterium in infants with RSV-ARI |
Rosas-Salazar et al. (2018) [38] | 118 infants with RSV-ARI | Nasal washes | V4 | Illumina MiSeq | 21.8 weeks | Longitudinal cohort | Decreased genus in infants with recurrent wheezing during RSV-ARI: Lactobacillus |
Schoos et al. (2020) [43] | 328 asymptomatic neonates | Nasopharyngeal swabs | V1–V3 | N/A | 1 month | Longitudinal cohort | A higher richness and abundance of bacteria (Gram-negative α-proteobacteria and Gram-positive Bacilli) in summer-born asymptomatic neonates |
Verhaegh et al. (2011) [44] | 1079 healthy children | Nasal swabs at 4 time points (1.5, 6, 14, and 24 months of age) | culture-based | N/A | 1.5 months | Longitudinal cohort | Seasonal opportunistic pathogens with peak presence in healthy children: M. catarrhalis (autumn/winter) and H. influenzae (winter/spring) |
McCauley et al. (2022) [45] | 208 children with asthma | Nasal mucus samples at two time points during respiratory illness symptoms or asthma exacerbations | V4 | Illumina 500 | 6 years | Longitudinal cohort | Higher relative abundance of Moraxella in spring and Staphylococcus in fall first captured respiratory illness |
Pérez-Losada et al. (2018) [52] | 163 children with asthma | Nasal washes | V4 | Illumina MiSeq | 6–18 years | Cross-sectional | Major pathogenic genera in asthmatic children: Moraxella, Staphylococcus, Streptococcus, and Haemophilus |
Kim et al. (2018) [55] | 92 children (31 healthy vs. 31 with asthma vs. 30 in remission) | Nasopharyngeal swabs | V1–V3/all microbial genomes | Roche 454/Illumina HiSeq 2500 | 8 years | Cross-sectional | Most abundant genus in asthma group: Staphylococcus |
Teo et al. (2018) [48] | 244 children at high risk of allergic sensitisation | Nasopharyngeal aspirates and blood samples | V4 | Illumina MiSeq | 2 months | Longitudinal cohort | Stable genera: Moraxella or both Alloiococcus and Corynebacterium |
Perez-Losada et al. (2017) [47] | 40 children with asthma | Nasopharyngeal washes collected 5.5 to 6.5 months apart | V4 | Illumina MiSeq | 6 years | Longitudinal cohort | Nasopharyngeal core microbiome of asthmatic children: Moraxella, Staphylococcus, Streptococcus, Haemophilus, and Fusobacterium |
McCauley et al. (2019) [56] | 413 children with asthma | Nasal secretion samples collected every 2 weeks throughout the 90-day fall outcome periods | V4 | Illumina NextSeq 500 | 6 years | Longitudinal cohort | Stable species-dominated microbiota in the upper airways of asthmatic children: Moraxella and Staphylococcus |
Liu et al. (2021) [57] | 56 children with asthma | Nasal, throat, and gut samples collected. Nasal swabs collected during acute exacerbation and in the recovery phase | V3-V4 | Illumina MiSeq | 3 years | Longitudinal cohort | Major genera in asthmatic children: Moraxella, Streptococcus, and Haemophilus |
Hou et al. (2022) [58] | 53 children (20 healthy vs. 33 asthmatic) | Nasopharyngeal swabs of asthmatics at six time points (2- to 4-week intervals) and healthy controls at recruitment | V4 | Illumina HiSeq 2500 | 6 years | Longitudinal cohort | In all asthmatic samples: Moraxella increased and Corynebacterium, Anoxybacillus, and Pseudomonas decreased |
Kloepfer et al. (2014) [39] | 308 children (142 healthy vs. 166 asthmatic) | Nasal mucus samples at five consecutive weeks during a peak RV season | N/A (Spn9802, P6, and copB) | N/A | 4 years | Longitudinal cohort | Species inducing asthma exacerbations: S. pneumoniae or M. catarrhalis accompanying RV infection |
Folsgaard et al. (2013) [59] | 662 healthy infants | Hypopharyngeal aspirate and airway mucosal lining fluid by filter papers | culture-based | N/A | ≤1 month | Cross-sectional | Major species associated with an inflammatory immune response of the airway mucosa: M. catarrhalis and H. influenza |
Castro-Nallar et al. (2015) [60] | 14 participants (8 asthmatic vs. 6 healthy) | Nasal epithelial cells | all microbial genomes | Illumina HiSeq 2500 | 6–20 years | Cross-sectional | Major species in asthma: M. catarrhalis (associated with a specific host gene expression signature) |
Fazlollahi et al. (2018) [67] | 72 adults (21 healthy vs. 51 asthmatic) | Nasal swabs | V3–V4 | Illumina MiSeq | 10–73 years | Cross-sectional | Major genera in asthmatic adults: Prevotella, Alkanindiges, Gardnerella, and Dialister |
Lee et al. (2019) [68] | 80 adults (60 asthmatic vs. 20 non-asthmatic) | Nasopharyngeal swabs | V1–V3/all microbial genomes | Roche 454/Illumina Hiseq 2500 | 18–45 years; ≥65 years | Cross-sectional | Major species associated with dysregulated metabolic pathways in asthmatic patients: Bacteroides caccae, Escherichia coli, Veillonella parvula, and Bifidobacterium longum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Liang, J.Q. Nasal Microbiome and Its Interaction with the Host in Childhood Asthma. Cells 2022, 11, 3155. https://doi.org/10.3390/cells11193155
Zeng Y, Liang JQ. Nasal Microbiome and Its Interaction with the Host in Childhood Asthma. Cells. 2022; 11(19):3155. https://doi.org/10.3390/cells11193155
Chicago/Turabian StyleZeng, Yao, and Jessie Qiaoyi Liang. 2022. "Nasal Microbiome and Its Interaction with the Host in Childhood Asthma" Cells 11, no. 19: 3155. https://doi.org/10.3390/cells11193155
APA StyleZeng, Y., & Liang, J. Q. (2022). Nasal Microbiome and Its Interaction with the Host in Childhood Asthma. Cells, 11(19), 3155. https://doi.org/10.3390/cells11193155